sata_dwc_460ex.c 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * drivers/ata/sata_dwc_460ex.c
 *
 * Synopsys DesignWare Cores (DWC) SATA host driver
 *
 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
 *
 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
 * Copyright 2008 DENX Software Engineering
 *
 * Based on versions provided by AMCC and Synopsys which are:
 *          Copyright 2006 Applied Micro Circuits Corporation
 *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#ifdef CONFIG_SATA_DWC_DEBUG
#define DEBUG
#endif

#ifdef CONFIG_SATA_DWC_VDEBUG
#define VERBOSE_DEBUG
#define DEBUG_NCQ
#endif

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
33
#include <linux/dmaengine.h>
34 35
#include <linux/of_address.h>
#include <linux/of_irq.h>
36 37
#include <linux/of_platform.h>
#include <linux/platform_device.h>
38
#include <linux/phy/phy.h>
39 40
#include <linux/libata.h>
#include <linux/slab.h>
41

42 43 44 45 46
#include "libata.h"

#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>

47 48 49
/* These two are defined in "libata.h" */
#undef	DRV_NAME
#undef	DRV_VERSION
50

51
#define DRV_NAME        "sata-dwc"
52
#define DRV_VERSION     "1.3"
53

54 55
#define sata_dwc_writel(a, v)	writel_relaxed(v, a)
#define sata_dwc_readl(a)	readl_relaxed(a)
56 57 58 59 60

#ifndef NO_IRQ
#define NO_IRQ		0
#endif

61
#define AHB_DMA_BRST_DFLT	64	/* 16 data items burst length */
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

enum {
	SATA_DWC_MAX_PORTS = 1,

	SATA_DWC_SCR_OFFSET = 0x24,
	SATA_DWC_REG_OFFSET = 0x64,
};

/* DWC SATA Registers */
struct sata_dwc_regs {
	u32 fptagr;		/* 1st party DMA tag */
	u32 fpbor;		/* 1st party DMA buffer offset */
	u32 fptcr;		/* 1st party DMA Xfr count */
	u32 dmacr;		/* DMA Control */
	u32 dbtsr;		/* DMA Burst Transac size */
	u32 intpr;		/* Interrupt Pending */
	u32 intmr;		/* Interrupt Mask */
	u32 errmr;		/* Error Mask */
	u32 llcr;		/* Link Layer Control */
	u32 phycr;		/* PHY Control */
	u32 physr;		/* PHY Status */
	u32 rxbistpd;		/* Recvd BIST pattern def register */
	u32 rxbistpd1;		/* Recvd BIST data dword1 */
	u32 rxbistpd2;		/* Recvd BIST pattern data dword2 */
	u32 txbistpd;		/* Trans BIST pattern def register */
	u32 txbistpd1;		/* Trans BIST data dword1 */
	u32 txbistpd2;		/* Trans BIST data dword2 */
	u32 bistcr;		/* BIST Control Register */
	u32 bistfctr;		/* BIST FIS Count Register */
	u32 bistsr;		/* BIST Status Register */
	u32 bistdecr;		/* BIST Dword Error count register */
	u32 res[15];		/* Reserved locations */
	u32 testr;		/* Test Register */
	u32 versionr;		/* Version Register */
	u32 idr;		/* ID Register */
	u32 unimpl[192];	/* Unimplemented */
98
	u32 dmadr[256];		/* FIFO Locations in DMA Mode */
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

enum {
	SCR_SCONTROL_DET_ENABLE	=	0x00000001,
	SCR_SSTATUS_DET_PRESENT	=	0x00000001,
	SCR_SERROR_DIAG_X	=	0x04000000,
/* DWC SATA Register Operations */
	SATA_DWC_TXFIFO_DEPTH	=	0x01FF,
	SATA_DWC_RXFIFO_DEPTH	=	0x01FF,
	SATA_DWC_DMACR_TMOD_TXCHEN =	0x00000004,
	SATA_DWC_DMACR_TXCHEN	= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
	SATA_DWC_DMACR_RXCHEN	= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
	SATA_DWC_DMACR_TXRXCH_CLEAR =	SATA_DWC_DMACR_TMOD_TXCHEN,
	SATA_DWC_INTPR_DMAT	=	0x00000001,
	SATA_DWC_INTPR_NEWFP	=	0x00000002,
	SATA_DWC_INTPR_PMABRT	=	0x00000004,
	SATA_DWC_INTPR_ERR	=	0x00000008,
	SATA_DWC_INTPR_NEWBIST	=	0x00000010,
	SATA_DWC_INTPR_IPF	=	0x10000000,
	SATA_DWC_INTMR_DMATM	=	0x00000001,
	SATA_DWC_INTMR_NEWFPM	=	0x00000002,
	SATA_DWC_INTMR_PMABRTM	=	0x00000004,
	SATA_DWC_INTMR_ERRM	=	0x00000008,
	SATA_DWC_INTMR_NEWBISTM	=	0x00000010,
	SATA_DWC_LLCR_SCRAMEN	=	0x00000001,
	SATA_DWC_LLCR_DESCRAMEN	=	0x00000002,
	SATA_DWC_LLCR_RPDEN	=	0x00000004,
/* This is all error bits, zero's are reserved fields. */
	SATA_DWC_SERROR_ERR_BITS =	0x0FFF0F03
};

#define SATA_DWC_SCR0_SPD_GET(v)	(((v) >> 4) & 0x0000000F)
#define SATA_DWC_DMACR_TX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_TXCHEN) |\
						 SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DMACR_RX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_RXCHEN) |\
						 SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DBTSR_MWR(size)	(((size)/4) & SATA_DWC_TXFIFO_DEPTH)
#define SATA_DWC_DBTSR_MRD(size)	((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
						 << 16)
struct sata_dwc_device {
	struct device		*dev;		/* generic device struct */
	struct ata_probe_ent	*pe;		/* ptr to probe-ent */
	struct ata_host		*host;
142
	struct sata_dwc_regs __iomem *sata_dwc_regs;	/* DW SATA specific */
143 144
	u32			sactive_issued;
	u32			sactive_queued;
145
	struct phy		*phy;
146
	phys_addr_t		dmadr;
147
#ifdef CONFIG_SATA_DWC_OLD_DMA
148
	struct dw_dma_chip	*dma;
149
#endif
150 151 152 153 154 155 156 157
};

