fair.c 217.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684 685
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686
	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688
}
689 690 691

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692
#else
693
void init_entity_runnable_average(struct sched_entity *se)
694 695 696 697
{
}
#endif

698
/*
699
 * Update the current task's runtime statistics.
700
 */
701
static void update_curr(struct cfs_rq *cfs_rq)
702
{
703
	struct sched_entity *curr = cfs_rq->curr;
704
	u64 now = rq_clock_task(rq_of(cfs_rq));
705
	u64 delta_exec;
706 707 708 709

	if (unlikely(!curr))
		return;

710 711
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
712
		return;
713

I
Ingo Molnar 已提交
714
	curr->exec_start = now;
715

716 717 718 719 720 721 722 723 724
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

725 726 727
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

728
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729
		cpuacct_charge(curtask, delta_exec);
730
		account_group_exec_runtime(curtask, delta_exec);
731
	}
732 733

	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 735
}

736 737 738 739 740
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

741
static inline void
742
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
743
{
744
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
745 746 747 748 749
}

/*
 * Task is being enqueued - update stats:
 */
750
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
751 752 753 754 755
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
756
	if (se != cfs_rq->curr)
757
		update_stats_wait_start(cfs_rq, se);
758 759 760
}

static void
761
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
762
{
763
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
764
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
765 766
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
767
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768 769 770
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
771
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
772 773
	}
#endif
774
	schedstat_set(se->statistics.wait_start, 0);
775 776 777
}

static inline void
778
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782 783
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
784
	if (se != cfs_rq->curr)
785
		update_stats_wait_end(cfs_rq, se);
786 787 788 789 790 791
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
792
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
793 794 795 796
{
	/*
	 * We are starting a new run period:
	 */
797
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
798 799 800 801 802 803
}

/**************************************************
 * Scheduling class queueing methods:
 */

804 805
#ifdef CONFIG_NUMA_BALANCING
/*
806 807 808
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
809
 */
810 811
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
812 813 814

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
815

816 817 818
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
843
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
844 845 846
	unsigned int scan, floor;
	unsigned int windows = 1;

847 848
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

865 866 867 868 869 870 871 872 873 874 875 876
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

877 878 879 880 881
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
882
	pid_t gid;
883 884

	struct rcu_head rcu;
885
	nodemask_t active_nodes;
886
	unsigned long total_faults;
887 888 889 890 891
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
892
	unsigned long *faults_cpu;
893
	unsigned long faults[0];
894 895
};

896 897 898 899 900 901 902 903 904
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

905 906 907 908 909
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

910 911 912 913 914 915 916
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
917
{
918
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
919 920 921 922
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
923
	if (!p->numa_faults)
924 925
		return 0;

926 927
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
928 929
}

930 931 932 933 934
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

935 936
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
937 938
}

939 940
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
941 942
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1010 1011 1012 1013 1014 1015
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1016 1017
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1018
{
1019
	unsigned long faults, total_faults;
1020

1021
	if (!p->numa_faults)
1022 1023 1024 1025 1026 1027 1028
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1029
	faults = task_faults(p, nid);
1030 1031
	faults += score_nearby_nodes(p, nid, dist, true);

1032
	return 1000 * faults / total_faults;
1033 1034
}

1035 1036
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1037
{
1038 1039 1040 1041 1042 1043 1044 1045
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1046 1047
		return 0;

1048
	faults = group_faults(p, nid);
1049 1050
	faults += score_nearby_nodes(p, nid, dist, false);

1051
	return 1000 * faults / total_faults;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1117
static unsigned long weighted_cpuload(const int cpu);
1118 1119
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1120
static unsigned long capacity_of(int cpu);
1121 1122
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1123
/* Cached statistics for all CPUs within a node */
1124
struct numa_stats {
1125
	unsigned long nr_running;
1126
	unsigned long load;
1127 1128

	/* Total compute capacity of CPUs on a node */
1129
	unsigned long compute_capacity;
1130 1131

	/* Approximate capacity in terms of runnable tasks on a node */
1132
	unsigned long task_capacity;
1133
	int has_free_capacity;
1134
};
1135

1136 1137 1138 1139 1140
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1141 1142
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1143 1144 1145 1146 1147 1148 1149

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1150
		ns->compute_capacity += capacity_of(cpu);
1151 1152

		cpus++;
1153 1154
	}

1155 1156 1157 1158 1159
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1160 1161
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1162 1163 1164 1165
	 */
	if (!cpus)
		return;

1166 1167 1168 1169 1170 1171
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1172
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1173 1174
}

1175 1176
struct task_numa_env {
	struct task_struct *p;
1177

1178 1179
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1180

1181
	struct numa_stats src_stats, dst_stats;
1182

1183
	int imbalance_pct;
1184
	int dist;
1185 1186 1187

	struct task_struct *best_task;
	long best_imp;
1188 1189 1190
	int best_cpu;
};

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1204
static bool load_too_imbalanced(long src_load, long dst_load,
1205 1206
				struct task_numa_env *env)
{
1207 1208
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1220 1221

	/* We care about the slope of the imbalance, not the direction. */
1222 1223
	if (dst_load < src_load)
		swap(dst_load, src_load);
1224 1225

	/* Is the difference below the threshold? */
1226 1227
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1228 1229 1230 1231 1232
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1233
	 * Compare it with the old imbalance.
1234
	 */
1235
	orig_src_load = env->src_stats.load;
1236
	orig_dst_load = env->dst_stats.load;
1237

1238 1239
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1240

1241 1242 1243 1244 1245
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1246 1247
}

1248 1249 1250 1251 1252 1253
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1254 1255
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1256 1257 1258 1259
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1260
	long src_load, dst_load;
1261
	long load;
1262
	long imp = env->p->numa_group ? groupimp : taskimp;
1263
	long moveimp = imp;
1264
	int dist = env->dist;
1265 1266

	rcu_read_lock();
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1278
		cur = NULL;
1279
	raw_spin_unlock_irq(&dst_rq->lock);
1280

1281 1282 1283 1284 1285 1286 1287
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1300 1301
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1302
		 * in any group then look only at task weights.
1303
		 */
1304
		if (cur->numa_group == env->p->numa_group) {
1305 1306
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1307 1308 1309 1310 1311 1312
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1313
		} else {
1314 1315 1316 1317 1318 1319
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1320 1321
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1322
			else
1323 1324
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1325
		}
1326 1327
	}

1328
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1329 1330 1331 1332
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1333
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1334
		    !env->dst_stats.has_free_capacity)
1335 1336 1337 1338 1339 1340
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1341 1342
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1343 1344 1345 1346 1347 1348
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1349 1350 1351
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1370
	if (cur) {
1371 1372 1373
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1374 1375
	}

1376
	if (load_too_imbalanced(src_load, dst_load, env))
1377 1378
		goto unlock;

1379 1380 1381 1382 1383 1384 1385
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1386 1387 1388 1389 1390 1391
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1392 1393
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1394 1395 1396 1397 1398 1399 1400 1401 1402
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1403
		task_numa_compare(env, taskimp, groupimp);
1404 1405 1406
	}
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1424 1425 1426
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1427 1428 1429 1430 1431
		return true;

	return false;
}

1432 1433 1434 1435
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1436

1437
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1438
		.src_nid = task_node(p),
1439 1440 1441 1442 1443 1444

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1445 1446
	};
	struct sched_domain *sd;
1447
	unsigned long taskweight, groupweight;
1448
	int nid, ret, dist;
1449
	long taskimp, groupimp;
1450

1451
	/*
1452 1453 1454 1455 1456 1457
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1458 1459
	 */
	rcu_read_lock();
1460
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1461 1462
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1463 1464
	rcu_read_unlock();

1465 1466 1467 1468 1469 1470 1471
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1472
		p->numa_preferred_nid = task_node(p);
1473 1474 1475
		return -EINVAL;
	}

1476
	env.dst_nid = p->numa_preferred_nid;
1477 1478 1479 1480 1481 1482
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1483
	update_numa_stats(&env.dst_stats, env.dst_nid);
1484

1485
	/* Try to find a spot on the preferred nid. */
1486 1487
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1498 1499 1500
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1501

1502
			dist = node_distance(env.src_nid, env.dst_nid);
1503 1504 1505 1506 1507
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1508

1509
			/* Only consider nodes where both task and groups benefit */
1510 1511
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1512
			if (taskimp < 0 && groupimp < 0)
1513 1514
				continue;

1515
			env.dist = dist;
1516 1517
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1518 1519
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1520 1521 1522
		}
	}

1523 1524 1525 1526 1527 1528 1529 1530
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1544

1545 1546 1547 1548 1549 1550
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1551
	if (env.best_task == NULL) {
1552 1553 1554
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1555 1556 1557 1558
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1559 1560
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1561 1562
	put_task_struct(env.best_task);
	return ret;
1563 1564
}

1565 1566 1567
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1568 1569
	unsigned long interval = HZ;

1570
	/* This task has no NUMA fault statistics yet */
1571
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1572 1573
		return;

1574
	/* Periodically retry migrating the task to the preferred node */
1575 1576
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1577 1578

