Kconfig 46.9 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
51 52
	select CRYPTO_NULL2
	select CRYPTO_RNG2
53

54 55
config CRYPTO_BLKCIPHER
	tristate
56
	select CRYPTO_BLKCIPHER2
57
	select CRYPTO_ALGAPI
58 59 60 61 62

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
63
	select CRYPTO_WORKQUEUE
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97
config CRYPTO_RSA
	tristate "RSA algorithm"
98
	select CRYPTO_AKCIPHER
99
	select CRYPTO_MANAGER
100 101 102 103 104
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

H
Herbert Xu 已提交
105 106
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
107
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
108 109 110 111
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

112 113 114 115 116
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
117
	select CRYPTO_AKCIPHER2
118

119 120
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
121
	depends on NET
122 123
	select CRYPTO_MANAGER
	help
124
	  Userspace configuration for cryptographic instantiations such as
125 126
	  cbc(aes).

127 128
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
129 130
	default y
	depends on CRYPTO_MANAGER2
131
	help
132 133
	  Disable run-time self tests that normally take place at
	  algorithm registration.
134

135
config CRYPTO_GF128MUL
136
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
137
	help
138 139 140 141 142
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
143

L
Linus Torvalds 已提交
144 145
config CRYPTO_NULL
	tristate "Null algorithms"
146
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
147 148 149
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

150
config CRYPTO_NULL2
151
	tristate
152 153 154 155
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

156
config CRYPTO_PCRYPT
157 158
	tristate "Parallel crypto engine"
	depends on SMP
159 160 161 162 163 164 165
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

166 167 168
config CRYPTO_WORKQUEUE
       tristate

169 170 171
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
172
	select CRYPTO_HASH
173
	select CRYPTO_MANAGER
174
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
175
	help
176 177 178
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
192
	  their crypto request asynchronously to be processed by this daemon.
193

194 195 196 197 198 199
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
200
	select CRYPTO_NULL
L
Linus Torvalds 已提交
201
	help
202 203
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
204

205 206 207
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
208
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
209
	help
210
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
211

212
config CRYPTO_ABLK_HELPER
213 214 215
	tristate
	select CRYPTO_CRYPTD

216 217 218 219 220
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

221 222 223
config CRYPTO_ENGINE
	tristate

224
comment "Authenticated Encryption with Associated Data"
225

226 227 228 229
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
230
	help
231
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
232

233 234 235 236
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
237
	select CRYPTO_GHASH
238
	select CRYPTO_NULL
L
Linus Torvalds 已提交
239
	help
240 241
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
242

243 244 245 246 247 248 249 250 251 252 253 254
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

255 256 257 258
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
259
	select CRYPTO_NULL
260
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
261
	help
262 263
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
264

265 266 267 268
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
269
	select CRYPTO_RNG_DEFAULT
270
	default m
271 272 273 274 275
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

276
comment "Block modes"
277

278 279
config CRYPTO_CBC
	tristate "CBC support"
280
	select CRYPTO_BLKCIPHER
281
	select CRYPTO_MANAGER
282
	help
283 284
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
285

286 287
config CRYPTO_CTR
	tristate "CTR support"
288
	select CRYPTO_BLKCIPHER
289
	select CRYPTO_SEQIV
290
	select CRYPTO_MANAGER
291
	help
292
	  CTR: Counter mode
293 294
	  This block cipher algorithm is required for IPSec.

295 296 297 298 299 300 301 302 303 304 305 306 307
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
308 309 310
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
311 312 313
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
314

315
config CRYPTO_LRW
316
	tristate "LRW support"
317 318 319 320 321 322 323 324 325 326
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

327 328 329 330 331 332 333 334
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

335
config CRYPTO_XTS
336
	tristate "XTS support"
337 338 339 340 341 342 343 344
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

345 346 347 348 349 350 351
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

352 353
comment "Hash modes"

354 355 356 357 358 359 360 361 362 363 364
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

365 366 367
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
368 369
	select CRYPTO_MANAGER
	help
370 371
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
372

373 374 375 376
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
377
	help
378 379 380 381
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
382

383 384 385 386 387 388 389 390 391 392 393
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

394
comment "Digest"
M
Mikko Herranen 已提交
395

396 397
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
398
	select CRYPTO_HASH
399
	select CRC32
J
Joy Latten 已提交
400
	help
401 402
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
403
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
404

405 406 407 408 409 410 411 412 413 414 415 416
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

417 418 419 420 421 422 423 424 425
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

466 467 468
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
469
	select CRYPTO_HASH
470 471 472
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

473 474
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
475
	select CRYPTO_HASH
476 477 478 479 480 481 482
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

483
config CRYPTO_POLY1305_X86_64
484
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
485 486 487 488 489 490 491 492 493 494
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

495 496
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
497
	select CRYPTO_HASH
498
	help
499
	  MD4 message digest algorithm (RFC1320).
500

501 502
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
503
	select CRYPTO_HASH
L
Linus Torvalds 已提交
504
	help
505
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
506

507 508 509 510 511 512 513 514 515
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

516 517 518 519 520 521 522 523
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

524 525 526 527 528 529 530 531 532
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