#define SATA_DWC_QCMD_MAX	32

struct sata_dwc_device_port {
	struct sata_dwc_device	*hsdev;
	int			cmd_issued[SATA_DWC_QCMD_MAX];
	int			dma_pending[SATA_DWC_QCMD_MAX];
158 159 160 161 162

	/* DMA info */
	struct dma_chan			*chan;
	struct dma_async_tx_descriptor	*desc[SATA_DWC_QCMD_MAX];
	u32				dma_interrupt_count;
163 164 165
};

/*
166
 * Commonly used DWC SATA driver macros
167
 */
168 169 170 171 172
#define HSDEV_FROM_HOST(host)	((struct sata_dwc_device *)(host)->private_data)
#define HSDEV_FROM_AP(ap)	((struct sata_dwc_device *)(ap)->host->private_data)
#define HSDEVP_FROM_AP(ap)	((struct sata_dwc_device_port *)(ap)->private_data)
#define HSDEV_FROM_QC(qc)	((struct sata_dwc_device *)(qc)->ap->host->private_data)
#define HSDEV_FROM_HSDEVP(p)	((struct sata_dwc_device *)(p)->hsdev)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

enum {
	SATA_DWC_CMD_ISSUED_NOT		= 0,
	SATA_DWC_CMD_ISSUED_PEND	= 1,
	SATA_DWC_CMD_ISSUED_EXEC	= 2,
	SATA_DWC_CMD_ISSUED_NODATA	= 3,

	SATA_DWC_DMA_PENDING_NONE	= 0,
	SATA_DWC_DMA_PENDING_TX		= 1,
	SATA_DWC_DMA_PENDING_RX		= 2,
};

/*
 * Prototypes
 */
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
				u32 check_status);
static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
static void sata_dwc_port_stop(struct ata_port *ap);
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#ifdef CONFIG_SATA_DWC_OLD_DMA

#include <linux/platform_data/dma-dw.h>
#include <linux/dma/dw.h>

static struct dw_dma_slave sata_dwc_dma_dws = {
	.src_id = 0,
	.dst_id = 0,
	.m_master = 1,
	.p_master = 0,
};

static bool sata_dwc_dma_filter(struct dma_chan *chan, void *param)
{
	struct dw_dma_slave *dws = &sata_dwc_dma_dws;

	if (dws->dma_dev != chan->device->dev)
		return false;

	chan->private = dws;
	return true;
}

static int sata_dwc_dma_get_channel_old(struct sata_dwc_device_port *hsdevp)
{
	struct sata_dwc_device *hsdev = hsdevp->hsdev;
	struct dw_dma_slave *dws = &sata_dwc_dma_dws;
	dma_cap_mask_t mask;

	dws->dma_dev = hsdev->dev;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	/* Acquire DMA channel */
	hsdevp->chan = dma_request_channel(mask, sata_dwc_dma_filter, hsdevp);
	if (!hsdevp->chan) {
		dev_err(hsdev->dev, "%s: dma channel unavailable\n",
			 __func__);
		return -EAGAIN;
	}

	return 0;
}

static int sata_dwc_dma_init_old(struct platform_device *pdev,
				 struct sata_dwc_device *hsdev)
{
	struct device_node *np = pdev->dev.of_node;
244
	struct resource *res;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

	hsdev->dma = devm_kzalloc(&pdev->dev, sizeof(*hsdev->dma), GFP_KERNEL);
	if (!hsdev->dma)
		return -ENOMEM;

	hsdev->dma->dev = &pdev->dev;

	/* Get SATA DMA interrupt number */
	hsdev->dma->irq = irq_of_parse_and_map(np, 1);
	if (hsdev->dma->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no SATA DMA irq\n");
		return -ENODEV;
	}

	/* Get physical SATA DMA register base address */
260 261
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	hsdev->dma->regs = devm_ioremap_resource(&pdev->dev, res);
262
	if (IS_ERR(hsdev->dma->regs))
263
		return PTR_ERR(hsdev->dma->regs);
264 265

	/* Initialize AHB DMAC */
266
	return dw_dma_probe(hsdev->dma);
267 268 269 270 271 272 273 274 275 276 277 278
}

static void sata_dwc_dma_exit_old(struct sata_dwc_device *hsdev)
{
	if (!hsdev->dma)
		return;

	dw_dma_remove(hsdev->dma);
}

#endif

279 280
static const char *get_prot_descript(u8 protocol)
{
281
	switch (protocol) {
282 283 284 285 286 287 288 289
	case ATA_PROT_NODATA:
		return "ATA no data";
	case ATA_PROT_PIO:
		return "ATA PIO";
	case ATA_PROT_DMA:
		return "ATA DMA";
	case ATA_PROT_NCQ:
		return "ATA NCQ";
290 291
	case ATA_PROT_NCQ_NODATA:
		return "ATA NCQ no data";
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	case ATAPI_PROT_NODATA:
		return "ATAPI no data";
	case ATAPI_PROT_PIO:
		return "ATAPI PIO";
	case ATAPI_PROT_DMA:
		return "ATAPI DMA";
	default:
		return "unknown";
	}
}

static const char *get_dma_dir_descript(int dma_dir)
{
	switch ((enum dma_data_direction)dma_dir) {
	case DMA_BIDIRECTIONAL:
		return "bidirectional";
	case DMA_TO_DEVICE:
		return "to device";
	case DMA_FROM_DEVICE:
		return "from device";
	default:
		return "none";
	}
}