	/* Success if task is already running on preferred CPU */
1579
	if (task_node(p) == p->numa_preferred_nid)
1580 1581 1582
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1583
	task_numa_migrate(p);
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1618 1619 1620
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1621 1622 1623
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1624 1625
 */
#define NUMA_PERIOD_SLOTS 10
1626
#define NUMA_PERIOD_THRESHOLD 7
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1647 1648 1649
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1650
	 */
1651
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1685
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1686 1687 1688 1689 1690 1691 1692 1693
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1712 1713
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1714 1715 1716 1717 1718 1719 1720 1721
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1769
		nodemask_t max_group = NODE_MASK_NONE;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1803 1804
		if (!max_faults)
			break;
1805 1806 1807 1808 1809
		nodes = max_group;
	}
	return nid;
}

1810 1811
static void task_numa_placement(struct task_struct *p)
{
1812 1813
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1814
	unsigned long fault_types[2] = { 0, 0 };
1815 1816
	unsigned long total_faults;
	u64 runtime, period;
1817
	spinlock_t *group_lock = NULL;
1818

1819 1820 1821 1822 1823
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1824
	seq = READ_ONCE(p->mm->numa_scan_seq);
1825 1826 1827
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1828
	p->numa_scan_period_max = task_scan_max(p);
1829

1830 1831 1832 1833
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1834 1835 1836
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1837
		spin_lock_irq(group_lock);
1838 1839
	}

1840 1841
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1842 1843
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1844
		unsigned long faults = 0, group_faults = 0;
1845
		int priv;
1846

1847
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1848
			long diff, f_diff, f_weight;
1849

1850 1851 1852 1853
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1854

1855
			/* Decay existing window, copy faults since last scan */
1856 1857 1858
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1859

1860 1861 1862 1863 1864 1865 1866 1867
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1868
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1869
				   (total_faults + 1);
1870 1871
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1872

1873 1874 1875
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1876
			p->total_numa_faults += diff;
1877
			if (p->numa_group) {
1878 1879 1880 1881 1882 1883 1884 1885 1886
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1887
				p->numa_group->total_faults += diff;
1888
				group_faults += p->numa_group->faults[mem_idx];
1889
			}
1890 1891
		}

1892 1893 1894 1895
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1896 1897 1898 1899 1900 1901 1902

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1903 1904
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1905
	if (p->numa_group) {
1906
		update_numa_active_node_mask(p->numa_group);
1907
		spin_unlock_irq(group_lock);
1908
		max_nid = preferred_group_nid(p, max_group_nid);
1909 1910
	}

1911 1912 1913 1914 1915 1916 1917
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1918
	}
1919 1920
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1932 1933
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1934 1935 1936 1937 1938 1939 1940 1941 1942
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1943
				    4*nr_node_ids*sizeof(unsigned long);
1944 1945 1946 1947 1948 1949 1950

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1951
		grp->gid = p->pid;
1952
		/* Second half of the array tracks nids where faults happen */
1953 1954
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1955

1956 1957
		node_set(task_node(current), grp->active_nodes);

1958
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1959
			grp->faults[i] = p->numa_faults[i];
1960

1961
		grp->total_faults = p->total_numa_faults;
1962

1963 1964 1965 1966 1967
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
1968
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
1969 1970

	if (!cpupid_match_pid(tsk, cpupid))
1971
		goto no_join;
1972 1973 1974

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1975
		goto no_join;
1976 1977 1978

	my_grp = p->numa_group;
	if (grp == my_grp)
1979
		goto no_join;
1980 1981 1982 1983 1984 1985

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1986
		goto no_join;
1987 1988 1989 1990 1991

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1992
		goto no_join;
1993

1994 1995 1996 1997 1998 1999 2000
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2001

2002 2003 2004
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2005
	if (join && !get_numa_group(grp))
2006
		goto no_join;
2007 2008 2009 2010 2011 2012

	rcu_read_unlock();

	if (!join)
		return;

2013 2014
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2015

2016
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2017 2018
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2019
	}
2020 2021
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2022 2023 2024 2025 2026

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2027
	spin_unlock_irq(&grp->lock);
2028 2029 2030 2031

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2032 2033 2034 2035 2036
	return;

no_join:
	rcu_read_unlock();
	return;
2037 2038 2039 2040 2041
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2042
	void *numa_faults = p->numa_faults;
2043 2044
	unsigned long flags;
	int i;
2045 2046

	if (grp) {
2047
		spin_lock_irqsave(&grp->lock, flags);
2048
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2049
			grp->faults[i] -= p->numa_faults[i];
2050
		grp->total_faults -= p->total_numa_faults;
2051

2052
		grp->nr_tasks--;
2053
		spin_unlock_irqrestore(&grp->lock, flags);
2054
		RCU_INIT_POINTER(p->numa_group, NULL);
2055 2056 2057
		put_numa_group(grp);
	}

2058
	p->numa_faults = NULL;
2059
	kfree(numa_faults);
2060 2061
}

2062 2063 2064
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2065
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2066 2067
{
	struct task_struct *p = current;
2068
	bool migrated = flags & TNF_MIGRATED;
2069
	int cpu_node = task_node(current);
2070
	int local = !!(flags & TNF_FAULT_LOCAL);
2071
	int priv;
2072

2073
	if (!static_branch_likely(&sched_numa_balancing))
2074 2075
		return;

2076 2077 2078 2079
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2080
	/* Allocate buffer to track faults on a per-node basis */
2081 2082
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2083
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2084

2085 2086
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2087
			return;
2088

2089
		p->total_numa_faults = 0;
2090
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2091
	}
2092

2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2101
		if (!priv && !(flags & TNF_NO_GROUP))
2102
			task_numa_group(p, last_cpupid, flags, &priv);
2103 2104
	}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2116
	task_numa_placement(p);
2117

2118 2119 2120 2121 2122
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2123 2124
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2125 2126
	if (migrated)
		p->numa_pages_migrated += pages;
2127 2128
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2129

2130 2131
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2132
	p->numa_faults_locality[local] += pages;
2133 2134
}

2135 2136
static void reset_ptenuma_scan(struct task_struct *p)
{
2137 2138 2139 2140 2141 2142 2143 2144
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2145
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2146 2147 2148
	p->mm->numa_scan_offset = 0;
}

2149 2150 2151 2152 2153 2154 2155 2156 2157
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2158
	struct vm_area_struct *vma;
2159
	unsigned long start, end;
2160
	unsigned long nr_pte_updates = 0;
2161
	long pages, virtpages;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2177
	if (!mm->numa_next_scan) {
2178 2179
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2180 2181
	}

2182 2183 2184 2185 2186 2187 2188
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2189 2190 2191 2192
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2193

2194
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2195 2196 2197
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2198 2199 2200 2201 2202 2203
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2204 2205 2206
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2207
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2208 2209
	if (!pages)
		return;
2210

2211

2212
	down_read(&mm->mmap_sem);
2213
	vma = find_vma(mm, start);
2214 2215
	if (!vma) {
		reset_ptenuma_scan(p);
2216
		start = 0;
2217 2218
		vma = mm->mmap;
	}
2219
	for (; vma; vma = vma->vm_next) {
2220
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2221
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2222
			continue;
2223
		}
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2235 2236 2237 2238 2239 2240
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2241

2242 2243 2244 2245
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2246
			nr_pte_updates = change_prot_numa(vma, start, end);
2247 2248

			/*
2249 2250 2251 2252 2253 2254
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2255 2256 2257
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2258
			virtpages -= (end - start) >> PAGE_SHIFT;
2259

2260
			start = end;
2261
			if (pages <= 0 || virtpages <= 0)
2262
				goto out;
2263 2264

			cond_resched();
2265
		} while (end != vma->vm_end);
2266
	}
2267

2268
out:
2269
	/*
P
Peter Zijlstra 已提交
2270 2271 2272 2273
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2274 2275
	 */
	if (vma)
2276
		mm->numa_scan_offset = start;
2277 2278 2279
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2305
	if (now > curr->node_stamp + period) {
2306
		if (!curr->node_stamp)
2307
			curr->numa_scan_period = task_scan_min(curr);
2308
		curr->node_stamp += period;
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2320 2321 2322 2323 2324 2325 2326 2327

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2328 2329
#endif /* CONFIG_NUMA_BALANCING */

2330 2331 2332 2333
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2334
	if (!parent_entity(se))
2335
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2336
#ifdef CONFIG_SMP
2337 2338 2339 2340 2341 2342
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2343
#endif
2344 2345 2346 2347 2348 2349 2350
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2351
	if (!parent_entity(se))
2352
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2353 2354
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2355
		list_del_init(&se->group_node);
2356
	}
2357 2358 2359
	cfs_rq->nr_running--;
}

2360 2361
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2362 2363 2364 2365 2366
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
2367 2368 2369
	 * Use this CPU's real-time load instead of the last load contribution
	 * as the updating of the contribution is delayed, and we will use the
	 * the real-time load to calc the share. See update_tg_load_avg().
2370
	 */
2371
	tg_weight = atomic_long_read(&tg->load_avg);
2372
	tg_weight -= cfs_rq->tg_load_avg_contrib;
2373
	tg_weight += cfs_rq->load.weight;
2374 2375 2376 2377

	return tg_weight;
}

2378
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2379
{
2380
	long tg_weight, load, shares;
2381

2382
	tg_weight = calc_tg_weight(tg, cfs_rq);
2383
	load = cfs_rq->load.weight;
2384 2385

	shares = (tg->shares * load);
2386 2387
	if (tg_weight)
		shares /= tg_weight;
2388 2389 2390 2391 2392 2393 2394 2395 2396

