Kconfig 53.8 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

116 117
config CRYPTO_RSA
	tristate "RSA algorithm"
118
	select CRYPTO_AKCIPHER
119
	select CRYPTO_MANAGER
120 121 122 123 124
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

125 126 127 128 129 130 131
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
134
	select CRYPTO_KPP
135
	select CRYPTO_RNG_DEFAULT
136 137
	help
	  Generic implementation of the ECDH algorithm
138

H
Herbert Xu 已提交
139 140
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
141
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
142 143 144 145
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

146 147 148 149 150
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
151
	select CRYPTO_AKCIPHER2
152
	select CRYPTO_KPP2
153
	select CRYPTO_ACOMP2
154

155 156
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
157
	depends on NET
158 159
	select CRYPTO_MANAGER
	help
160
	  Userspace configuration for cryptographic instantiations such as
161 162
	  cbc(aes).

163 164
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
165 166
	default y
	depends on CRYPTO_MANAGER2
167
	help
168 169
	  Disable run-time self tests that normally take place at
	  algorithm registration.
170

171
config CRYPTO_GF128MUL
172
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
173
	help
174 175 176 177 178
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
179

L
Linus Torvalds 已提交
180 181
config CRYPTO_NULL
	tristate "Null algorithms"
182
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
183 184 185
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

186
config CRYPTO_NULL2
187
	tristate
188 189 190 191
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

192
config CRYPTO_PCRYPT
193 194
	tristate "Parallel crypto engine"
	depends on SMP
195 196 197 198 199 200 201
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

202 203 204
config CRYPTO_WORKQUEUE
       tristate

205 206 207
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
208
	select CRYPTO_HASH
209
	select CRYPTO_MANAGER
210
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
211
	help
212 213 214
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
228
	  their crypto request asynchronously to be processed by this daemon.
229

230 231 232 233 234 235
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
236
	select CRYPTO_NULL
L
Linus Torvalds 已提交
237
	help
238 239
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
240

241 242 243
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
244
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
245
	help
246
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
247

248 249
config CRYPTO_SIMD
	tristate
250 251
	select CRYPTO_CRYPTD

252 253 254
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
255
	select CRYPTO_BLKCIPHER
256

257 258 259
config CRYPTO_ENGINE
	tristate

260
comment "Authenticated Encryption with Associated Data"
261

262 263 264
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
265
	select CRYPTO_HASH
266
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
267
	help
268
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
269

270 271 272 273
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
274
	select CRYPTO_GHASH
275
	select CRYPTO_NULL
L
Linus Torvalds 已提交
276
	help
277 278
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
279

280 281 282 283 284 285 286 287 288 289 290 291
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.

337 338 339 340 341 342
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

343
config CRYPTO_MORUS640_GLUE
344 345
	tristate
	depends on X86
346 347 348 349 350 351
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

352 353 354 355 356 357 358 359
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

360 361 362 363 364 365
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

366
config CRYPTO_MORUS1280_GLUE
367 368
	tristate
	depends on X86
369 370 371 372
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
391 392
	  algorithm.

393 394 395 396
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
397
	select CRYPTO_NULL
398
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
399
	help
400 401
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
402

403 404 405 406
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
407
	select CRYPTO_RNG_DEFAULT
408
	default m
409 410 411 412 413
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

414
comment "Block modes"
415

416 417
config CRYPTO_CBC
	tristate "CBC support"
418
	select CRYPTO_BLKCIPHER
419
	select CRYPTO_MANAGER
420
	help
421 422
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
423

424 425 426 427 428 429 430 431
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

432 433
config CRYPTO_CTR
	tristate "CTR support"
434
	select CRYPTO_BLKCIPHER
435
	select CRYPTO_SEQIV
436
	select CRYPTO_MANAGER
437
	help
438
	  CTR: Counter mode
439 440
	  This block cipher algorithm is required for IPSec.

