intel_lrc.c 77.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
enum {
	ADVANCED_CONTEXT = 0,
211
	LEGACY_32B_CONTEXT,
212 213 214
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
215 216 217 218
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
219 220 221 222 223 224 225
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
226
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227

228
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 230 231
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *default_ctx_obj);

232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static void
logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;

	ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
					(ring->id == VCS || ring->id == VCS2);

	ring->ctx_desc_template = GEN8_CTX_VALID;
	ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
		ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
	if (ring->disable_lite_restore_wa)
		ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
}

292
/**
293 294
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
295
 *
296 297
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
298
 *
299 300 301 302 303 304 305 306 307 308
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
309
 */
310 311 312
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
				   struct intel_engine_cs *ring)
313
{
314
	uint64_t lrca, desc;
315

316 317
	lrca = ctx->engine[ring->id].lrc_vma->node.start +
	       LRC_PPHWSP_PN * PAGE_SIZE;
318

319 320 321
	desc = ring->ctx_desc_template;			   /* bits  0-11 */
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
322

323
	ctx->engine[ring->id].lrc_desc = desc;
324 325
}

326 327
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
328
{
329 330
	return ctx->engine[ring->id].lrc_desc;
}
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
			   struct intel_engine_cs *ring)
{
	return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
352 353
}

354 355
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
356
{
357 358

	struct intel_engine_cs *ring = rq0->ring;
359 360
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
361
	uint64_t desc[2];
362

363
	if (rq1) {
364
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
365 366 367 368
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
369

370
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
371
	rq0->elsp_submitted++;
372

373
	/* You must always write both descriptors in the order below. */
374 375
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
376 377
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
378

379
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
380
	/* The context is automatically loaded after the following */
381
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
382

383
	/* ELSP is a wo register, use another nearby reg for posting */
384
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
385 386
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
387 388
}

389
static int execlists_update_context(struct drm_i915_gem_request *rq)
390
{
391 392
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
393
	uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
394

395
	reg_state[CTX_RING_TAIL+1] = rq->tail;
396
	reg_state[CTX_RING_BUFFER_START+1] = rq->ringbuf->vma->node.start;
397

398 399 400 401 402 403
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
404 405 406 407 408 409
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

410 411 412
	return 0;
}

413 414
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
415
{
416
	execlists_update_context(rq0);
417

418
	if (rq1)
419
		execlists_update_context(rq1);
420

421
	execlists_elsp_write(rq0, rq1);
422 423
}

424 425
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
426 427
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
428 429

	assert_spin_locked(&ring->execlist_lock);
430

431 432 433 434 435 436
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

437 438 439 440 441 442 443 444
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
445
		} else if (req0->ctx == cursor->ctx) {
446 447
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
448
			cursor->elsp_submitted = req0->elsp_submitted;
449 450
			list_move_tail(&req0->execlist_link,
				       &ring->execlist_retired_req_list);
451 452 453 454 455 456 457
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

458 459 460 461 462
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
463
		if (req0->elsp_submitted) {
464 465 466 467 468 469 470 471 472 473 474 475 476 477
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

478 479
	WARN_ON(req1 && req1->elsp_submitted);

480
	execlists_submit_requests(req0, req1);
481 482
}

483 484 485
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
486
	struct drm_i915_gem_request *head_req;
487 488 489 490

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
491
					    struct drm_i915_gem_request,
492 493 494
					    execlist_link);

	if (head_req != NULL) {
495
		if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
496 497 498 499
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
500 501
				list_move_tail(&head_req->execlist_link,
					       &ring->execlist_retired_req_list);
502 503
				return true;
			}
504 505 506 507 508 509
		}
	}

	return false;
}

B
Ben Widawsky 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522
static void get_context_status(struct intel_engine_cs *ring,
			       u8 read_pointer,
			       u32 *status, u32 *context_id)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
		return;

	*status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
	*context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
}

523
/**
524
 * intel_lrc_irq_handler() - handle Context Switch interrupts
525 526 527 528 529
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
530
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
531 532 533 534 535
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
536
	u32 status = 0;
537 538 539 540 541 542
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
543
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
544
	if (read_pointer > write_pointer)
545
		write_pointer += GEN8_CSB_ENTRIES;
546 547 548 549