317
static void sata_dwc_tf_dump(struct ata_port *ap, struct ata_taskfile *tf)
318
{
319
	dev_vdbg(ap->dev,
320 321 322
		"taskfile cmd: 0x%02x protocol: %s flags: 0x%lx device: %x\n",
		tf->command, get_prot_descript(tf->protocol), tf->flags,
		tf->device);
323
	dev_vdbg(ap->dev,
324 325
		"feature: 0x%02x nsect: 0x%x lbal: 0x%x lbam: 0x%x lbah: 0x%x\n",
		tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah);
326
	dev_vdbg(ap->dev,
327
		"hob_feature: 0x%02x hob_nsect: 0x%x hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
328 329 330 331
		tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
		tf->hob_lbah);
}

332
static void dma_dwc_xfer_done(void *hsdev_instance)
333 334
{
	unsigned long flags;
J
Joe Perches 已提交
335
	struct sata_dwc_device *hsdev = hsdev_instance;
336 337 338 339 340 341 342 343 344 345 346 347
	struct ata_host *host = (struct ata_host *)hsdev->host;
	struct ata_port *ap;
	struct sata_dwc_device_port *hsdevp;
	u8 tag = 0;
	unsigned int port = 0;

	spin_lock_irqsave(&host->lock, flags);
	ap = host->ports[port];
	hsdevp = HSDEVP_FROM_AP(ap);
	tag = ap->link.active_tag;

	/*
348 349 350
	 * Each DMA command produces 2 interrupts.  Only
	 * complete the command after both interrupts have been
	 * seen. (See sata_dwc_isr())
351
	 */
352 353
	hsdevp->dma_interrupt_count++;
	sata_dwc_clear_dmacr(hsdevp, tag);
354

355 356 357
	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
		dev_err(ap->dev, "DMA not pending tag=0x%02x pending=%d\n",
			tag, hsdevp->dma_pending[tag]);
358 359
	}

360
	if ((hsdevp->dma_interrupt_count % 2) == 0)
361
		sata_dwc_dma_xfer_complete(ap, 1);
362

363
	spin_unlock_irqrestore(&host->lock, flags);
364 365
}

366
static struct dma_async_tx_descriptor *dma_dwc_xfer_setup(struct ata_queued_cmd *qc)
367
{
368 369 370 371 372 373 374
	struct ata_port *ap = qc->ap;
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
	struct dma_slave_config sconf;
	struct dma_async_tx_descriptor *desc;

	if (qc->dma_dir == DMA_DEV_TO_MEM) {
375
		sconf.src_addr = hsdev->dmadr;
376
		sconf.device_fc = false;
377
	} else {	/* DMA_MEM_TO_DEV */
378
		sconf.dst_addr = hsdev->dmadr;
379
		sconf.device_fc = false;
380 381
	}

382
	sconf.direction = qc->dma_dir;
383 384
	sconf.src_maxburst = AHB_DMA_BRST_DFLT / 4;	/* in items */
	sconf.dst_maxburst = AHB_DMA_BRST_DFLT / 4;	/* in items */
385 386
	sconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	sconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
387

388
	dmaengine_slave_config(hsdevp->chan, &sconf);
389

390 391 392 393
	/* Convert SG list to linked list of items (LLIs) for AHB DMA */
	desc = dmaengine_prep_slave_sg(hsdevp->chan, qc->sg, qc->n_elem,
				       qc->dma_dir,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
394

395 396
	if (!desc)
		return NULL;
397

398 399
	desc->callback = dma_dwc_xfer_done;
	desc->callback_param = hsdev;
400

401 402
	dev_dbg(hsdev->dev, "%s sg: 0x%p, count: %d addr: %pa\n", __func__,
		qc->sg, qc->n_elem, &hsdev->dmadr);
403

404
	return desc;
405 406 407 408 409 410 411 412 413 414
}

static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
{
	if (scr > SCR_NOTIFICATION) {
		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
			__func__, scr);
		return -EINVAL;
	}

415
	*val = sata_dwc_readl(link->ap->ioaddr.scr_addr + (scr * 4));
416 417
	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__,
		link->ap->print_id, scr, *val);
418 419 420 421 422 423

	return 0;
}

static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
{
424 425
	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__,
		link->ap->print_id, scr, val);
426 427 428 429 430
	if (scr > SCR_NOTIFICATION) {
		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
			 __func__, scr);
		return -EINVAL;
	}
431
	sata_dwc_writel(link->ap->ioaddr.scr_addr + (scr * 4), val);
432 433 434 435

	return 0;
}

436
static void clear_serror(struct ata_port *ap)
437 438
{
	u32 val;
439 440
	sata_dwc_scr_read(&ap->link, SCR_ERROR, &val);
	sata_dwc_scr_write(&ap->link, SCR_ERROR, val);
441 442 443 444
}

static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
{
445 446
	sata_dwc_writel(&hsdev->sata_dwc_regs->intpr,
			sata_dwc_readl(&hsdev->sata_dwc_regs->intpr));
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

static u32 qcmd_tag_to_mask(u8 tag)
{
	return 0x00000001 << (tag & 0x1f);
}

/* See ahci.c */
static void sata_dwc_error_intr(struct ata_port *ap,
				struct sata_dwc_device *hsdev, uint intpr)
{
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
	struct ata_eh_info *ehi = &ap->link.eh_info;
	unsigned int err_mask = 0, action = 0;
	struct ata_queued_cmd *qc;
	u32 serror;
	u8 status, tag;

	ata_ehi_clear_desc(ehi);

467
	sata_dwc_scr_read(&ap->link, SCR_ERROR, &serror);
468 469 470 471
	status = ap->ops->sff_check_status(ap);

	tag = ap->link.active_tag;