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2397
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2398 2399 2400 2401
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2402 2403 2404
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2405 2406 2407 2408
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2409
		account_entity_dequeue(cfs_rq, se);
2410
	}
P
Peter Zijlstra 已提交
2411 2412 2413 2414 2415 2416 2417

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2418 2419
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2420
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2421 2422 2423
{
	struct task_group *tg;
	struct sched_entity *se;
2424
	long shares;
P
Peter Zijlstra 已提交
2425 2426 2427

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2428
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2429
		return;
2430 2431 2432 2433
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2434
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2435 2436 2437 2438

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2439
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2440 2441 2442 2443
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2444
#ifdef CONFIG_SMP
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2465 2466 2467 2468 2469 2470
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2483 2484
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2485 2486 2487 2488 2489 2490
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2491 2492
	}

2493 2494
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2523 2524
}

2525 2526 2527 2528
#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
#error "load tracking assumes 2^10 as unit"
#endif

2529
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2559 2560
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2561
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2562
{
2563
	u64 delta, scaled_delta, periods;
2564
	u32 contrib;
2565
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2566
	unsigned long scale_freq, scale_cpu;
2567

2568
	delta = now - sa->last_update_time;
2569 2570 2571 2572 2573
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2574
		sa->last_update_time = now;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2585
	sa->last_update_time = now;
2586

2587 2588 2589
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2590
	/* delta_w is the amount already accumulated against our next period */
2591
	delta_w = sa->period_contrib;
2592 2593 2594
	if (delta + delta_w >= 1024) {
		decayed = 1;

2595 2596 2597
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2598 2599 2600 2601 2602 2603
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2604
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2605
		if (weight) {
2606 2607 2608 2609 2610
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2611
		}
2612
		if (running)
2613
			sa->util_sum += scaled_delta_w * scale_cpu;
2614 2615 2616 2617 2618 2619 2620

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2621
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2622 2623 2624 2625
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2626
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2627 2628

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2629
		contrib = __compute_runnable_contrib(periods);
2630
		contrib = cap_scale(contrib, scale_freq);
2631
		if (weight) {
2632
			sa->load_sum += weight * contrib;
2633 2634 2635
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2636
		if (running)
2637
			sa->util_sum += contrib * scale_cpu;
2638 2639 2640
	}

	/* Remainder of delta accrued against u_0` */
2641
	scaled_delta = cap_scale(delta, scale_freq);
2642
	if (weight) {
2643
		sa->load_sum += weight * scaled_delta;
2644
		if (cfs_rq)
2645
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2646
	}
2647
	if (running)
2648
		sa->util_sum += scaled_delta * scale_cpu;
2649

2650
	sa->period_contrib += delta;
2651

2652 2653
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2654 2655 2656 2657
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2658
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2659
	}
2660

2661
	return decayed;
2662 2663
}

2664
#ifdef CONFIG_FAIR_GROUP_SCHED
2665
/*
2666 2667
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2668
 */
2669
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2670
{
2671
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2672

2673 2674 2675
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2676
	}
2677
}
2678

2679
#else /* CONFIG_FAIR_GROUP_SCHED */
2680
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2681
#endif /* CONFIG_FAIR_GROUP_SCHED */
2682

2683
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2684

2685 2686
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2687
{
2688
	struct sched_avg *sa = &cfs_rq->avg;
2689
	int decayed, removed = 0;
2690

2691 2692 2693 2694
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
		sa->load_avg = max_t(long, sa->load_avg - r, 0);
		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2695
		removed = 1;
2696
	}
2697

2698 2699 2700
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2701
		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2702
	}
2703

2704
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2705
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2706

2707 2708 2709 2710
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2711

2712
	return decayed || removed;
2713 2714
}

2715 2716
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
2717
{
2718
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2719
	u64 now = cfs_rq_clock_task(cfs_rq);
2720
	int cpu = cpu_of(rq_of(cfs_rq));
2721

2722
	/*
2723 2724
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
2725
	 */
2726
	__update_load_avg(now, cpu, &se->avg,
2727 2728
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
2729

2730 2731
	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
		update_tg_load_avg(cfs_rq, 0);
2732 2733
}

2734 2735
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2736 2737 2738
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2753
skip_aging:
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
}

2773 2774 2775
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776
{
2777 2778
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2779
	int migrated, decayed;
2780

2781 2782
	migrated = !sa->last_update_time;
	if (!migrated) {
2783
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2784 2785
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
2786
	}
2787

2788
	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2789

2790 2791 2792
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

2793 2794
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
2795

2796 2797
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
2798 2799
}

2800 2801 2802 2803 2804 2805 2806 2807 2808
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
2809
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2810 2811
}

2812
/*
2813 2814
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
2815
 */
2816
void remove_entity_load_avg(struct sched_entity *se)
2817
{
2818 2819 2820 2821 2822
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

#ifndef CONFIG_64BIT
	u64 last_update_time_copy;
2823

2824 2825 2826 2827 2828 2829 2830 2831 2832
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
#else
	last_update_time = cfs_rq->avg.last_update_time;
#endif

2833
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2834 2835
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2836
}
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

2866 2867
static int idle_balance(struct rq *this_rq);

2868 2869
#else /* CONFIG_SMP */

2870 2871 2872
static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2873 2874
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2875
static inline void remove_entity_load_avg(struct sched_entity *se) {}
2876

2877 2878 2879 2880 2881
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

2882 2883 2884 2885 2886
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2887
#endif /* CONFIG_SMP */
2888

2889
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2890 2891
{
#ifdef CONFIG_SCHEDSTATS
2892 2893 2894 2895 2896
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2897
	if (se->statistics.sleep_start) {
2898
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2899 2900 2901 2902

		if ((s64)delta < 0)
			delta = 0;

2903 2904
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2905

2906
		se->statistics.sleep_start = 0;
2907
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2908

2909
		if (tsk) {
2910
			account_scheduler_latency(tsk, delta >> 10, 1);
2911 2912
			trace_sched_stat_sleep(tsk, delta);
		}
2913
	}
2914
	if (se->statistics.block_start) {
2915
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2916 2917 2918 2919

		if ((s64)delta < 0)
			delta = 0;

2920 2921
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2922

2923
		se->statistics.block_start = 0;
2924
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2925

2926
		if (tsk) {
2927
			if (tsk->in_iowait) {
2928 2929
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2930
				trace_sched_stat_iowait(tsk, delta);
2931 2932
			}

2933 2934
			trace_sched_stat_blocked(tsk, delta);

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2946
		}
2947 2948 2949 2950
	}
#endif
}

P
Peter Zijlstra 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2964 2965 2966
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2967
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2968

2969 2970 2971 2972 2973 2974
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2975
	if (initial && sched_feat(START_DEBIT))
2976
		vruntime += sched_vslice(cfs_rq, se);
2977

2978
	/* sleeps up to a single latency don't count. */
2979
	if (!initial) {
2980
		unsigned long thresh = sysctl_sched_latency;
2981

2982 2983 2984 2985 2986 2987
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2988

2989
		vruntime -= thresh;
2990 2991
	}

2992
	/* ensure we never gain time by being placed backwards. */
2993
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2994 2995
}

2996 2997
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2998
static void
2999
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3000
{
3001 3002
	/*
	 * Update the normalized vruntime before updating min_vruntime
3003
	 * through calling update_curr().
3004
	 */
3005
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3006 3007
		se->vruntime += cfs_rq->min_vruntime;

3008
	/*
3009
	 * Update run-time statistics of the 'current'.
3010
	 */
3011
	update_curr(cfs_rq);
3012
	enqueue_entity_load_avg(cfs_rq, se);
3013 3014
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3015

3016
	if (flags & ENQUEUE_WAKEUP) {
3017
		place_entity(cfs_rq, se, 0);
3018
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3019
	}
3020

3021
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3022
	check_spread(cfs_rq, se);
3023 3024
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3025
	se->on_rq = 1;
3026

3027
	if (cfs_rq->nr_running == 1) {
3028
		list_add_leaf_cfs_rq(cfs_rq);
3029 3030
		check_enqueue_throttle(cfs_rq);
	}
3031 3032
}

3033
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3034
{
3035 3036
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3037
		if (cfs_rq->last != se)
3038
			break;
3039 3040

		cfs_rq->last = NULL;
3041 3042
	}
}
P
Peter Zijlstra 已提交
3043

3044 3045 3046 3047
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3048
		if (cfs_rq->next != se)
3049
			break;
3050 3051

		cfs_rq->next = NULL;
3052
	}
P
Peter Zijlstra 已提交
3053 3054
}

3055 3056 3057 3058
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3059
		if (cfs_rq->skip != se)
3060
			break;
3061 3062

		cfs_rq->skip = NULL;
3063 3064 3065
	}
}

P
Peter Zijlstra 已提交
3066 3067
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3068 3069 3070 3071 3072
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3073 3074 3075

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3076 3077
}

3078
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3079

3080
static void
3081
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3082
{
3083 3084 3085 3086
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3087
	dequeue_entity_load_avg(cfs_rq, se);
3088

3089
	update_stats_dequeue(cfs_rq, se);
3090
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3091
#ifdef CONFIG_SCHEDSTATS
3092 3093 3094 3095
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3096
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3097
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3098
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3099
		}
3100
#endif
P
Peter Zijlstra 已提交
3101 3102
	}