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
B
Ben Widawsky 已提交
550 551 552

		get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
				   &status, &status_id);
553

554 555 556
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

557 558 559 560 561 562 563 564
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

B
Ben Widawsky 已提交
565 566
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		    (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
567 568 569 570 571
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

572
	if (ring->disable_lite_restore_wa) {
573 574 575 576 577
		/* Prevent a ctx to preempt itself */
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
		    (submit_contexts != 0))
			execlists_context_unqueue(ring);
	} else if (submit_contexts != 0) {
578
		execlists_context_unqueue(ring);
579
	}
580 581 582

	spin_unlock(&ring->execlist_lock);

583 584 585
	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");

586
	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
587

588 589
	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
590
	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
591 592
		   _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				 ring->next_context_status_buffer << 8));
593 594
}

595
static int execlists_context_queue(struct drm_i915_gem_request *request)
596
{
597
	struct intel_engine_cs *ring = request->ring;
598
	struct drm_i915_gem_request *cursor;
599
	int num_elements = 0;
600

601 602 603
	if (request->ctx != ring->default_context)
		intel_lr_context_pin(request);

604 605
	i915_gem_request_reference(request);

606
	spin_lock_irq(&ring->execlist_lock);
607

608 609 610 611 612
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
613
		struct drm_i915_gem_request *tail_req;
614 615

		tail_req = list_last_entry(&ring->execlist_queue,
616
					   struct drm_i915_gem_request,
617 618
					   execlist_link);

619
		if (request->ctx == tail_req->ctx) {
620
			WARN(tail_req->elsp_submitted != 0,
621
				"More than 2 already-submitted reqs queued\n");
622 623
			list_move_tail(&tail_req->execlist_link,
				       &ring->execlist_retired_req_list);
624 625 626
		}
	}

627
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
628
	if (num_elements == 0)
629 630
		execlists_context_unqueue(ring);

631
	spin_unlock_irq(&ring->execlist_lock);
632 633 634 635

	return 0;
}

636
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
637
{
638
	struct intel_engine_cs *ring = req->ring;
639 640 641 642 643 644 645
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

646
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
647 648 649 650 651 652 653
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

654
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
655 656
				 struct list_head *vmas)
{
657
	const unsigned other_rings = ~intel_ring_flag(req->ring);
658 659 660 661 662 663 664 665
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

666
		if (obj->active & other_rings) {
667
			ret = i915_gem_object_sync(obj, req->ring, &req);
668 669 670
			if (ret)
				return ret;
		}
671 672 673 674 675 676 677 678 679 680 681 682 683

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
684
	return logical_ring_invalidate_all_caches(req);
685 686
}

687
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
688 689 690
{
	int ret;

691 692
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

693
	if (request->ctx != request->ring->default_context) {
694
		ret = intel_lr_context_pin(request);
695
		if (ret)
696 697 698
			return ret;
	}

699 700 701 702 703 704 705 706 707 708 709 710 711
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

712 713 714
	return 0;
}

715
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
716
				       int bytes)
717
{
718 719 720
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
721 722
	unsigned space;
	int ret;
723 724 725 726

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

727 728 729
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

730
	list_for_each_entry(target, &ring->request_list, list) {
731 732 733 734 735
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
736
		if (target->ringbuf != ringbuf)
737 738 739
			continue;

		/* Would completion of this request free enough space? */
740
		space = __intel_ring_space(target->postfix, ringbuf->tail,
741 742
					   ringbuf->size);
		if (space >= bytes)
743 744 745
			break;
	}

746
	if (WARN_ON(&target->list == &ring->request_list))
747 748
		return -ENOSPC;

749
	ret = i915_wait_request(target);
750 751 752
	if (ret)
		return ret;

753 754
	ringbuf->space = space;
	return 0;
755 756 757 758
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
759
 * @request: Request to advance the logical ringbuffer of.
760 761 762 763 764 765 766
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
767
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
768
{
769
	struct intel_engine_cs *ring = request->ring;
770
	struct drm_i915_private *dev_priv = request->i915;
771

772
	intel_logical_ring_advance(request->ringbuf);
773

774 775
	request->tail = request->ringbuf->tail;