533 534
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
535
	select CRYPTO_HASH
536
	help
537 538 539 540
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
541

542
config CRYPTO_RMD128
543
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
544
	select CRYPTO_HASH
545 546
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
547

548
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
549
	  be used as a secure replacement for RIPEMD. For other use cases,
550
	  RIPEMD-160 should be used.
551

552
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
553
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
554 555

config CRYPTO_RMD160
556
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
557
	select CRYPTO_HASH
558 559
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
560

561 562 563 564
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
565

566 567
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
568

569
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
570
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
571 572

config CRYPTO_RMD256
573
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
574
	select CRYPTO_HASH
575 576 577 578 579
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
580

581
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
582
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
583 584

config CRYPTO_RMD320
585
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
586
	select CRYPTO_HASH
587 588 589 590 591
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
592

593
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
594
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
595

596 597
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
598
	select CRYPTO_HASH
L
Linus Torvalds 已提交
599
	help
600
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
601

602
config CRYPTO_SHA1_SSSE3
603
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
604 605 606 607 608 609
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
610 611
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
612

613
config CRYPTO_SHA256_SSSE3
614
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
615 616 617 618 619 620 621
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
622 623
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
624 625 626 627 628 629 630 631 632 633

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
634 635
	  version 2 (AVX2) instructions, when available.

636 637 638 639 640 641 642 643 644
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

645 646 647 648 649 650 651 652 653
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

654 655 656 657 658 659 660
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

661 662 663 664 665 666 667
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

684 685
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
686
	select CRYPTO_HASH
L
Linus Torvalds 已提交
687
	help
688
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
689

690 691
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
692

693 694
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
695

696 697 698 699 700 701 702 703 704
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

705 706 707 708 709 710 711 712 713
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

714 715 716 717 718 719 720 721 722
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

723 724
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
725
	select CRYPTO_HASH
726
	help
727
	  SHA512 secure hash standard (DFIPS 180-2).
728

729 730
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
731

732 733
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
734

735 736 737 738 739 740 741 742 743
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

744 745 746 747 748 749 750 751 752
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

753 754 755 756 757 758 759 760 761 762
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

763 764
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
765
	select CRYPTO_HASH
766
	help
767
	  Tiger hash algorithm 192, 160 and 128-bit hashes
768

769 770 771
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
772 773

	  See also:
774
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
775

776 777
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
778
	select CRYPTO_HASH
L
Linus Torvalds 已提交
779
	help
780
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
781

782 783
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
784 785

	  See also:
786
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
787

788 789
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
790
	depends on X86 && 64BIT
791 792 793 794 795
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

796
comment "Ciphers"
L
Linus Torvalds 已提交
797 798 799

config CRYPTO_AES
	tristate "AES cipher algorithms"
800
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
801
	help
802
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
803 804 805
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
806 807 808 809 810 811 812
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
813

814
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
815 816 817 818 819

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
820 821
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
822
	select CRYPTO_AES
L
Linus Torvalds 已提交
823
	help
824
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
825 826 827
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
828 829 830 831 832 833 834
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
835

836
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
837 838 839 840 841

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
842 843
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
844
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
845
	help
846
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
847 848 849
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
850 851 852
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
853 854 855 856 857 858 859 860 861 862 863
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
864
	depends on X86
865 866
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
867
	select CRYPTO_CRYPTD
868
	select CRYPTO_ABLK_HELPER
869
	select CRYPTO_ALGAPI
870
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
871 872
	select CRYPTO_LRW
	select CRYPTO_XTS
873 874 875 876 877 878 879 880 881 882
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
883 884 885 886
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
887

888
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
889 890 891

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

892 893 894 895
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

925 926 927 928 929 930 931 932 933 934 935 936 937
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

938 939 940 941 942 943 944 945 946 947 948
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
949 950
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
951 952 953

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
954
	select CRYPTO_BLKCIPHER
955 956 957 958 959 960 961 962 963 964 965
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
966
	select CRYPTO_BLOWFISH_COMMON
967 968 969 970 971 972 973 974 975 976
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

977 978 979 980 981 982 983 984 985
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

986 987
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
988
	depends on X86 && 64BIT
989 990 991 992 993 994 995 996 997 998 999 1000
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1016 1017
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1018
	depends on X86 && 64BIT
1019 1020
	depends on CRYPTO
	select CRYPTO_ALGAPI
1021
	select CRYPTO_GLUE_HELPER_X86
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1033 1034 1035 1036 1037 1038 1039 1040
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1041
	select CRYPTO_ABLK_HELPER
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1055 1056
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1057 1058 1059 1060 1061 1062
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1063
	select CRYPTO_ABLK_HELPER
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1096 1097 1098 1099 1100 1101
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1102 1103
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1104
	select CRYPTO_ALGAPI
1105
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1106 1107 1108 1109
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1110 1111 1112 1113 1114
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1115
	select CRYPTO_ABLK_HELPER
1116
	select CRYPTO_CAST_COMMON
1117 1118 1119 1120 1121 1122 1123 1124
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1125 1126
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1127
	select CRYPTO_ALGAPI
1128
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1129 1130 1131 1132
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1133 1134 1135 1136 1137
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1138
	select CRYPTO_ABLK_HELPER
1139
	select CRYPTO_GLUE_HELPER_X86
1140
	select CRYPTO_CAST_COMMON
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1151 1152
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1153
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1154
	help
1155
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1156