P
Peter Zijlstra 已提交
3103
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3104

3105
	if (se != cfs_rq->curr)
3106
		__dequeue_entity(cfs_rq, se);
3107
	se->on_rq = 0;
3108
	account_entity_dequeue(cfs_rq, se);
3109 3110 3111 3112 3113 3114

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3115
	if (!(flags & DEQUEUE_SLEEP))
3116
		se->vruntime -= cfs_rq->min_vruntime;
3117

3118 3119 3120
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3121
	update_min_vruntime(cfs_rq);
3122
	update_cfs_shares(cfs_rq);
3123 3124 3125 3126 3127
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3128
static void
I
Ingo Molnar 已提交
3129
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3130
{
3131
	unsigned long ideal_runtime, delta_exec;
3132 3133
	struct sched_entity *se;
	s64 delta;
3134

P
Peter Zijlstra 已提交
3135
	ideal_runtime = sched_slice(cfs_rq, curr);
3136
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3137
	if (delta_exec > ideal_runtime) {
3138
		resched_curr(rq_of(cfs_rq));
3139 3140 3141 3142 3143
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3155 3156
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3157

3158 3159
	if (delta < 0)
		return;
3160

3161
	if (delta > ideal_runtime)
3162
		resched_curr(rq_of(cfs_rq));
3163 3164
}

3165
static void
3166
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3167
{
3168 3169 3170 3171 3172 3173 3174 3175 3176
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
3177
		update_load_avg(se, 1);
3178 3179
	}

3180
	update_stats_curr_start(cfs_rq, se);
3181
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3182 3183 3184 3185 3186 3187
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3188
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3189
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3190 3191 3192
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3193
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3194 3195
}

3196 3197 3198
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3199 3200 3201 3202 3203 3204 3205
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3206 3207
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3208
{
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3220

3221 3222 3223 3224 3225
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3236 3237 3238
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3239

3240 3241 3242 3243 3244 3245
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3246 3247 3248 3249 3250 3251
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3252
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3253 3254

	return se;
3255 3256
}

3257
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3258

3259
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3260 3261 3262 3263 3264 3265
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3266
		update_curr(cfs_rq);
3267

3268 3269 3270
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3271
	check_spread(cfs_rq, prev);
3272
	if (prev->on_rq) {
3273
		update_stats_wait_start(cfs_rq, prev);
3274 3275
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3276
		/* in !on_rq case, update occurred at dequeue */
3277
		update_load_avg(prev, 0);
3278
	}
3279
	cfs_rq->curr = NULL;
3280 3281
}

P
Peter Zijlstra 已提交
3282 3283
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3284 3285
{
	/*
3286
	 * Update run-time statistics of the 'current'.
3287
	 */
3288
	update_curr(cfs_rq);
3289

3290 3291 3292
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3293
	update_load_avg(curr, 1);
3294
	update_cfs_shares(cfs_rq);
3295

P
Peter Zijlstra 已提交
3296 3297 3298 3299 3300
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3301
	if (queued) {
3302
		resched_curr(rq_of(cfs_rq));
3303 3304
		return;
	}
P
Peter Zijlstra 已提交
3305 3306 3307 3308 3309 3310 3311 3312
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3313
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3314
		check_preempt_tick(cfs_rq, curr);
3315 3316
}

3317 3318 3319 3320 3321 3322

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3323 3324

#ifdef HAVE_JUMP_LABEL
3325
static struct static_key __cfs_bandwidth_used;
3326 3327 3328

static inline bool cfs_bandwidth_used(void)
{
3329
	return static_key_false(&__cfs_bandwidth_used);
3330 3331
}

3332
void cfs_bandwidth_usage_inc(void)
3333
{
3334 3335 3336 3337 3338 3339
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3340 3341 3342 3343 3344 3345 3346
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3347 3348
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3349 3350
#endif /* HAVE_JUMP_LABEL */

3351 3352 3353 3354 3355 3356 3357 3358
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3359 3360 3361 3362 3363 3364

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3365 3366 3367 3368 3369 3370 3371
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3372
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3384 3385 3386 3387 3388
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3389 3390 3391 3392 3393 3394
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3395
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3396 3397
}

3398 3399
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3400 3401 3402
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3403
	u64 amount = 0, min_amount, expires;
3404 3405 3406 3407 3408 3409 3410

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3411
	else {
P
Peter Zijlstra 已提交
3412
		start_cfs_bandwidth(cfs_b);
3413 3414 3415 3416 3417 3418

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3419
	}
P
Paul Turner 已提交
3420
	expires = cfs_b->runtime_expires;
3421 3422 3423
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3424 3425 3426 3427 3428 3429 3430
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3431 3432

	return cfs_rq->runtime_remaining > 0;
3433 3434
}

P
Paul Turner 已提交
3435 3436 3437 3438 3439
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3440
{
P
Paul Turner 已提交
3441 3442 3443
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3444
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3445 3446
		return;

P
Paul Turner 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3456 3457 3458
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3459 3460
	 */

3461
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3462 3463 3464 3465 3466 3467 3468 3469
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3470
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3471 3472
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3473
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3474 3475 3476
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3477 3478
		return;

3479 3480 3481 3482 3483
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3484
		resched_curr(rq_of(cfs_rq));
3485 3486
}

3487
static __always_inline
3488
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3489
{
3490
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3491 3492 3493 3494 3495
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3496 3497
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3498
	return cfs_bandwidth_used() && cfs_rq->throttled;
3499 3500
}

3501 3502 3503
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3504
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3533
		/* adjust cfs_rq_clock_task() */
3534
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3535
					     cfs_rq->throttled_clock_task;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3547 3548
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3549
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3550 3551 3552 3553 3554
	cfs_rq->throttle_count++;

	return 0;
}

3555
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3556 3557 3558 3559 3560
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3561
	bool empty;
3562 3563 3564

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3565
	/* freeze hierarchy runnable averages while throttled */
3566 3567 3568
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3586
		sub_nr_running(rq, task_delta);
3587 3588

	cfs_rq->throttled = 1;
3589
	cfs_rq->throttled_clock = rq_clock(rq);
3590
	raw_spin_lock(&cfs_b->lock);
3591
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3592

3593 3594 3595 3596 3597
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3598 3599 3600 3601 3602 3603 3604 3605

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3606 3607 3608
	raw_spin_unlock(&cfs_b->lock);
}

3609
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3610 3611 3612 3613 3614 3615 3616
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3617
	se = cfs_rq->tg->se[cpu_of(rq)];
3618 3619

	cfs_rq->throttled = 0;
3620 3621 3622

	update_rq_clock(rq);

3623
	raw_spin_lock(&cfs_b->lock);
3624
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3625 3626 3627
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3628 3629 3630
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3649
		add_nr_running(rq, task_delta);
3650 3651 3652

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3653
		resched_curr(rq);
3654 3655 3656 3657 3658 3659
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3660 3661
	u64 runtime;
	u64 starting_runtime = remaining;
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3692
	return starting_runtime - remaining;
3693 3694
}

3695 3696 3697 3698 3699 3700 3701 3702
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3703
	u64 runtime, runtime_expires;
3704
	int throttled;
3705 3706 3707

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3708
		goto out_deactivate;
3709

3710
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3711
	cfs_b->nr_periods += overrun;
3712

3713 3714 3715 3716 3717 3718
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3719 3720 3721

	__refill_cfs_bandwidth_runtime(cfs_b);

3722 3723 3724
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3725
		return 0;
3726 3727
	}

3728 3729 3730
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3731 3732 3733
	runtime_expires = cfs_b->runtime_expires;

	/*
3734 3735 3736 3737 3738
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3739
	 */
3740 3741
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3742 3743 3744 3745 3746 3747 3748
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3749 3750

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3751
	}
3752

3753 3754 3755 3756 3757 3758 3759
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3760

3761 3762 3763 3764
	return 0;

out_deactivate:
	return 1;
3765
}
3766

3767 3768 3769 3770 3771 3772 3773
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3774 3775 3776 3777
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3778
 * hrtimer base being cleared by hrtimer_start. In the case of
3779 3780
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
3806 3807 3808
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3838 3839 3840
	if (!cfs_bandwidth_used())
		return;

3841
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3857 3858 3859
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3860
		return;
3861
	}
3862

3863
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3864
		runtime = cfs_b->runtime;
3865

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3876
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3877 3878 3879
	raw_spin_unlock(&cfs_b->lock);
}

3880 3881 3882 3883 3884 3885 3886
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3887 3888 3889
	if (!cfs_bandwidth_used())
		return;

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3905
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3906
{
3907
	if (!cfs_bandwidth_used())
3908
		return false;
3909

3910
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3911
		return false;
3912 3913 3914 3915 3916 3917

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3918
		return true;
3919 3920

	throttle_cfs_rq(cfs_rq);
3921
	return true;
3922
}
3923 3924 3925 3926 3927

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

3941
	raw_spin_lock(&cfs_b->lock);
3942
	for (;;) {
P
Peter Zijlstra 已提交
3943
		overrun = hrtimer_forward_now(timer, cfs_b->period);
3944 3945 3946 3947 3948
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
3949 3950
	if (idle)
		cfs_b->period_active = 0;
3951
	raw_spin_unlock(&cfs_b->lock);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3964
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
3976
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3977
{
P
Peter Zijlstra 已提交
3978
	lockdep_assert_held(&cfs_b->lock);
3979