776 777 778
	if (intel_ring_stopped(ring))
		return;

779 780 781 782
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
783 784
}

785
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
786 787 788 789 790 791 792 793 794 795 796 797 798
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

799
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
800
{
801
	struct intel_ringbuffer *ringbuf = req->ringbuf;
802 803 804 805
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
806

807 808 809 810
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
831
		}
832 833
	}

834 835
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
836 837
		if (unlikely(ret))
			return ret;
838 839 840

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
841 842 843 844 845 846 847 848
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
849
 * @req: The request to start some new work for
850 851 852 853 854 855 856 857 858
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
859
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
860
{
861
	struct drm_i915_private *dev_priv;
862 863
	int ret;

864 865 866
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

867 868 869 870 871
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

872
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
873 874 875
	if (ret)
		return ret;

876
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
877 878 879
	return 0;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

895 896 897 898 899 900 901 902 903 904
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
905
 * @dispatch_flags: translated execbuffer call flags.
906 907 908 909 910 911
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
912
int intel_execlists_submission(struct i915_execbuffer_params *params,
913
			       struct drm_i915_gem_execbuffer2 *args,
914
			       struct list_head *vmas)
915
{
916 917
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
918
	struct drm_i915_private *dev_priv = dev->dev_private;
919 920
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

956
	ret = execlists_move_to_gpu(params->request, vmas);
957 958 959 960 961
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
962
		ret = intel_logical_ring_begin(params->request, 4);
963 964 965 966 967
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
968
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
969 970 971 972 973 974
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

975 976 977
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

978
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
979 980 981
	if (ret)
		return ret;

982
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
983

984
	i915_gem_execbuffer_move_to_active(vmas, params->request);
985
	i915_gem_execbuffer_retire_commands(params);
986

987 988 989
	return 0;
}

990 991
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
992
	struct drm_i915_gem_request *req, *tmp;
993 994 995 996 997 998 999
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
1000
	spin_lock_irq(&ring->execlist_lock);
1001
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1002
	spin_unlock_irq(&ring->execlist_lock);
1003 1004

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1005 1006 1007 1008 1009 1010
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(req);
1011
		list_del(&req->execlist_link);
1012
		i915_gem_request_unreference(req);
1013 1014 1015
	}
}

1016 1017
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1036 1037
}

1038
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1039
{
1040
	struct intel_engine_cs *ring = req->ring;
1041 1042 1043 1044 1045
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1046
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1047 1048 1049 1050 1051 1052 1053
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1054
static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1055
				   struct intel_context *ctx)
1056
{
1057 1058
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1059 1060
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1061
	struct page *lrc_state_page;
1062
	int ret;
1063 1064

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1065

1066 1067 1068 1069
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1070

1071 1072 1073 1074 1075 1076
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1077 1078 1079
	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
	if (ret)
		goto unpin_ctx_obj;
1080

1081 1082
	ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, ring);
1083
	ctx->engine[ring->id].lrc_reg_state = kmap(lrc_state_page);
1084
	ctx_obj->dirty = true;
1085

1086 1087 1088
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1089

1090 1091 1092 1093
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

	return ret;
}

static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
{
	int ret = 0;
	struct intel_engine_cs *ring = rq->ring;

	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1104
		ret = intel_lr_context_do_pin(ring, rq->ctx);
1105 1106 1107 1108 1109
		if (ret)
			goto reset_pin_count;
	}
	return ret;

1110
reset_pin_count:
1111
	rq->ctx->engine[ring->id].pin_count = 0;
1112 1113 1114
	return ret;
}

1115
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1116
{
1117 1118 1119 1120
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (!ctx_obj)
		return;

	if (--rq->ctx->engine[ring->id].pin_count == 0) {
		kunmap(kmap_to_page(rq->ctx->engine[ring->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ringbuf);
		i915_gem_object_ggtt_unpin(ctx_obj);
		rq->ctx->engine[ring->id].lrc_vma = NULL;
		rq->ctx->engine[ring->id].lrc_desc = 0;
		rq->ctx->engine[ring->id].lrc_reg_state = NULL;
1133 1134 1135
	}
}