441 442 443 444 445 446 447 448 449 450 451 452 453
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
454 455 456
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
457 458 459
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
460

461
config CRYPTO_LRW
462
	tristate "LRW support"
463 464 465 466 467 468 469 470 471 472
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

473 474 475 476 477 478 479 480
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

481
config CRYPTO_XTS
482
	tristate "XTS support"
483 484
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
485
	select CRYPTO_ECB
486 487 488 489 490
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

491 492 493 494 495 496 497
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

498 499
comment "Hash modes"

500 501 502 503 504 505 506 507 508 509 510
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

511 512 513
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
514 515
	select CRYPTO_MANAGER
	help
516 517
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
518

519 520 521 522
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
523
	help
524 525 526 527
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
528

529 530 531 532 533 534 535 536 537 538 539
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

540
comment "Digest"
M
Mikko Herranen 已提交
541

542 543
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
544
	select CRYPTO_HASH
545
	select CRC32
J
Joy Latten 已提交
546
	help
547 548
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
549
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
550

551 552 553 554 555 556 557 558 559 560 561 562
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

563
config CRYPTO_CRC32C_VPMSUM
564
	tristate "CRC32c CRC algorithm (powerpc64)"
565
	depends on PPC64 && ALTIVEC
566 567 568 569 570 571 572 573
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


574 575 576 577 578 579 580 581 582
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

604 605 606 607 608 609 610 611 612
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

632 633 634 635 636 637 638 639 640
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

641 642 643 644 645 646 647 648
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

649 650 651
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
652
	select CRYPTO_HASH
653 654 655
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

656 657
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
658
	select CRYPTO_HASH
659 660 661 662 663 664 665
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

666
config CRYPTO_POLY1305_X86_64
667
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
668 669 670 671 672 673 674 675 676 677
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

678 679
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
680
	select CRYPTO_HASH
681
	help
682
	  MD4 message digest algorithm (RFC1320).
683

684 685
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
686
	select CRYPTO_HASH
L
Linus Torvalds 已提交
687
	help
688
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
689

690 691 692 693 694 695 696 697 698
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

699 700 701 702 703 704 705 706
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

707 708 709 710 711 712 713 714 715
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

716 717
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
718
	select CRYPTO_HASH
719
	help
720 721 722 723
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
724

725
config CRYPTO_RMD128
726
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
727
	select CRYPTO_HASH
728 729
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
730

731
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
732
	  be used as a secure replacement for RIPEMD. For other use cases,
733
	  RIPEMD-160 should be used.
734

735
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
736
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
737 738

config CRYPTO_RMD160
739
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
740
	select CRYPTO_HASH
741 742
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
743

744 745 746 747
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
748

749 750
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
751

752
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
753
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
754 755

config CRYPTO_RMD256
756
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
757
	select CRYPTO_HASH
758 759 760 761 762
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
763

764
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
765
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766 767

config CRYPTO_RMD320
768
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
769
	select CRYPTO_HASH
770 771 772 773 774
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
775

776
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
777
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
778

779 780
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
781
	select CRYPTO_HASH
L
Linus Torvalds 已提交
782
	help
783
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
784

785
config CRYPTO_SHA1_SSSE3
786
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
787 788 789 790 791 792
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
793 794
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
795

796
config CRYPTO_SHA256_SSSE3
797
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
798 799 800 801 802 803 804
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
805 806
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
807 808 809 810 811 812 813 814 815 816

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
817 818
	  version 2 (AVX2) instructions, when available.

819 820 821 822 823 824 825 826 827
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

828 829 830 831 832 833 834 835 836
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

837 838 839 840 841 842 843
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

844 845 846 847 848 849 850
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
config CRYPTO_SHA256_MB
	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
config CRYPTO_SHA512_MB
        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
        depends on X86 && 64BIT
        select CRYPTO_SHA512
        select CRYPTO_HASH
        select CRYPTO_MCRYPTD
        help
          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
          using multi-buffer technique.  This algorithm computes on
          multiple data lanes concurrently with SIMD instructions for
          better throughput.  It should not be enabled by default but
          used when there is significant amount of work to keep the keep
          the data lanes filled to get performance benefit.  If the data
          lanes remain unfilled, a flush operation will be initiated to
          process the crypto jobs, adding a slight latency.