P
Peter Zijlstra 已提交
3980 3981 3982 3983 3984
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
3985 3986 3987 3988
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
3989 3990 3991 3992
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

3993 3994 3995 3996
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4010
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4022
		cfs_rq->runtime_remaining = 1;
4023 4024 4025 4026 4027 4028
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4029 4030 4031 4032 4033 4034
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4035 4036
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4037
	return rq_clock_task(rq_of(cfs_rq));
4038 4039
}

4040
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4041
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4042
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4043
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4044 4045 4046 4047 4048

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4060 4061 4062 4063 4064

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4065 4066
#endif

4067 4068 4069 4070 4071
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4072
static inline void update_runtime_enabled(struct rq *rq) {}
4073
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4074 4075 4076

#endif /* CONFIG_CFS_BANDWIDTH */

4077 4078 4079 4080
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4081 4082 4083 4084 4085 4086 4087 4088
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4089
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4090 4091 4092 4093 4094 4095
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4096
				resched_curr(rq);
P
Peter Zijlstra 已提交
4097 4098
			return;
		}
4099
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4100 4101
	}
}
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4112
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4113 4114 4115 4116 4117
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4118
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4119 4120 4121 4122
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4123 4124 4125 4126

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4127 4128
#endif

4129 4130 4131 4132 4133
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4134
static void
4135
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4136 4137
{
	struct cfs_rq *cfs_rq;
4138
	struct sched_entity *se = &p->se;
4139 4140

	for_each_sched_entity(se) {
4141
		if (se->on_rq)
4142 4143
			break;
		cfs_rq = cfs_rq_of(se);
4144
		enqueue_entity(cfs_rq, se, flags);
4145 4146 4147 4148 4149 4150 4151 4152 4153

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4154
		cfs_rq->h_nr_running++;
4155

4156
		flags = ENQUEUE_WAKEUP;
4157
	}
P
Peter Zijlstra 已提交
4158

P
Peter Zijlstra 已提交
4159
	for_each_sched_entity(se) {
4160
		cfs_rq = cfs_rq_of(se);
4161
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4162

4163 4164 4165
		if (cfs_rq_throttled(cfs_rq))
			break;

4166
		update_load_avg(se, 1);
4167
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4168 4169
	}

Y
Yuyang Du 已提交
4170
	if (!se)
4171
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4172

4173
	hrtick_update(rq);
4174 4175
}

4176 4177
static void set_next_buddy(struct sched_entity *se);

4178 4179 4180 4181 4182
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4183
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4184 4185
{
	struct cfs_rq *cfs_rq;
4186
	struct sched_entity *se = &p->se;
4187
	int task_sleep = flags & DEQUEUE_SLEEP;
4188 4189 4190

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4191
		dequeue_entity(cfs_rq, se, flags);
4192 4193 4194 4195 4196 4197 4198 4199 4200

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4201
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4202

4203
		/* Don't dequeue parent if it has other entities besides us */
4204 4205 4206 4207 4208 4209 4210
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4211 4212 4213

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4214
			break;
4215
		}
4216
		flags |= DEQUEUE_SLEEP;
4217
	}
P
Peter Zijlstra 已提交
4218

P
Peter Zijlstra 已提交
4219
	for_each_sched_entity(se) {
4220
		cfs_rq = cfs_rq_of(se);
4221
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4222

4223 4224 4225
		if (cfs_rq_throttled(cfs_rq))
			break;

4226
		update_load_avg(se, 1);
4227
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4228 4229
	}

Y
Yuyang Du 已提交
4230
	if (!se)
4231
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4232

4233
	hrtick_update(rq);
4234 4235
}

4236
#ifdef CONFIG_SMP
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

/*
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
 */
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
{
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4345 4346 4347 4348 4349 4350
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
#ifdef CONFIG_NO_HZ_COMMON
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
static void update_idle_cpu_load(struct rq *this_rq)
{
4371
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4372
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	unsigned long pending_updates;

	/*
	 * bail if there's load or we're actually up-to-date.
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
4393
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

/*
 * Called from scheduler_tick()
 */
void update_cpu_load_active(struct rq *this_rq)
{
4418
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4419 4420 4421 4422 4423 4424 4425
	/*
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, load, 1);
}

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4459
static unsigned long capacity_of(int cpu)
4460
{
4461
	return cpu_rq(cpu)->cpu_capacity;
4462 4463
}

4464 4465 4466 4467 4468
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4469 4470 4471
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4472
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4473
	unsigned long load_avg = weighted_cpuload(cpu);
4474 4475

	if (nr_running)
4476
		return load_avg / nr_running;
4477 4478 4479 4480

	return 0;
}

4481 4482 4483 4484 4485 4486 4487
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4488
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4489
		current->wakee_flips >>= 1;
4490 4491 4492 4493 4494 4495 4496 4497
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4498

4499
static void task_waking_fair(struct task_struct *p)
4500 4501 4502
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4503 4504 4505 4506
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4507

4508 4509 4510 4511 4512 4513 4514 4515
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4516

4517
	se->vruntime -= min_vruntime;
4518
	record_wakee(p);
4519 4520
}

4521
#ifdef CONFIG_FAIR_GROUP_SCHED
4522 4523 4524 4525 4526 4527
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4571
 */
P
Peter Zijlstra 已提交
4572
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4573
{
P
Peter Zijlstra 已提交
4574
	struct sched_entity *se = tg->se[cpu];
4575

4576
	if (!tg->parent)	/* the trivial, non-cgroup case */
4577 4578
		return wl;

P
Peter Zijlstra 已提交
4579
	for_each_sched_entity(se) {
4580
		long w, W;
P
Peter Zijlstra 已提交
4581

4582
		tg = se->my_q->tg;
4583

4584 4585 4586 4587
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4588

4589 4590 4591
		/*
		 * w = rw_i + @wl
		 */
4592
		w = cfs_rq_load_avg(se->my_q) + wl;
4593

4594 4595 4596 4597
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4598
			wl = (w * (long)tg->shares) / W;
4599 4600
		else
			wl = tg->shares;
4601

4602 4603 4604 4605 4606
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4607 4608
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4609 4610 4611 4612

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4613
		wl -= se->avg.load_avg;
4614 4615 4616 4617 4618 4619 4620 4621

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4622 4623
		wg = 0;
	}
4624

P
Peter Zijlstra 已提交
4625
	return wl;
4626 4627
}
#else
P
Peter Zijlstra 已提交
4628

4629
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4630
{
4631
	return wl;
4632
}
P
Peter Zijlstra 已提交
4633

4634 4635
#endif

M
Mike Galbraith 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.  In order
 * to determine whether we should let the load spread vs consolodating to
 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.  With
 * both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
 * being client/server, worker/dispatcher, interrupt source or whatever is
 * irrelevant, spread criteria is apparent partner count exceeds socket size.
 */
4648 4649
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
4650 4651
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
4652
	int factor = this_cpu_read(sd_llc_size);
4653

M
Mike Galbraith 已提交
4654 4655 4656 4657 4658
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
4659 4660
}

4661
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4662
{
4663
	s64 this_load, load;
4664
	s64 this_eff_load, prev_eff_load;
4665 4666
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4667
	unsigned long weight;
4668
	int balanced;
4669

4670 4671 4672 4673 4674
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4675

4676 4677 4678 4679 4680
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4681 4682
	if (sync) {
		tg = task_group(current);
4683
		weight = current->se.avg.load_avg;
4684

4685
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4686 4687
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4688

4689
	tg = task_group(p);
4690
	weight = p->se.avg.load_avg;
4691

4692 4693
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4694 4695 4696
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4697 4698 4699 4700
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4701 4702
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4703

4704 4705
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4706

4707
	if (this_load > 0) {
4708 4709 4710 4711
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4712
	}
4713

4714
	balanced = this_eff_load <= prev_eff_load;
4715

4716
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4717

4718 4719
	if (!balanced)
		return 0;
4720

4721 4722 4723 4724
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4725 4726
}

4727 4728 4729 4730 4731
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4732
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4733
		  int this_cpu, int sd_flag)
4734
{
4735
	struct sched_group *idlest = NULL, *group = sd->groups;
4736
	unsigned long min_load = ULONG_MAX, this_load = 0;
4737
	int load_idx = sd->forkexec_idx;
4738
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4739

4740 4741 4742
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4743 4744 4745 4746
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4747

4748 4749
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4750
					tsk_cpus_allowed(p)))
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4769
		/* Adjust by relative CPU capacity of the group */
4770
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4792 4793 4794 4795
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4796 4797 4798
	int i;

	/* Traverse only the allowed CPUs */
4799
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4822
		} else if (shallowest_idle_cpu == -1) {
4823 4824 4825 4826 4827
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4828 4829 4830
		}
	}

4831
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4832
}
4833

4834 4835 4836
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4837
static int select_idle_sibling(struct task_struct *p, int target)
4838
{
4839
	struct sched_domain *sd;
4840
	struct sched_group *sg;
4841
	int i = task_cpu(p);
4842

4843 4844
	if (idle_cpu(target))
		return target;
4845 4846

	/*
4847
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4848
	 */
4849 4850
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4851 4852