1136
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1137 1138
{
	int ret, i;
1139 1140
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1141 1142 1143 1144
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1145
	if (w->count == 0)
1146 1147 1148
		return 0;

	ring->gpu_caches_dirty = true;
1149
	ret = logical_ring_flush_all_caches(req);
1150 1151 1152
	if (ret)
		return ret;

1153
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1154 1155 1156 1157 1158
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1159
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1160 1161 1162 1163 1164 1165 1166
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1167
	ret = logical_ring_flush_all_caches(req);
1168 1169 1170 1171 1172 1173
	if (ret)
		return ret;

	return 0;
}

1174
#define wa_ctx_emit(batch, index, cmd)					\
1175
	do {								\
1176 1177
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1178 1179
			return -ENOSPC;					\
		}							\
1180
		batch[__index] = (cmd);					\
1181 1182
	} while (0)

V
Ville Syrjälä 已提交
1183
#define wa_ctx_emit_reg(batch, index, reg) \
1184
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1208 1209 1210 1211 1212 1213
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1214
	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1215 1216
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1217
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1218
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1219
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1220 1221 1222 1223
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1224
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1235
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1236
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1237
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1238 1239
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1240 1241 1242 1243

	return index;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1282
 *
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1296
	uint32_t scratch_addr;
1297 1298
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1299
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1300
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1301

1302 1303
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1304 1305 1306 1307
		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (rc < 0)
			return rc;
		index = rc;
1308 1309
	}

1310 1311 1312 1313
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1314 1315 1316 1317 1318 1319 1320 1321 1322
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1323

1324 1325
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1326
		wa_ctx_emit(batch, index, MI_NOOP);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1344
 * @batch: page in which WA are loaded
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1361
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1362
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1363

1364
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1365 1366 1367 1368

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1369 1370 1371 1372 1373
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1374
	int ret;
1375
	struct drm_device *dev = ring->dev;
1376 1377
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1378
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1379
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1380
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1381
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1382

1383 1384 1385 1386 1387 1388
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1401
	struct drm_device *dev = ring->dev;
1402 1403
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1404
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1405
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1406
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1407
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1408
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1409 1410 1411 1412 1413
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1414
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1415
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1416
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1417 1418
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1419 1420 1421 1422 1423
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1464
	/* update this when WA for higher Gen are added */
1465 1466 1467
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1468
		return 0;
1469
	}
1470

1471 1472 1473 1474 1475 1476
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1477 1478 1479 1480 1481 1482
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1483
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1525 1526 1527 1528
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1529
	u8 next_context_status_buffer_hw;
1530

1531 1532 1533
	lrc_setup_hardware_status_page(ring,
				ring->default_context->engine[ring->id].state);

1534 1535 1536
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1537 1538 1539 1540
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1551 1552
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1553
	 */
1554 1555
	next_context_status_buffer_hw =
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

	ring->next_context_status_buffer = next_context_status_buffer_hw;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1593
	return init_workarounds_ring(ring);
1594 1595
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1623
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1624
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1625
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1626 1627 1628 1629 1630 1631 1632 1633 1634
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1635
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1636
			      u64 offset, unsigned dispatch_flags)
1637
{
1638
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1639
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1640 1641
	int ret;

1642 1643 1644 1645
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1646 1647
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1648 1649
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1650 1651
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1652 1653 1654 1655
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1656 1657 1658 1659

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1660
	ret = intel_logical_ring_begin(req, 4);
1661 1662 1663 1664
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1665 1666 1667 1668
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1669 1670 1671 1672 1673 1674 1675 1676
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1677 1678 1679 1680 1681 1682
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1683
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1710
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1711 1712 1713
			   u32 invalidate_domains,
			   u32 unused)
{
1714
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1715 1716 1717 1718 1719 1720
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1721
	ret = intel_logical_ring_begin(request, 4);
1722 1723 1724 1725 1726
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1751
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1752 1753 1754
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1755
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1756 1757
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1758
	bool vf_flush_wa = false;
1759 1760 1761 1762 1763 1764 1765 1766
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1767
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1768
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1781 1782 1783 1784 1785 1786 1787
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
		if (IS_GEN9(ring->dev))
			vf_flush_wa = true;
	}
1788