899 900
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
901
	select CRYPTO_HASH
L
Linus Torvalds 已提交
902
	help
903
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
904

905 906
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
907

908 909
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
910

911 912 913 914 915 916 917 918 919
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

920 921 922 923 924 925 926 927 928
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

929 930 931 932 933 934 935 936 937
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

938 939
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
940
	select CRYPTO_HASH
941
	help
942
	  SHA512 secure hash standard (DFIPS 180-2).
943

944 945
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
946

947 948
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
949

950 951 952 953 954 955 956 957 958
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

959 960 961 962 963 964 965 966 967
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

968 969 970 971 972 973 974 975 976 977
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

978 979 980 981 982 983 984 985 986 987 988
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

989 990
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
991
	select CRYPTO_HASH
992
	help
993
	  Tiger hash algorithm 192, 160 and 128-bit hashes
994

995 996 997
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
998 999

	  See also:
1000
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1001

1002 1003
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1004
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1005
	help
1006
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1007

1008 1009
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1010 1011

	  See also:
1012
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1013

1014 1015
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1016
	depends on X86 && 64BIT
1017 1018 1019 1020 1021
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

1022
comment "Ciphers"
L
Linus Torvalds 已提交
1023 1024 1025

config CRYPTO_AES
	tristate "AES cipher algorithms"
1026
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1027
	help
1028
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1029 1030 1031
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1032 1033 1034 1035 1036 1037 1038
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1039

1040
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1041 1042 1043

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1059 1060
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1061

L
Linus Torvalds 已提交
1062 1063
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1064 1065
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1066
	select CRYPTO_AES
L
Linus Torvalds 已提交
1067
	help
1068
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1069 1070 1071
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1072 1073 1074 1075 1076 1077 1078
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1079

1080
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1081 1082 1083 1084 1085

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1086 1087
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1088
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1089
	help
1090
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1091 1092 1093
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1094 1095 1096
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1108
	depends on X86
H
Herbert Xu 已提交
1109
	select CRYPTO_AEAD
1110 1111
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1112
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1113
	select CRYPTO_BLKCIPHER
1114
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1115
	select CRYPTO_SIMD
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1126 1127 1128 1129
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1130

1131
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1132 1133 1134

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1135 1136 1137 1138
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1192 1193
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1194 1195 1196

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1197
	select CRYPTO_BLKCIPHER
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1209
	select CRYPTO_BLOWFISH_COMMON
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1220 1221 1222 1223 1224 1225 1226 1227 1228
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1229 1230
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1231
	depends on X86 && 64BIT
1232
	select CRYPTO_BLKCIPHER
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1259 1260
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1261
	depends on X86 && 64BIT
1262
	depends on CRYPTO
1263
	select CRYPTO_BLKCIPHER
1264
	select CRYPTO_GLUE_HELPER_X86
1265 1266 1267 1268 1269 1270 1271 1272 1273
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1274 1275 1276 1277 1278 1279
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1280
	select CRYPTO_BLKCIPHER
1281
	select CRYPTO_CAMELLIA_X86_64
1282 1283
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1294 1295
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1328 1329 1330 1331 1332 1333
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1334 1335
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1336
	select CRYPTO_ALGAPI
1337
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1338 1339 1340 1341
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1342 1343 1344
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1345
	select CRYPTO_BLKCIPHER
1346
	select CRYPTO_CAST5
1347 1348
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1349 1350 1351 1352 1353 1354 1355
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1356 1357
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1358
	select CRYPTO_ALGAPI
1359
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1360 1361 1362 1363
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1364 1365 1366
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1367
	select CRYPTO_BLKCIPHER
1368
	select CRYPTO_CAST6
1369 1370 1371
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1372 1373 1374 1375 1376 1377 1378 1379
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1380 1381
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1382
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1383
	help
1384
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1385

1386 1387
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1388
	depends on SPARC64
1389 1390 1391 1392 1393 1394
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1395 1396 1397
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1398
	select CRYPTO_BLKCIPHER
1399 1400 1401 1402 1403 1404 1405 1406 1407
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1408 1409
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1410
	select CRYPTO_ALGAPI
1411
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1412
	help
1413
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1414 1415 1416

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1417
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1426
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1427

1428
config CRYPTO_SALSA20
1429
	tristate "Salsa20 stream cipher algorithm"
1430 1431 1432 1433 1434 1435
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1436 1437 1438 1439

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1453
config CRYPTO_CHACHA20_X86_64
1454
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1468 1469
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1470
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1471
	help
1472
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1484
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1485
	help
1486
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1487