472 473 474 475
	dev_err(ap->dev,
		"%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x dma_intp=%d pending=%d issued=%d",
		__func__, serror, intpr, status, hsdevp->dma_interrupt_count,
		hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag]);
476 477

	/* Clear error register and interrupt bit */
478
	clear_serror(ap);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);

	/* This is the only error happening now.  TODO check for exact error */

	err_mask |= AC_ERR_HOST_BUS;
	action |= ATA_EH_RESET;

	/* Pass this on to EH */
	ehi->serror |= serror;
	ehi->action |= action;

	qc = ata_qc_from_tag(ap, tag);
	if (qc)
		qc->err_mask |= err_mask;
	else
		ehi->err_mask |= err_mask;

	ata_port_abort(ap);
}

/*
 * Function : sata_dwc_isr
 * arguments : irq, void *dev_instance, struct pt_regs *regs
 * Return value : irqreturn_t - status of IRQ
 * This Interrupt handler called via port ops registered function.
 * .irq_handler = sata_dwc_isr
 */
static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
{
	struct ata_host *host = (struct ata_host *)dev_instance;
	struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
	struct ata_port *ap;
	struct ata_queued_cmd *qc;
	unsigned long flags;
	u8 status, tag;
	int handled, num_processed, port = 0;
	uint intpr, sactive, sactive2, tag_mask;
	struct sata_dwc_device_port *hsdevp;
517
	hsdev->sactive_issued = 0;
518 519 520 521

	spin_lock_irqsave(&host->lock, flags);

	/* Read the interrupt register */
522
	intpr = sata_dwc_readl(&hsdev->sata_dwc_regs->intpr);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

	ap = host->ports[port];
	hsdevp = HSDEVP_FROM_AP(ap);

	dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
		ap->link.active_tag);

	/* Check for error interrupt */
	if (intpr & SATA_DWC_INTPR_ERR) {
		sata_dwc_error_intr(ap, hsdev, intpr);
		handled = 1;
		goto DONE;
	}

	/* Check for DMA SETUP FIS (FP DMA) interrupt */
	if (intpr & SATA_DWC_INTPR_NEWFP) {
		clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);

541
		tag = (u8)(sata_dwc_readl(&hsdev->sata_dwc_regs->fptagr));
542 543 544 545
		dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
		if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
			dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);

546
		hsdev->sactive_issued |= qcmd_tag_to_mask(tag);
547 548 549 550 551 552 553 554 555 556 557 558 559

		qc = ata_qc_from_tag(ap, tag);
		/*
		 * Start FP DMA for NCQ command.  At this point the tag is the
		 * active tag.  It is the tag that matches the command about to
		 * be completed.
		 */
		qc->ap->link.active_tag = tag;
		sata_dwc_bmdma_start_by_tag(qc, tag);

		handled = 1;
		goto DONE;
	}
560 561
	sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
	tag_mask = (hsdev->sactive_issued | sactive) ^ sactive;
562 563

	/* If no sactive issued and tag_mask is zero then this is not NCQ */
564
	if (hsdev->sactive_issued == 0 && tag_mask == 0) {
565 566 567 568 569 570 571 572
		if (ap->link.active_tag == ATA_TAG_POISON)
			tag = 0;
		else
			tag = ap->link.active_tag;
		qc = ata_qc_from_tag(ap, tag);

		/* DEV interrupt w/ no active qc? */
		if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
573 574 575
			dev_err(ap->dev,
				"%s interrupt with no active qc qc=%p\n",
				__func__, qc);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ap->ops->sff_check_status(ap);
			handled = 1;
			goto DONE;
		}
		status = ap->ops->sff_check_status(ap);

		qc->ap->link.active_tag = tag;
		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;

		if (status & ATA_ERR) {
			dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
			sata_dwc_qc_complete(ap, qc, 1);
			handled = 1;
			goto DONE;
		}

		dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
593
			__func__, get_prot_descript(qc->tf.protocol));
594 595 596 597 598 599 600 601
DRVSTILLBUSY:
		if (ata_is_dma(qc->tf.protocol)) {
			/*
			 * Each DMA transaction produces 2 interrupts. The DMAC
			 * transfer complete interrupt and the SATA controller
			 * operation done interrupt. The command should be
			 * completed only after both interrupts are seen.
			 */
602
			hsdevp->dma_interrupt_count++;
603 604
			if (hsdevp->dma_pending[tag] == \
					SATA_DWC_DMA_PENDING_NONE) {
605 606 607
				dev_err(ap->dev,
					"%s: DMA not pending intpr=0x%08x status=0x%08x pending=%d\n",
					__func__, intpr, status,
608 609 610
					hsdevp->dma_pending[tag]);
			}

611
			if ((hsdevp->dma_interrupt_count % 2) == 0)
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
				sata_dwc_dma_xfer_complete(ap, 1);
		} else if (ata_is_pio(qc->tf.protocol)) {
			ata_sff_hsm_move(ap, qc, status, 0);
			handled = 1;
			goto DONE;
		} else {
			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
				goto DRVSTILLBUSY;
		}

		handled = 1;
		goto DONE;
	}

	/*
	 * This is a NCQ command. At this point we need to figure out for which
	 * tags we have gotten a completion interrupt.  One interrupt may serve
	 * as completion for more than one operation when commands are queued
	 * (NCQ).  We need to process each completed command.
	 */

	 /* process completed commands */
634 635
	sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
	tag_mask = (hsdev->sactive_issued | sactive) ^ sactive;
636

637
	if (sactive != 0 || hsdev->sactive_issued > 1 || tag_mask > 1) {
638 639
		dev_dbg(ap->dev,
			"%s NCQ:sactive=0x%08x  sactive_issued=0x%08x tag_mask=0x%08x\n",
640
			__func__, sactive, hsdev->sactive_issued, tag_mask);
641 642
	}