1789
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1790 1791 1792
	if (ret)
		return ret;

1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1851
static int gen8_emit_request(struct drm_i915_gem_request *request)
1852
{
1853
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1854 1855 1856 1857
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1858 1859 1860 1861 1862
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1863
	ret = intel_logical_ring_begin(request, 8);
1864 1865 1866
	if (ret)
		return ret;

1867
	cmd = MI_STORE_DWORD_IMM_GEN4;
1868 1869 1870 1871 1872 1873 1874
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1875
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1876 1877
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1878
	intel_logical_ring_advance_and_submit(request);
1879

1880 1881 1882 1883 1884 1885 1886 1887
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1888 1889 1890
	return 0;
}

1891
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1892 1893 1894 1895
{
	struct render_state so;
	int ret;

1896
	ret = i915_gem_render_state_prepare(req->ring, &so);
1897 1898 1899 1900 1901 1902
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1903
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1904
				       I915_DISPATCH_SECURE);
1905 1906 1907
	if (ret)
		goto out;

1908 1909 1910 1911 1912 1913
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1914
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1915 1916 1917 1918 1919 1920

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1921
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1922 1923 1924
{
	int ret;

1925
	ret = intel_logical_ring_workarounds_emit(req);
1926 1927 1928
	if (ret)
		return ret;

1929 1930 1931 1932 1933 1934 1935 1936
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1937
	return intel_lr_context_render_state_init(req);
1938 1939
}

1940 1941 1942 1943 1944 1945
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1946 1947
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1948
	struct drm_i915_private *dev_priv;
1949

1950 1951 1952
	if (!intel_ring_initialized(ring))
		return;

1953 1954
	dev_priv = ring->dev->dev_private;

1955 1956 1957 1958
	if (ring->buffer) {
		intel_logical_ring_stop(ring);
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
	}
1959 1960 1961 1962 1963

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1964
	i915_gem_batch_pool_fini(&ring->batch_pool);
1965 1966 1967 1968 1969

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1970

1971 1972 1973
	ring->disable_lite_restore_wa = false;
	ring->ctx_desc_template = 0;

1974
	lrc_destroy_wa_ctx_obj(ring);
1975
	ring->dev = NULL;
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void
logical_ring_default_vfuncs(struct drm_device *dev,
			    struct intel_engine_cs *ring)
{
	/* Default vfuncs which can be overriden by each engine. */
	ring->init_hw = gen8_init_common_ring;
	ring->emit_request = gen8_emit_request;
	ring->emit_flush = gen8_emit_flush;
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
	ring->emit_bb_start = gen8_emit_bb_start;
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
}

1998 1999 2000 2001 2002 2003 2004
static inline void
logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
{
	ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}

2005 2006
static int
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2007
{
2008 2009 2010 2011 2012 2013 2014 2015
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
2016
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2017 2018
	init_waitqueue_head(&ring->irq_queue);

2019
	INIT_LIST_HEAD(&ring->buffers);
2020
	INIT_LIST_HEAD(&ring->execlist_queue);
2021
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2022 2023
	spin_lock_init(&ring->execlist_lock);

2024 2025
	logical_ring_init_platform_invariants(ring);

2026 2027
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
2028
		goto error;
2029

2030 2031
	ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
	if (ret)
2032
		goto error;
2033 2034

	/* As this is the default context, always pin it */
2035
	ret = intel_lr_context_do_pin(ring, ring->default_context);
2036 2037 2038 2039
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
			ring->name, ret);
2040
		goto error;
2041
	}
2042

2043 2044 2045 2046
	return 0;

error:
	intel_logical_ring_cleanup(ring);
2047
	return ret;
2048 2049 2050 2051 2052 2053
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2054
	int ret;
2055 2056 2057 2058

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
2059 2060

	logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2061 2062
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2063

2064 2065 2066
	logical_ring_default_vfuncs(dev, ring);

	/* Override some for render ring. */
2067 2068 2069 2070
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
2071
	ring->init_context = gen8_init_rcs_context;
2072
	ring->cleanup = intel_fini_pipe_control;
2073
	ring->emit_flush = gen8_emit_flush_render;
2074

2075
	ring->dev = dev;
2076 2077

	ret = intel_init_pipe_control(ring);
2078 2079 2080
	if (ret)
		return ret;