1157 1158
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1159
	depends on SPARC64
1160 1161 1162 1163 1164 1165
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1179 1180
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1181
	select CRYPTO_ALGAPI
1182
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1183
	help
1184
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1185 1186 1187

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1188
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1189 1190 1191 1192 1193 1194 1195 1196
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1197
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1198

1199
config CRYPTO_SALSA20
1200
	tristate "Salsa20 stream cipher algorithm"
1201 1202 1203 1204 1205 1206
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1207 1208 1209 1210 1211

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1212
	tristate "Salsa20 stream cipher algorithm (i586)"
1213 1214 1215 1216 1217 1218 1219
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1220 1221 1222 1223 1224

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1225
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1226 1227 1228 1229 1230 1231 1232
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1233 1234 1235

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1250
config CRYPTO_CHACHA20_X86_64
1251
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1265 1266
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1267
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1268
	help
1269
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1281
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1282
	help
1283
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1284

1285 1286 1287 1288 1289 1290 1291
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1292 1293 1294 1295
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1296
	select CRYPTO_CRYPTD
1297
	select CRYPTO_ABLK_HELPER
1298
	select CRYPTO_GLUE_HELPER_X86
1299
	select CRYPTO_SERPENT
1300 1301
	select CRYPTO_LRW
	select CRYPTO_XTS
1302 1303 1304 1305 1306 1307
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1308
	  This module provides Serpent cipher algorithm that processes eight
1309 1310 1311 1312 1313
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1314 1315 1316 1317
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1318
	select CRYPTO_CRYPTD
1319
	select CRYPTO_ABLK_HELPER
1320
	select CRYPTO_GLUE_HELPER_X86
1321
	select CRYPTO_SERPENT
1322 1323
	select CRYPTO_LRW
	select CRYPTO_XTS
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1335 1336 1337 1338 1339 1340

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1341
	select CRYPTO_ABLK_HELPER
1342
	select CRYPTO_GLUE_HELPER_X86
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1357

1358 1359 1360 1361 1362
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1363
	select CRYPTO_ABLK_HELPER
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1381 1382
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1383
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1384
	help
1385
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1400
	select CRYPTO_ALGAPI
1401
	select CRYPTO_TWOFISH_COMMON
1402
	help
1403
	  Twofish cipher algorithm.
1404

1405 1406 1407 1408
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1431 1432

	  See also:
1433
	  <http://www.schneier.com/twofish.html>
1434

1435 1436 1437
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1438
	select CRYPTO_ALGAPI
1439
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1440
	help
1441
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1442

1443 1444 1445 1446 1447 1448 1449 1450
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1451 1452
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1453
	depends on X86 && 64BIT
1454 1455 1456
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1457
	select CRYPTO_GLUE_HELPER_X86
1458 1459
	select CRYPTO_LRW
	select CRYPTO_XTS
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1474 1475 1476 1477 1478
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1479
	select CRYPTO_ABLK_HELPER
1480
	select CRYPTO_GLUE_HELPER_X86
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1500 1501 1502 1503 1504 1505 1506
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1507
	help
1508 1509 1510 1511
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1512

1513 1514 1515 1516 1517 1518 1519 1520
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1521 1522
config CRYPTO_842
	tristate "842 compression algorithm"
1523 1524 1525
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1526 1527
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1554 1555
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1556

1557
menuconfig CRYPTO_DRBG_MENU
1558 1559 1560 1561 1562
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1563
if CRYPTO_DRBG_MENU
1564 1565

config CRYPTO_DRBG_HMAC
1566
	bool
1567 1568
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1569
	select CRYPTO_SHA256
1570 1571 1572

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1573
	select CRYPTO_SHA256
1574 1575 1576 1577 1578 1579
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1580
	depends on CRYPTO_CTR
1581 1582 1583
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1584 1585
config CRYPTO_DRBG
	tristate
1586
	default CRYPTO_DRBG_MENU
1587
	select CRYPTO_RNG
1588
	select CRYPTO_JITTERENTROPY
1589 1590

endif	# if CRYPTO_DRBG_MENU
1591

1592 1593
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1594
	select CRYPTO_RNG
1595 1596 1597 1598 1599 1600 1601
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1602 1603 1604
config CRYPTO_USER_API
	tristate

1605 1606
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1607
	depends on NET
1608 1609 1610 1611 1612 1613
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1614 1615
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1616
	depends on NET
1617 1618 1619 1620 1621 1622
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1623 1624 1625 1626 1627 1628 1629 1630 1631
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1632 1633 1634 1635 1636 1637 1638 1639 1640
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1641 1642 1643
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1644
source "drivers/crypto/Kconfig"
1645
source crypto/asymmetric_keys/Kconfig
1646
source certs/Kconfig
L
Linus Torvalds 已提交
1647

1648
endif	# if CRYPTO