643
	if ((tag_mask | hsdev->sactive_issued) != hsdev->sactive_issued) {
644
		dev_warn(ap->dev,
645 646
			 "Bad tag mask?  sactive=0x%08x sactive_issued=0x%08x  tag_mask=0x%08x\n",
			 sactive, hsdev->sactive_issued, tag_mask);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}

	/* read just to clear ... not bad if currently still busy */
	status = ap->ops->sff_check_status(ap);
	dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);

	tag = 0;
	num_processed = 0;
	while (tag_mask) {
		num_processed++;
		while (!(tag_mask & 0x00000001)) {
			tag++;
			tag_mask <<= 1;
		}

		tag_mask &= (~0x00000001);
		qc = ata_qc_from_tag(ap, tag);

		/* To be picked up by completion functions */
		qc->ap->link.active_tag = tag;
		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;

		/* Let libata/scsi layers handle error */
		if (status & ATA_ERR) {
			dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
				status);
			sata_dwc_qc_complete(ap, qc, 1);
			handled = 1;
			goto DONE;
		}

		/* Process completed command */
		dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
680
			get_prot_descript(qc->tf.protocol));
681
		if (ata_is_dma(qc->tf.protocol)) {
682
			hsdevp->dma_interrupt_count++;
683 684 685 686
			if (hsdevp->dma_pending[tag] == \
					SATA_DWC_DMA_PENDING_NONE)
				dev_warn(ap->dev, "%s: DMA not pending?\n",
					__func__);
687
			if ((hsdevp->dma_interrupt_count % 2) == 0)
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
				sata_dwc_dma_xfer_complete(ap, 1);
		} else {
			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
				goto STILLBUSY;
		}
		continue;

STILLBUSY:
		ap->stats.idle_irq++;
		dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
			ap->print_id);
	} /* while tag_mask */

	/*
	 * Check to see if any commands completed while we were processing our
	 * initial set of completed commands (read status clears interrupts,
	 * so we might miss a completed command interrupt if one came in while
	 * we were processing --we read status as part of processing a completed
	 * command).
	 */
708
	sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive2);
709
	if (sactive2 != sactive) {
710 711 712
		dev_dbg(ap->dev,
			"More completed - sactive=0x%x sactive2=0x%x\n",
			sactive, sactive2);
713 714 715 716 717 718 719 720 721 722 723
	}
	handled = 1;

DONE:
	spin_unlock_irqrestore(&host->lock, flags);
	return IRQ_RETVAL(handled);
}

static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
{
	struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
724
	u32 dmacr = sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr);
725 726

	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
727 728
		dmacr = SATA_DWC_DMACR_RX_CLEAR(dmacr);
		sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr);
729
	} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
730 731
		dmacr = SATA_DWC_DMACR_TX_CLEAR(dmacr);
		sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr);
732 733 734 735 736
	} else {
		/*
		 * This should not happen, it indicates the driver is out of
		 * sync.  If it does happen, clear dmacr anyway.
		 */
737
		dev_err(hsdev->dev,
738
			"%s DMA protocol RX and TX DMA not pending tag=0x%02x pending=%d dmacr: 0x%08x\n",
739
			__func__, tag, hsdevp->dma_pending[tag], dmacr);
740 741
		sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
				SATA_DWC_DMACR_TXRXCH_CLEAR);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	}
}

static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
{
	struct ata_queued_cmd *qc;
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
	u8 tag = 0;

	tag = ap->link.active_tag;
	qc = ata_qc_from_tag(ap, tag);
	if (!qc) {
		dev_err(ap->dev, "failed to get qc");
		return;
	}

#ifdef DEBUG_NCQ
	if (tag > 0) {
761 762 763
		dev_info(ap->dev,
			 "%s tag=%u cmd=0x%02x dma dir=%s proto=%s dmacr=0x%08x\n",
			 __func__, qc->tag, qc->tf.command,
764 765
			 get_dma_dir_descript(qc->dma_dir),
			 get_prot_descript(qc->tf.protocol),
766
			 sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr));
767 768 769 770 771
	}
#endif

	if (ata_is_dma(qc->tf.protocol)) {
		if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
772 773 774
			dev_err(ap->dev,
				"%s DMA protocol RX and TX DMA not pending dmacr: 0x%08x\n",
				__func__,
775
				sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr));
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		}

		hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
		sata_dwc_qc_complete(ap, qc, check_status);
		ap->link.active_tag = ATA_TAG_POISON;
	} else {
		sata_dwc_qc_complete(ap, qc, check_status);
	}
}

static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
				u32 check_status)
{
	u8 status = 0;
	u32 mask = 0x0;
	u8 tag = qc->tag;
792
	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
793
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
794
	hsdev->sactive_queued = 0;
795 796 797 798 799 800
	dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);

	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
		dev_err(ap->dev, "TX DMA PENDING\n");
	else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
		dev_err(ap->dev, "RX DMA PENDING\n");
801 802 803
	dev_dbg(ap->dev,
		"QC complete cmd=0x%02x status=0x%02x ata%u: protocol=%d\n",
		qc->tf.command, status, ap->print_id, qc->tf.protocol);
804 805 806

	/* clear active bit */
	mask = (~(qcmd_tag_to_mask(tag)));
807 808
	hsdev->sactive_queued = hsdev->sactive_queued & mask;
	hsdev->sactive_issued = hsdev->sactive_issued & mask;
809 810 811 812 813 814 815
	ata_qc_complete(qc);
	return 0;
}

static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
{
	/* Enable selective interrupts by setting the interrupt maskregister*/
816 817 818 819 820
	sata_dwc_writel(&hsdev->sata_dwc_regs->intmr,
			SATA_DWC_INTMR_ERRM |
			SATA_DWC_INTMR_NEWFPM |
			SATA_DWC_INTMR_PMABRTM |
			SATA_DWC_INTMR_DMATM);
821 822 823 824
	/*
	 * Unmask the error bits that should trigger an error interrupt by
	 * setting the error mask register.
	 */
825
	sata_dwc_writel(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
826