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2092 2093
	ret = logical_ring_init(dev, ring);
	if (ret) {
2094
		lrc_destroy_wa_ctx_obj(ring);
2095
	}
2096 2097

	return ret;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;

2109
	logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2110
	logical_ring_default_vfuncs(dev, ring);
2111

2112 2113 2114 2115 2116 2117 2118 2119
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

T
Tvrtko Ursulin 已提交
2120
	ring->name = "bsd2 ring";
2121 2122 2123
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;

2124
	logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2125
	logical_ring_default_vfuncs(dev, ring);
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;

2139
	logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2140
	logical_ring_default_vfuncs(dev, ring);
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;

2154
	logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2155
	logical_ring_default_vfuncs(dev, ring);
2156

2157 2158 2159
	return logical_ring_init(dev, ring);
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2260 2261 2262 2263
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2264 2265
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2266
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2267 2268 2269 2270
	struct page *page;
	uint32_t *reg_state;
	int ret;

2271 2272 2273
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2290
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2291 2292 2293 2294 2295 2296 2297
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2298 2299 2300 2301 2302 2303 2304 2305
	reg_state[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					  CTX_CTRL_RS_CTX_ENABLE));
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2306 2307 2308
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
		       RING_BB_PPGTT);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2319
	if (ring->id == RCS) {
2320 2321 2322
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2338
	}
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
	/* PDP values well be assigned later if needed */
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2350

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2369 2370
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2371 2372
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2373 2374 2375 2376 2377 2378 2379 2380
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2381 2382 2383 2384 2385 2386 2387 2388
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2389 2390
void intel_lr_context_free(struct intel_context *ctx)
{
2391 2392
	int i;

2393
	for (i = 0; i < I915_NUM_RINGS; i++) {
2394
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2395

2396
		if (ctx_obj) {
2397 2398 2399 2400
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2401 2402 2403 2404 2405 2406 2407
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
			WARN_ON(ctx->engine[ring->id].pin_count);
			intel_ringbuffer_free(ringbuf);
			drm_gem_object_unreference(&ctx_obj->base);
2408 2409 2410 2411
		}
	}
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2426
uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2427 2428 2429
{
	int ret = 0;

2430
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2431 2432 2433

	switch (ring->id) {
	case RCS:
2434 2435 2436 2437
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2448 2449
}

2450
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2451 2452 2453
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2454
	struct page *page;
2455

2456 2457 2458 2459 2460
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2461 2462 2463 2464 2465 2466 2467
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2468
/**
2469
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2470 2471 2472 2473 2474 2475 2476 2477 2478
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2479
 * Return: non-zero on error.
2480
 */
2481 2482

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2483 2484
				     struct intel_engine_cs *ring)
{
2485 2486 2487
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2488
	struct intel_ringbuffer *ringbuf;
2489 2490
	int ret;

2491
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2492
	WARN_ON(ctx->engine[ring->id].state);
2493

2494
	context_size = round_up(intel_lr_context_size(ring), 4096);
2495

2496 2497 2498
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2499
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2500 2501 2502
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2503 2504
	}

2505 2506 2507
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2508
		goto error_deref_obj;
2509 2510 2511 2512 2513
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2514
		goto error_ringbuf;
2515 2516 2517
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2518
	ctx->engine[ring->id].state = ctx_obj;
2519

2520 2521
	if (ctx != ring->default_context && ring->init_context) {
		struct drm_i915_gem_request *req;
2522

2523 2524 2525 2526 2527 2528
		ret = i915_gem_request_alloc(ring,
			ctx, &req);
		if (ret) {
			DRM_ERROR("ring create req: %d\n",
				ret);
			goto error_ringbuf;
2529 2530
		}

2531 2532 2533 2534 2535 2536 2537 2538
		ret = ring->init_context(req);
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2539
	}
2540
	return 0;
2541

2542 2543
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2544
error_deref_obj:
2545
	drm_gem_object_unreference(&ctx_obj->base);
2546 2547
	ctx->engine[ring->id].ringbuf = NULL;
	ctx->engine[ring->id].state = NULL;
2548
	return ret;
2549
}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2573
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}