	/*
4853
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4854
	 */
4855
	sd = rcu_dereference(per_cpu(sd_llc, target));
4856
	for_each_lower_domain(sd) {
4857 4858 4859 4860 4861 4862 4863
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4864
				if (i == target || !idle_cpu(i))
4865 4866
					goto next;
			}
4867

4868 4869 4870 4871 4872 4873 4874 4875
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4876 4877
	return target;
}
4878

4879
/*
4880
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4881
 * tasks. The unit of the return value must be the one of capacity so we can
4882 4883
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
4904
 */
4905
static int cpu_util(int cpu)
4906
{
4907
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
4908 4909
	unsigned long capacity = capacity_orig_of(cpu);

4910
	return (util >= capacity) ? capacity : util;
4911
}
4912

4913
/*
4914 4915 4916
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4917
 *
4918 4919
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4920
 *
4921
 * Returns the target cpu number.
4922 4923 4924
 *
 * preempt must be disabled.
 */
4925
static int
4926
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4927
{
4928
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4929
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
4930
	int new_cpu = prev_cpu;
4931
	int want_affine = 0;
4932
	int sync = wake_flags & WF_SYNC;
4933

4934
	if (sd_flag & SD_BALANCE_WAKE)
M
Mike Galbraith 已提交
4935
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4936

4937
	rcu_read_lock();
4938
	for_each_domain(cpu, tmp) {
4939
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
4940
			break;
4941

4942
		/*
4943 4944
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4945
		 */
4946 4947 4948
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4949
			break;
4950
		}
4951

4952
		if (tmp->flags & sd_flag)
4953
			sd = tmp;
M
Mike Galbraith 已提交
4954 4955
		else if (!want_affine)
			break;
4956 4957
	}

M
Mike Galbraith 已提交
4958 4959 4960 4961
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
4962
	}
4963

M
Mike Galbraith 已提交
4964 4965 4966 4967 4968
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
4969
		struct sched_group *group;
4970
		int weight;
4971

4972
		if (!(sd->flags & sd_flag)) {
4973 4974 4975
			sd = sd->child;
			continue;
		}
4976

4977
		group = find_idlest_group(sd, p, cpu, sd_flag);
4978 4979 4980 4981
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4982

4983
		new_cpu = find_idlest_cpu(group, p, cpu);
4984 4985 4986 4987
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4988
		}
4989 4990 4991

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4992
		weight = sd->span_weight;
4993 4994
		sd = NULL;
		for_each_domain(cpu, tmp) {
4995
			if (weight <= tmp->span_weight)
4996
				break;
4997
			if (tmp->flags & sd_flag)
4998 4999 5000
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5001
	}
5002
	rcu_read_unlock();
5003

5004
	return new_cpu;
5005
}
5006 5007 5008 5009 5010 5011 5012

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
5013
static void migrate_task_rq_fair(struct task_struct *p)
5014
{
5015
	/*
5016 5017 5018 5019 5020
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5021
	 */
5022 5023 5024 5025
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5026 5027

	/* We have migrated, no longer consider this task hot */
5028
	p->se.exec_start = 0;
5029
}
5030 5031 5032 5033 5034

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5035 5036
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5037 5038
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5039 5040 5041 5042
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5043 5044
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5054
	 */
5055
	return calc_delta_fair(gran, se);
5056 5057
}

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5080
	gran = wakeup_gran(curr, se);
5081 5082 5083 5084 5085 5086
	if (vdiff > gran)
		return 1;

	return 0;
}

5087 5088
static void set_last_buddy(struct sched_entity *se)
{
5089 5090 5091 5092 5093
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5094 5095 5096 5097
}

static void set_next_buddy(struct sched_entity *se)
{
5098 5099 5100 5101 5102
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5103 5104
}

5105 5106
static void set_skip_buddy(struct sched_entity *se)
{
5107 5108
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5109 5110
}

5111 5112 5113
/*
 * Preempt the current task with a newly woken task if needed:
 */
5114
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5115 5116
{
	struct task_struct *curr = rq->curr;
5117
	struct sched_entity *se = &curr->se, *pse = &p->se;
5118
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5119
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5120
	int next_buddy_marked = 0;
5121

I
Ingo Molnar 已提交
5122 5123 5124
	if (unlikely(se == pse))
		return;

5125
	/*
5126
	 * This is possible from callers such as attach_tasks(), in which we
5127 5128 5129 5130 5131 5132 5133
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5134
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5135
		set_next_buddy(pse);
5136 5137
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5138

5139 5140 5141
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5142 5143 5144 5145 5146 5147
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5148 5149 5150 5151
	 */
	if (test_tsk_need_resched(curr))
		return;

5152 5153 5154 5155 5156
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5157
	/*
5158 5159
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5160
	 */
5161
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5162
		return;
5163

5164
	find_matching_se(&se, &pse);
5165
	update_curr(cfs_rq_of(se));
5166
	BUG_ON(!pse);
5167 5168 5169 5170 5171 5172 5173
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5174
		goto preempt;
5175
	}
5176

5177
	return;
5178

5179
preempt:
5180
	resched_curr(rq);
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5195 5196
}

5197 5198
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5199 5200 5201
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5202
	struct task_struct *p;
5203
	int new_tasks;
5204

5205
again:
5206 5207
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5208
		goto idle;
5209

5210
	if (prev->sched_class != &fair_sched_class)
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5230 5231 5232 5233 5234
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5235

5236 5237 5238 5239 5240 5241 5242 5243 5244
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5285

5286
	if (!cfs_rq->nr_running)
5287
		goto idle;
5288

5289
	put_prev_task(rq, prev);
5290

5291
	do {
5292
		se = pick_next_entity(cfs_rq, NULL);
5293
		set_next_entity(cfs_rq, se);
5294 5295 5296
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5297
	p = task_of(se);
5298

5299 5300
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5301 5302

	return p;
5303 5304

idle:
5305 5306 5307 5308 5309 5310 5311
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	lockdep_unpin_lock(&rq->lock);
5312
	new_tasks = idle_balance(rq);
5313
	lockdep_pin_lock(&rq->lock);
5314 5315 5316 5317 5318
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5319
	if (new_tasks < 0)
5320 5321
		return RETRY_TASK;

5322
	if (new_tasks > 0)
5323 5324 5325
		goto again;

	return NULL;
5326 5327 5328 5329 5330
}

/*
 * Account for a descheduled task:
 */
5331
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5332 5333 5334 5335 5336 5337
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5338
		put_prev_entity(cfs_rq, se);
5339 5340 5341
	}
}

5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5367 5368 5369 5370 5371
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5372
		rq_clock_skip_update(rq, true);
5373 5374 5375 5376 5377
	}

	set_skip_buddy(se);
}

5378 5379 5380 5381
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5382 5383
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5394
#ifdef CONFIG_SMP
5395
/**************************************************
P
Peter Zijlstra 已提交
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5419
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5420 5421 5422 5423 5424 5425
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5426
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5512

5513 5514
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5515 5516
enum fbq_type { regular, remote, all };

5517
#define LBF_ALL_PINNED	0x01
5518
#define LBF_NEED_BREAK	0x02
5519 5520
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5521 5522 5523 5524 5525

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5526
	int			src_cpu;
5527 5528 5529 5530

	int			dst_cpu;
	struct rq		*dst_rq;

5531 5532
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5533
	enum cpu_idle_type	idle;
5534
	long			imbalance;
5535 5536 5537
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5538
	unsigned int		flags;
5539 5540 5541 5542

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5543 5544

	enum fbq_type		fbq_type;
5545
	struct list_head	tasks;
5546 5547
};

5548 5549 5550
/*
 * Is this task likely cache-hot:
 */
5551
static int task_hot(struct task_struct *p, struct lb_env *env)
5552 5553 5554
{
	s64 delta;

5555 5556
	lockdep_assert_held(&env->src_rq->lock);

5557 5558 5559 5560 5561 5562 5563 5564 5565
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5566
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5567 5568 5569 5570 5571 5572 5573 5574 5575
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5576
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5577 5578 5579 5580

	return delta < (s64)sysctl_sched_migration_cost;
}

5581
#ifdef CONFIG_NUMA_BALANCING
5582
/*
5583 5584 5585
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5586
 */
5587
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5588
{
5589
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5590
	unsigned long src_faults, dst_faults;
5591 5592
	int src_nid, dst_nid;

5593
	if (!static_branch_likely(&sched_numa_balancing))
5594 5595
		return -1;

5596
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5597
		return -1;
5598 5599 5600 5601

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5602
	if (src_nid == dst_nid)
5603
		return -1;
5604

5605 5606 5607 5608 5609 5610 5611
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
5612

5613 5614
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5615
		return 0;
5616

5617 5618 5619 5620 5621 5622
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
5623 5624
	}

5625
	return dst_faults < src_faults;
5626 5627
}

5628
#else
5629
static inline int migrate_degrades_locality(struct task_struct *p,
5630 5631
					     struct lb_env *env)
{
5632
	return -1;
5633
}
5634 5635
#endif

5636 5637 5638 5639
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5640
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5641
{
5642
	int tsk_cache_hot;
5643 5644 5645

	lockdep_assert_held(&env->src_rq->lock);

5646 5647
	/*
	 * We do not migrate tasks that are:
5648
	 * 1) throttled_lb_pair, or
5649
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5650 5651
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5652
	 */
5653 5654 5655
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5656
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5657
		int cpu;
5658