827
	dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
828 829
		 __func__, sata_dwc_readl(&hsdev->sata_dwc_regs->intmr),
		sata_dwc_readl(&hsdev->sata_dwc_regs->errmr));
830 831
}

832
static void sata_dwc_setup_port(struct ata_ioports *port, void __iomem *base)
833
{
834 835
	port->cmd_addr		= base + 0x00;
	port->data_addr		= base + 0x00;
836

837 838
	port->error_addr	= base + 0x04;
	port->feature_addr	= base + 0x04;
839

840
	port->nsect_addr	= base + 0x08;
841

842 843 844
	port->lbal_addr		= base + 0x0c;
	port->lbam_addr		= base + 0x10;
	port->lbah_addr		= base + 0x14;
845

846 847 848
	port->device_addr	= base + 0x18;
	port->command_addr	= base + 0x1c;
	port->status_addr	= base + 0x1c;
849

850 851
	port->altstatus_addr	= base + 0x20;
	port->ctl_addr		= base + 0x20;
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static int sata_dwc_dma_get_channel(struct sata_dwc_device_port *hsdevp)
{
	struct sata_dwc_device *hsdev = hsdevp->hsdev;
	struct device *dev = hsdev->dev;

#ifdef CONFIG_SATA_DWC_OLD_DMA
	if (!of_find_property(dev->of_node, "dmas", NULL))
		return sata_dwc_dma_get_channel_old(hsdevp);
#endif

	hsdevp->chan = dma_request_chan(dev, "sata-dma");
	if (IS_ERR(hsdevp->chan)) {
		dev_err(dev, "failed to allocate dma channel: %ld\n",
			PTR_ERR(hsdevp->chan));
		return PTR_ERR(hsdevp->chan);
	}

	return 0;
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/*
 * Function : sata_dwc_port_start
 * arguments : struct ata_ioports *port
 * Return value : returns 0 if success, error code otherwise
 * This function allocates the scatter gather LLI table for AHB DMA
 */
static int sata_dwc_port_start(struct ata_port *ap)
{
	int err = 0;
	struct sata_dwc_device *hsdev;
	struct sata_dwc_device_port *hsdevp = NULL;
	struct device *pdev;
	int i;

	hsdev = HSDEV_FROM_AP(ap);

	dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);

	hsdev->host = ap->host;
	pdev = ap->host->dev;
	if (!pdev) {
		dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
		err = -ENODEV;
		goto CLEANUP;
	}

	/* Allocate Port Struct */
	hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
	if (!hsdevp) {
		dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
		err = -ENOMEM;
		goto CLEANUP;
	}
	hsdevp->hsdev = hsdev;

909 910
	err = sata_dwc_dma_get_channel(hsdevp);
	if (err)
911 912
		goto CLEANUP_ALLOC;

913 914 915 916
	err = phy_power_on(hsdev->phy);
	if (err)
		goto CLEANUP_ALLOC;

917 918 919
	for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
		hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;

920
	ap->bmdma_prd = NULL;	/* set these so libata doesn't use them */
921 922 923 924 925
	ap->bmdma_prd_dma = 0;

	if (ap->port_no == 0)  {
		dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
			__func__);
926 927
		sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
				SATA_DWC_DMACR_TXRXCH_CLEAR);
928 929 930

		dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
			 __func__);
931 932 933
		sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr,
				(SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
				 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
934 935 936
	}

	/* Clear any error bits before libata starts issuing commands */
937
	clear_serror(ap);
938
	ap->private_data = hsdevp;
939 940
	dev_dbg(ap->dev, "%s: done\n", __func__);
	return 0;
941

942 943
CLEANUP_ALLOC:
	kfree(hsdevp);
944
CLEANUP:
945
	dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
946 947 948 949 950 951
	return err;
}

static void sata_dwc_port_stop(struct ata_port *ap)
{
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
952
	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
953 954 955

	dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);

956
	dmaengine_terminate_sync(hsdevp->chan);
957
	dma_release_channel(hsdevp->chan);
958
	phy_power_off(hsdev->phy);
959

960
	kfree(hsdevp);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	ap->private_data = NULL;
}

/*
 * Function : sata_dwc_exec_command_by_tag
 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
 * Return value : None
 * This function keeps track of individual command tag ids and calls
 * ata_exec_command in libata
 */
static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
					 struct ata_taskfile *tf,
					 u8 tag, u32 cmd_issued)
{
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);

	dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
978
		ata_get_cmd_descript(tf->command), tag);
979 980

	hsdevp->cmd_issued[tag] = cmd_issued;
981

982 983 984 985 986 987
	/*
	 * Clear SError before executing a new command.
	 * sata_dwc_scr_write and read can not be used here. Clearing the PM
	 * managed SError register for the disk needs to be done before the
	 * task file is loaded.
	 */
988
	clear_serror(ap);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	ata_sff_exec_command(ap, tf);
}

static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
	sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
				     SATA_DWC_CMD_ISSUED_PEND);
}

static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
{
	u8 tag = qc->tag;

	if (ata_is_ncq(qc->tf.protocol)) {
		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
			__func__, qc->ap->link.sactive, tag);
	} else {
		tag = 0;
	}
	sata_dwc_bmdma_setup_by_tag(qc, tag);
}

static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
	int start_dma;
1014
	u32 reg;
1015 1016 1017
	struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
	struct ata_port *ap = qc->ap;
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1018
	struct dma_async_tx_descriptor *desc = hsdevp->desc[tag];
1019 1020 1021 1022 1023 1024 1025 1026 1027
	int dir = qc->dma_dir;

	if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
		start_dma = 1;
		if (dir == DMA_TO_DEVICE)
			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
		else
			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
	} else {
1028 1029 1030
		dev_err(ap->dev,
			"%s: Command not pending cmd_issued=%d (tag=%d) DMA NOT started\n",
			__func__, hsdevp->cmd_issued[tag], tag);
1031 1032 1033
		start_dma = 0;
	}