1488 1489 1490 1491 1492 1493 1494
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1495 1496 1497
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1498
	select CRYPTO_BLKCIPHER
1499
	select CRYPTO_GLUE_HELPER_X86
1500
	select CRYPTO_SERPENT
1501
	select CRYPTO_SIMD
1502 1503 1504 1505 1506 1507
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1508
	  This module provides Serpent cipher algorithm that processes eight
1509 1510 1511 1512 1513
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1514 1515 1516
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1517
	select CRYPTO_BLKCIPHER
1518
	select CRYPTO_GLUE_HELPER_X86
1519
	select CRYPTO_SERPENT
1520
	select CRYPTO_SIMD
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1532 1533 1534 1535

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1536
	select CRYPTO_BLKCIPHER
1537
	select CRYPTO_GLUE_HELPER_X86
1538
	select CRYPTO_SERPENT
1539
	select CRYPTO_SIMD
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1594 1595
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1596
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1597
	help
1598
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1613
	select CRYPTO_ALGAPI
1614
	select CRYPTO_TWOFISH_COMMON
1615
	help
1616
	  Twofish cipher algorithm.
1617

1618 1619 1620 1621
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1644 1645

	  See also:
1646
	  <http://www.schneier.com/twofish.html>
1647

1648 1649 1650
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1651
	select CRYPTO_ALGAPI
1652
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1653
	help
1654
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1655

1656 1657 1658 1659 1660 1661 1662 1663
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1664 1665
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1666
	depends on X86 && 64BIT
1667
	select CRYPTO_BLKCIPHER
1668 1669
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1670
	select CRYPTO_GLUE_HELPER_X86
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1685 1686 1687
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1688
	select CRYPTO_BLKCIPHER
1689
	select CRYPTO_GLUE_HELPER_X86
1690
	select CRYPTO_SIMD
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1708 1709 1710 1711 1712
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1713
	select CRYPTO_ACOMP2
1714 1715
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1716
	help
1717 1718 1719 1720
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1721

1722 1723 1724
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1725
	select CRYPTO_ACOMP2
1726 1727 1728 1729 1730
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1731 1732
config CRYPTO_842
	tristate "842 compression algorithm"
1733
	select CRYPTO_ALGAPI
1734
	select CRYPTO_ACOMP2
1735 1736
	select 842_COMPRESS
	select 842_DECOMPRESS
1737 1738
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1739 1740 1741 1742

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1743
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1744 1745 1746 1747 1748 1749 1750 1751
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1752
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1753 1754 1755 1756
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1757

N
Nick Terrell 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1767 1768 1769 1770 1771 1772 1773 1774 1775
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1776 1777
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1778

1779
menuconfig CRYPTO_DRBG_MENU
1780 1781 1782 1783 1784
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1785
if CRYPTO_DRBG_MENU
1786 1787

config CRYPTO_DRBG_HMAC
1788
	bool
1789 1790
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1791
	select CRYPTO_SHA256
1792 1793 1794

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1795
	select CRYPTO_SHA256
1796 1797 1798 1799 1800 1801
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1802
	depends on CRYPTO_CTR
1803 1804 1805
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1806 1807
config CRYPTO_DRBG
	tristate
1808
	default CRYPTO_DRBG_MENU
1809
	select CRYPTO_RNG
1810
	select CRYPTO_JITTERENTROPY
1811 1812

endif	# if CRYPTO_DRBG_MENU
1813

1814 1815
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1816
	select CRYPTO_RNG
1817 1818 1819 1820 1821 1822 1823
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1824 1825 1826
config CRYPTO_USER_API
	tristate

1827 1828
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1829
	depends on NET
1830 1831 1832 1833 1834 1835
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1836 1837
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1838
	depends on NET
1839 1840 1841 1842 1843 1844
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1845 1846 1847 1848 1849 1850 1851 1852 1853
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1854 1855 1856 1857
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1858 1859
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1860 1861 1862 1863 1864
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1865 1866 1867
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1868
source "drivers/crypto/Kconfig"
1869
source crypto/asymmetric_keys/Kconfig
1870
source certs/Kconfig
L
Linus Torvalds 已提交
1871

1872
endif	# if CRYPTO