5659
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5660

5661 5662
		env->flags |= LBF_SOME_PINNED;

5663 5664 5665 5666 5667 5668 5669 5670
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5671
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5672 5673
			return 0;

5674 5675 5676
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5677
				env->flags |= LBF_DST_PINNED;
5678 5679 5680
				env->new_dst_cpu = cpu;
				break;
			}
5681
		}
5682

5683 5684
		return 0;
	}
5685 5686

	/* Record that we found atleast one task that could run on dst_cpu */
5687
	env->flags &= ~LBF_ALL_PINNED;
5688

5689
	if (task_running(env->src_rq, p)) {
5690
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5691 5692 5693 5694 5695
		return 0;
	}

	/*
	 * Aggressive migration if:
5696 5697 5698
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5699
	 */
5700 5701 5702
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
5703

5704
	if (tsk_cache_hot <= 0 ||
5705
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5706
		if (tsk_cache_hot == 1) {
5707 5708 5709
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5710 5711 5712
		return 1;
	}

Z
Zhang Hang 已提交
5713 5714
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5715 5716
}

5717
/*
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5729
/*
5730
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5731 5732
 * part of active balancing operations within "domain".
 *
5733
 * Returns a task if successful and NULL otherwise.
5734
 */
5735
static struct task_struct *detach_one_task(struct lb_env *env)
5736 5737 5738
{
	struct task_struct *p, *n;

5739 5740
	lockdep_assert_held(&env->src_rq->lock);

5741 5742 5743
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5744

5745
		detach_task(p, env);
5746

5747
		/*
5748
		 * Right now, this is only the second place where
5749
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5750
		 * so we can safely collect stats here rather than
5751
		 * inside detach_tasks().
5752 5753
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5754
		return p;
5755
	}
5756
	return NULL;
5757 5758
}

5759 5760
static const unsigned int sched_nr_migrate_break = 32;

5761
/*
5762 5763
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5764
 *
5765
 * Returns number of detached tasks if successful and 0 otherwise.
5766
 */
5767
static int detach_tasks(struct lb_env *env)
5768
{
5769 5770
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5771
	unsigned long load;
5772 5773 5774
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5775

5776
	if (env->imbalance <= 0)
5777
		return 0;
5778

5779
	while (!list_empty(tasks)) {
5780 5781 5782 5783 5784 5785 5786
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

5787
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5788

5789 5790
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5791
		if (env->loop > env->loop_max)
5792
			break;
5793 5794

		/* take a breather every nr_migrate tasks */
5795
		if (env->loop > env->loop_break) {
5796
			env->loop_break += sched_nr_migrate_break;
5797
			env->flags |= LBF_NEED_BREAK;
5798
			break;
5799
		}
5800

5801
		if (!can_migrate_task(p, env))
5802 5803 5804
			goto next;

		load = task_h_load(p);
5805

5806
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5807 5808
			goto next;

5809
		if ((load / 2) > env->imbalance)
5810
			goto next;
5811

5812 5813 5814 5815
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5816
		env->imbalance -= load;
5817 5818

#ifdef CONFIG_PREEMPT
5819 5820
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5821
		 * kernels will stop after the first task is detached to minimize
5822 5823
		 * the critical section.
		 */
5824
		if (env->idle == CPU_NEWLY_IDLE)
5825
			break;
5826 5827
#endif

5828 5829 5830 5831
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5832
		if (env->imbalance <= 0)
5833
			break;
5834 5835 5836

		continue;
next:
5837
		list_move_tail(&p->se.group_node, tasks);
5838
	}
5839

5840
	/*
5841 5842 5843
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5844
	 */
5845
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5846

5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5888

5889 5890 5891 5892
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5893 5894
}

P
Peter Zijlstra 已提交
5895
#ifdef CONFIG_FAIR_GROUP_SCHED
5896
static void update_blocked_averages(int cpu)
5897 5898
{
	struct rq *rq = cpu_rq(cpu);
5899 5900
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5901

5902 5903
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5904

5905 5906 5907 5908
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5909
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5910 5911 5912
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
5913

5914 5915 5916
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);
	}
5917
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5918 5919
}

5920
/*
5921
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5922 5923 5924
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5925
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5926
{
5927 5928
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5929
	unsigned long now = jiffies;
5930
	unsigned long load;
5931

5932
	if (cfs_rq->last_h_load_update == now)
5933 5934
		return;

5935 5936 5937 5938 5939 5940 5941
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5942

5943
	if (!se) {
5944
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5945 5946 5947 5948 5949
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
5950 5951
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
5952 5953 5954 5955
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5956 5957
}

5958
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5959
{
5960
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5961

5962
	update_cfs_rq_h_load(cfs_rq);
5963
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5964
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
5965 5966
}
#else
5967
static inline void update_blocked_averages(int cpu)
5968
{
5969 5970 5971 5972 5973 5974 5975 5976
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5977 5978
}

5979
static unsigned long task_h_load(struct task_struct *p)
5980
{
5981
	return p->se.avg.load_avg;
5982
}
P
Peter Zijlstra 已提交
5983
#endif
5984 5985

/********** Helpers for find_busiest_group ************************/
5986 5987 5988 5989 5990 5991 5992

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

5993 5994 5995 5996 5997 5998 5999
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6000
	unsigned long load_per_task;
6001
	unsigned long group_capacity;
6002
	unsigned long group_util; /* Total utilization of the group */
6003 6004 6005
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6006
	enum group_type group_type;
6007
	int group_no_capacity;
6008 6009 6010 6011
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6012 6013
};

J
Joonsoo Kim 已提交
6014 6015 6016 6017 6018 6019 6020 6021
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6022
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6023 6024 6025
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6026
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6027 6028
};

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6041
		.total_capacity = 0UL,
6042 6043
		.busiest_stat = {
			.avg_load = 0UL,
6044 6045
			.sum_nr_running = 0,
			.group_type = group_other,
6046 6047 6048 6049
		},
	};
}

6050 6051 6052
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6053
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6054 6055
 *
 * Return: The load index.
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6078
static unsigned long scale_rt_capacity(int cpu)
6079 6080
{
	struct rq *rq = cpu_rq(cpu);
6081
	u64 total, used, age_stamp, avg;
6082
	s64 delta;
6083

6084 6085 6086 6087
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6088 6089
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6090
	delta = __rq_clock_broken(rq) - age_stamp;
6091

6092 6093 6094 6095
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6096

6097
	used = div_u64(avg, total);
6098

6099 6100
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6101

6102
	return 1;
6103 6104
}

6105
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6106
{
6107
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6108 6109
	struct sched_group *sdg = sd->groups;

6110
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6111

6112
	capacity *= scale_rt_capacity(cpu);
6113
	capacity >>= SCHED_CAPACITY_SHIFT;
6114

6115 6116
	if (!capacity)
		capacity = 1;
6117

6118 6119
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6120 6121
}

6122
void update_group_capacity(struct sched_domain *sd, int cpu)
6123 6124 6125
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6126
	unsigned long capacity;
6127 6128 6129 6130
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6131
	sdg->sgc->next_update = jiffies + interval;
6132 6133

	if (!child) {
6134
		update_cpu_capacity(sd, cpu);
6135 6136 6137
		return;
	}

6138
	capacity = 0;
6139

P
Peter Zijlstra 已提交
6140 6141 6142 6143 6144 6145
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6146
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6147
			struct sched_group_capacity *sgc;
6148
			struct rq *rq = cpu_rq(cpu);
6149

6150
			/*
6151
			 * build_sched_domains() -> init_sched_groups_capacity()
6152 6153 6154
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6155 6156
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6157
			 *
6158
			 * This avoids capacity from being 0 and
6159 6160 6161
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6162
				capacity += capacity_of(cpu);
6163 6164
				continue;
			}
6165

6166 6167
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6168
		}
P
Peter Zijlstra 已提交
6169 6170 6171 6172 6173 6174 6175 6176
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6177
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6178 6179 6180
			group = group->next;
		} while (group != child->groups);
	}
6181

6182
	sdg->sgc->capacity = capacity;
6183 6184
}

6185
/*
6186 6187 6188
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6189 6190
 */
static inline int
6191
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6192
{
6193 6194
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6195 6196
}

6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6213 6214
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6215 6216
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6217
 * update_sd_pick_busiest(). And calculate_imbalance() and
6218
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6219 6220 6221 6222 6223 6224 6225
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6226
static inline int sg_imbalanced(struct sched_group *group)
6227
{
6228
	return group->sgc->imbalance;
6229 6230
}

6231
/*
6232 6233 6234
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6235 6236
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6237 6238 6239 6240 6241
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6242
 */
6243 6244
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6245
{
6246 6247
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6248

6249
	if ((sgs->group_capacity * 100) >
6250
			(sgs->group_util * env->sd->imbalance_pct))
6251
		return true;
6252

6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6269

6270
	if ((sgs->group_capacity * 100) <
6271
			(sgs->group_util * env->sd->imbalance_pct))
6272
		return true;
6273

6274
	return false;
6275 6276
}

6277 6278 6279
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6280
{
6281
	if (sgs->group_no_capacity)
6282 6283 6284 6285 6286 6287 6288 6289
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6290 6291
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6292
 * @env: The load balancing environment.
6293 6294 6295 6296
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6297
 * @overload: Indicate more than one runnable task for any CPU.
6298
 */
6299 6300
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6301 6302
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6303
{
6304
	unsigned long load;
6305
	int i;
6306