1034 1035 1036
	dev_dbg(ap->dev,
		"%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s start_dma? %x\n",
		__func__, qc, tag, qc->tf.command,
1037
		get_dma_dir_descript(qc->dma_dir), start_dma);
1038
	sata_dwc_tf_dump(ap, &qc->tf);
1039 1040

	if (start_dma) {
1041
		sata_dwc_scr_read(&ap->link, SCR_ERROR, &reg);
1042 1043 1044 1045 1046 1047
		if (reg & SATA_DWC_SERROR_ERR_BITS) {
			dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
				__func__, reg);
		}

		if (dir == DMA_TO_DEVICE)
1048 1049
			sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
					SATA_DWC_DMACR_TXCHEN);
1050
		else
1051 1052
			sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
					SATA_DWC_DMACR_RXCHEN);
1053 1054

		/* Enable AHB DMA transfer on the specified channel */
1055 1056
		dmaengine_submit(desc);
		dma_async_issue_pending(hsdevp->chan);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	}
}

static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
{
	u8 tag = qc->tag;

	if (ata_is_ncq(qc->tf.protocol)) {
		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
			__func__, qc->ap->link.sactive, tag);
	} else {
		tag = 0;
	}
	dev_dbg(qc->ap->dev, "%s\n", __func__);
	sata_dwc_bmdma_start_by_tag(qc, tag);
}

static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
{
	u32 sactive;
	u8 tag = qc->tag;
	struct ata_port *ap = qc->ap;
1079
	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1080 1081 1082

#ifdef DEBUG_NCQ
	if (qc->tag > 0 || ap->link.sactive > 1)
1083 1084
		dev_info(ap->dev,
			 "%s ap id=%d cmd(0x%02x)=%s qc tag=%d prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1085
			 __func__, ap->print_id, qc->tf.command,
1086
			 ata_get_cmd_descript(qc->tf.command),
1087
			 qc->tag, get_prot_descript(qc->tf.protocol),
1088 1089 1090 1091 1092
			 ap->link.active_tag, ap->link.sactive);
#endif

	if (!ata_is_ncq(qc->tf.protocol))
		tag = 0;
1093 1094 1095 1096 1097 1098 1099 1100

	if (ata_is_dma(qc->tf.protocol)) {
		hsdevp->desc[tag] = dma_dwc_xfer_setup(qc);
		if (!hsdevp->desc[tag])
			return AC_ERR_SYSTEM;
	} else {
		hsdevp->desc[tag] = NULL;
	}
1101 1102

	if (ata_is_ncq(qc->tf.protocol)) {
1103
		sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
1104
		sactive |= (0x00000001 << tag);
1105
		sata_dwc_scr_write(&ap->link, SCR_ACTIVE, sactive);
1106

1107 1108 1109
		dev_dbg(qc->ap->dev,
			"%s: tag=%d ap->link.sactive = 0x%08x sactive=0x%08x\n",
			__func__, tag, qc->ap->link.sactive, sactive);
1110 1111

		ap->ops->sff_tf_load(ap, &qc->tf);
1112
		sata_dwc_exec_command_by_tag(ap, &qc->tf, tag,
1113 1114
					     SATA_DWC_CMD_ISSUED_PEND);
	} else {
1115
		return ata_bmdma_qc_issue(qc);
1116 1117 1118 1119 1120 1121 1122 1123 1124
	}
	return 0;
}

static void sata_dwc_error_handler(struct ata_port *ap)
{
	ata_sff_error_handler(ap);
}

1125 1126
static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
			      unsigned long deadline)
1127 1128 1129 1130 1131 1132 1133 1134 1135
{
	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
	int ret;

	ret = sata_sff_hardreset(link, class, deadline);

	sata_dwc_enable_interrupts(hsdev);

	/* Reconfigure the DMA control register */
1136 1137
	sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
			SATA_DWC_DMACR_TXRXCH_CLEAR);
1138 1139

	/* Reconfigure the DMA Burst Transaction Size register */
1140 1141 1142
	sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr,
			SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
			SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1143 1144 1145 1146

	return ret;
}

1147 1148 1149 1150 1151
static void sata_dwc_dev_select(struct ata_port *ap, unsigned int device)
{
	/* SATA DWC is master only */
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * scsi mid-layer and libata interface structures
 */
static struct scsi_host_template sata_dwc_sht = {
	ATA_NCQ_SHT(DRV_NAME),
	/*
	 * test-only: Currently this driver doesn't handle NCQ
	 * correctly. We enable NCQ but set the queue depth to a
	 * max of 1. This will get fixed in in a future release.
	 */
	.sg_tablesize		= LIBATA_MAX_PRD,
1163
	/* .can_queue		= ATA_MAX_QUEUE, */
1164 1165 1166 1167 1168 1169 1170
	/*
	 * Make sure a LLI block is not created that will span 8K max FIS
	 * boundary. If the block spans such a FIS boundary, there is a chance
	 * that a DMA burst will cross that boundary -- this results in an
	 * error in the host controller.
	 */
	.dma_boundary		= 0x1fff /* ATA_DMA_BOUNDARY */,
1171 1172 1173 1174 1175 1176
};

static struct ata_port_operations sata_dwc_ops = {
	.inherits		= &ata_sff_port_ops,

	.error_handler		= sata_dwc_error_handler,
1177
	.hardreset		= sata_dwc_hardreset,
1178 1179 1180 1181 1182 1183 1184 1185 1186

	.qc_issue		= sata_dwc_qc_issue,

	.scr_read		= sata_dwc_scr_read,
	.scr_write		= sata_dwc_scr_write,

	.port_start		= sata_dwc_port_start,
	.port_stop		= sata_dwc_port_stop,

1187 1188
	.sff_dev_select		= sata_dwc_dev_select,

1189 1190 1191 1192 1193 1194
	.bmdma_setup		= sata_dwc_bmdma_setup,
	.bmdma_start		= sata_dwc_bmdma_start,
};

static const struct ata_port_info sata_dwc_port_info[] = {
	{
1195
		.flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ,
S
Sergei Shtylyov 已提交
1196
		.pio_mask	= ATA_PIO4,
1197 1198 1199 1200 1201
		.udma_mask	= ATA_UDMA6,
		.port_ops	= &sata_dwc_ops,
	},
};

1202
static int sata_dwc_probe(struct platform_device *ofdev)
1203 1204 1205 1206
{
	struct sata_dwc_device *hsdev;
	u32 idr, versionr;
	char *ver = (char *)&versionr;
1207
	void __iomem *base;
1208
	int err = 0;
1209
	int irq;
1210 1211 1212
	struct ata_host *host;
	struct ata_port_info pi = sata_dwc_port_info[0];
	const struct ata_port_info *ppi[] = { &pi, NULL };
1213
	struct device_node *np = ofdev->dev.of_node;
1214
	struct resource *res;
1215 1216

	/* Allocate DWC SATA device */
1217 1218 1219
	host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
	hsdev = devm_kzalloc(&ofdev->dev, sizeof(*hsdev), GFP_KERNEL);
	if (!host || !hsdev)
1220
		return -ENOMEM;
1221

1222 1223
	host->private_data = hsdev;

1224
	/* Ioremap SATA registers */
1225 1226
	res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
	base = devm_ioremap_resource(&ofdev->dev, res);
1227
	if (IS_ERR(base))
1228
		return PTR_ERR(base);
1229 1230 1231
	dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");

	/* Synopsys DWC SATA specific Registers */
1232
	hsdev->sata_dwc_regs = base + SATA_DWC_REG_OFFSET;
1233
	hsdev->dmadr = res->start + SATA_DWC_REG_OFFSET + offsetof(struct sata_dwc_regs, dmadr);
1234 1235 1236 1237

	/* Setup port */
	host->ports[0]->ioaddr.cmd_addr = base;
	host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1238
	sata_dwc_setup_port(&host->ports[0]->ioaddr, base);
1239 1240

	/* Read the ID and Version Registers */
1241 1242
	idr = sata_dwc_readl(&hsdev->sata_dwc_regs->idr);
	versionr = sata_dwc_readl(&hsdev->sata_dwc_regs->versionr);
1243 1244 1245 1246
	dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
		   idr, ver[0], ver[1], ver[2]);

	/* Save dev for later use in dev_xxx() routines */
1247
	hsdev->dev = &ofdev->dev;
1248 1249 1250 1251 1252

	/* Enable SATA Interrupts */
	sata_dwc_enable_interrupts(hsdev);

	/* Get SATA interrupt number */
1253
	irq = irq_of_parse_and_map(np, 0);
1254 1255 1256 1257 1258 1259
	if (irq == NO_IRQ) {
		dev_err(&ofdev->dev, "no SATA DMA irq\n");
		err = -ENODEV;
		goto error_out;
	}

1260 1261 1262 1263 1264 1265 1266 1267
#ifdef CONFIG_SATA_DWC_OLD_DMA
	if (!of_find_property(np, "dmas", NULL)) {
		err = sata_dwc_dma_init_old(ofdev, hsdev);
		if (err)
			goto error_out;
	}
#endif

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	hsdev->phy = devm_phy_optional_get(hsdev->dev, "sata-phy");
	if (IS_ERR(hsdev->phy)) {
		err = PTR_ERR(hsdev->phy);
		hsdev->phy = NULL;
		goto error_out;
	}

	err = phy_init(hsdev->phy);
	if (err)
		goto error_out;

1279 1280 1281 1282 1283
	/*
	 * Now, register with libATA core, this will also initiate the
	 * device discovery process, invoking our port_start() handler &
	 * error_handler() to execute a dummy Softreset EH session
	 */
1284 1285
	err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
	if (err)
1286 1287 1288 1289 1290
		dev_err(&ofdev->dev, "failed to activate host");

	return 0;

error_out:
1291
	phy_exit(hsdev->phy);
1292 1293 1294
	return err;
}

1295
static int sata_dwc_remove(struct platform_device *ofdev)
1296 1297 1298 1299 1300 1301 1302
{
	struct device *dev = &ofdev->dev;
	struct ata_host *host = dev_get_drvdata(dev);
	struct sata_dwc_device *hsdev = host->private_data;

	ata_host_detach(host);

1303 1304
	phy_exit(hsdev->phy);

1305
#ifdef CONFIG_SATA_DWC_OLD_DMA
1306
	/* Free SATA DMA resources */
1307 1308
	sata_dwc_dma_exit_old(hsdev);
#endif
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	dev_dbg(&ofdev->dev, "done\n");
	return 0;
}

static const struct of_device_id sata_dwc_match[] = {
	{ .compatible = "amcc,sata-460ex", },
	{}
};
MODULE_DEVICE_TABLE(of, sata_dwc_match);

1320
static struct platform_driver sata_dwc_driver = {
1321 1322 1323 1324 1325 1326 1327 1328
	.driver = {
		.name = DRV_NAME,
		.of_match_table = sata_dwc_match,
	},
	.probe = sata_dwc_probe,
	.remove = sata_dwc_remove,
};

1329
module_platform_driver(sata_dwc_driver);
1330 1331 1332

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1333
MODULE_DESCRIPTION("DesignWare Cores SATA controller low level driver");
1334
MODULE_VERSION(DRV_VERSION);