6307 6308
	memset(sgs, 0, sizeof(*sgs));

6309
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6310 6311 6312
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6313
		if (local_group)
6314
			load = target_load(i, load_idx);
6315
		else
6316 6317 6318
			load = source_load(i, load_idx);

		sgs->group_load += load;
6319
		sgs->group_util += cpu_util(i);
6320
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6321 6322 6323 6324

		if (rq->nr_running > 1)
			*overload = true;

6325 6326 6327 6328
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6329
		sgs->sum_weighted_load += weighted_cpuload(i);
6330 6331
		if (idle_cpu(i))
			sgs->idle_cpus++;
6332 6333
	}

6334 6335
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6336
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6337

6338
	if (sgs->sum_nr_running)
6339
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6340

6341
	sgs->group_weight = group->group_weight;
6342

6343
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6344
	sgs->group_type = group_classify(group, sgs);
6345 6346
}

6347 6348
/**
 * update_sd_pick_busiest - return 1 on busiest group
6349
 * @env: The load balancing environment.
6350 6351
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6352
 * @sgs: sched_group statistics
6353 6354 6355
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6356 6357 6358
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6359
 */
6360
static bool update_sd_pick_busiest(struct lb_env *env,
6361 6362
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6363
				   struct sg_lb_stats *sgs)
6364
{
6365
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6366

6367
	if (sgs->group_type > busiest->group_type)
6368 6369
		return true;

6370 6371 6372 6373 6374 6375 6376 6377
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6378 6379 6380 6381 6382 6383 6384
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6385
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6426
/**
6427
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6428
 * @env: The load balancing environment.
6429 6430
 * @sds: variable to hold the statistics for this sched_domain.
 */
6431
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6432
{
6433 6434
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6435
	struct sg_lb_stats tmp_sgs;
6436
	int load_idx, prefer_sibling = 0;
6437
	bool overload = false;
6438 6439 6440 6441

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6442
	load_idx = get_sd_load_idx(env->sd, env->idle);
6443 6444

	do {
J
Joonsoo Kim 已提交
6445
		struct sg_lb_stats *sgs = &tmp_sgs;
6446 6447
		int local_group;

6448
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6449 6450 6451
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6452 6453

			if (env->idle != CPU_NEWLY_IDLE ||
6454 6455
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6456
		}
6457

6458 6459
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6460

6461 6462 6463
		if (local_group)
			goto next_group;

6464 6465
		/*
		 * In case the child domain prefers tasks go to siblings
6466
		 * first, lower the sg capacity so that we'll try
6467 6468
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6469 6470 6471 6472
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6473
		 */
6474
		if (prefer_sibling && sds->local &&
6475 6476 6477
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6478
			sgs->group_type = group_classify(sg, sgs);
6479
		}
6480

6481
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6482
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6483
			sds->busiest_stat = *sgs;
6484 6485
		}

6486 6487 6488
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6489
		sds->total_capacity += sgs->group_capacity;
6490

6491
		sg = sg->next;
6492
	} while (sg != env->sd->groups);
6493 6494 6495

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6496 6497 6498 6499 6500 6501 6502

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6522
 * Return: 1 when packing is required and a task should be moved to
6523 6524
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6525
 * @env: The load balancing environment.
6526 6527
 * @sds: Statistics of the sched_domain which is to be packed
 */
6528
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6529 6530 6531
{
	int busiest_cpu;

6532
	if (!(env->sd->flags & SD_ASYM_PACKING))
6533 6534 6535 6536 6537 6538
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6539
	if (env->dst_cpu > busiest_cpu)
6540 6541
		return 0;

6542
	env->imbalance = DIV_ROUND_CLOSEST(
6543
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6544
		SCHED_CAPACITY_SCALE);
6545

6546
	return 1;
6547 6548 6549 6550 6551 6552
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6553
 * @env: The load balancing environment.
6554 6555
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6556 6557
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6558
{
6559
	unsigned long tmp, capa_now = 0, capa_move = 0;
6560
	unsigned int imbn = 2;
6561
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6562
	struct sg_lb_stats *local, *busiest;
6563

J
Joonsoo Kim 已提交
6564 6565
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6566

J
Joonsoo Kim 已提交
6567 6568 6569 6570
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6571

J
Joonsoo Kim 已提交
6572
	scaled_busy_load_per_task =
6573
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6574
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6575

6576 6577
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6578
		env->imbalance = busiest->load_per_task;
6579 6580 6581 6582 6583
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6584
	 * however we may be able to increase total CPU capacity used by
6585 6586 6587
	 * moving them.
	 */

6588
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6589
			min(busiest->load_per_task, busiest->avg_load);
6590
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6591
			min(local->load_per_task, local->avg_load);
6592
	capa_now /= SCHED_CAPACITY_SCALE;
6593 6594

	/* Amount of load we'd subtract */
6595
	if (busiest->avg_load > scaled_busy_load_per_task) {
6596
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6597
			    min(busiest->load_per_task,
6598
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6599
	}
6600 6601

	/* Amount of load we'd add */
6602
	if (busiest->avg_load * busiest->group_capacity <
6603
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6604 6605
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6606
	} else {
6607
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6608
		      local->group_capacity;
J
Joonsoo Kim 已提交
6609
	}
6610
	capa_move += local->group_capacity *
6611
		    min(local->load_per_task, local->avg_load + tmp);
6612
	capa_move /= SCHED_CAPACITY_SCALE;
6613 6614

	/* Move if we gain throughput */
6615
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6616
		env->imbalance = busiest->load_per_task;
6617 6618 6619 6620 6621
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6622
 * @env: load balance environment
6623 6624
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6625
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6626
{
6627
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6628 6629 6630 6631
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6632

6633
	if (busiest->group_type == group_imbalanced) {
6634 6635 6636 6637
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6638 6639
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6640 6641
	}

6642 6643 6644
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6645
	 * its cpu_capacity, while calculating max_load..)
6646
	 */
6647 6648
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6649 6650
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6651 6652
	}

6653 6654 6655 6656 6657
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
6658 6659 6660 6661 6662 6663
		load_above_capacity = busiest->sum_nr_running *
					SCHED_LOAD_SCALE;
		if (load_above_capacity > busiest->group_capacity)
			load_above_capacity -= busiest->group_capacity;
		else
			load_above_capacity = ~0UL;
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6674
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6675 6676

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6677
	env->imbalance = min(
6678 6679
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6680
	) / SCHED_CAPACITY_SCALE;
6681 6682 6683

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6684
	 * there is no guarantee that any tasks will be moved so we'll have
6685 6686 6687
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6688
	if (env->imbalance < busiest->load_per_task)
6689
		return fix_small_imbalance(env, sds);
6690
}
6691

6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6704
 * @env: The load balancing environment.
6705
 *
6706
 * Return:	- The busiest group if imbalance exists.
6707 6708 6709 6710
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6711
static struct sched_group *find_busiest_group(struct lb_env *env)
6712
{
J
Joonsoo Kim 已提交
6713
	struct sg_lb_stats *local, *busiest;
6714 6715
	struct sd_lb_stats sds;

6716
	init_sd_lb_stats(&sds);
6717 6718 6719 6720 6721

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6722
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6723 6724
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6725

6726
	/* ASYM feature bypasses nice load balance check */
6727 6728
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6729 6730
		return sds.busiest;

6731
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6732
	if (!sds.busiest || busiest->sum_nr_running == 0)
6733 6734
		goto out_balanced;

6735 6736
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6737

P
Peter Zijlstra 已提交
6738 6739
	/*
	 * If the busiest group is imbalanced the below checks don't
6740
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6741 6742
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6743
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6744 6745
		goto force_balance;

6746
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6747 6748
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
6749 6750
		goto force_balance;

6751
	/*
6752
	 * If the local group is busier than the selected busiest group
6753 6754
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6755
	if (local->avg_load >= busiest->avg_load)
6756 6757
		goto out_balanced;

6758 6759 6760 6761
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6762
	if (local->avg_load >= sds.avg_load)
6763 6764
		goto out_balanced;

6765
	if (env->idle == CPU_IDLE) {
6766
		/*
6767 6768 6769 6770 6771
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6772
		 */
6773 6774
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6775
			goto out_balanced;
6776 6777 6778 6779 6780
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6781 6782
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6783
			goto out_balanced;
6784
	}
6785

6786
force_balance:
6787
	/* Looks like there is an imbalance. Compute it */
6788
	calculate_imbalance(env, &sds);
6789 6790 6791
	return sds.busiest;

out_balanced:
6792
	env->imbalance = 0;
6793 6794 6795 6796 6797 6798
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6799
static struct rq *find_busiest_queue(struct lb_env *env,
6800
				     struct sched_group *group)
6801 6802
{
	struct rq *busiest = NULL, *rq;
6803
	unsigned long busiest_load = 0, busiest_capacity = 1;
6804 6805
	int i;

6806
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6807
		unsigned long capacity, wl;
6808 6809 6810 6811
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6812

6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6835
		capacity = capacity_of(i);
6836

6837
		wl = weighted_cpuload(i);
6838

6839 6840
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6841
		 * which is not scaled with the cpu capacity.
6842
		 */
6843 6844 6845

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
6846 6847
			continue;

6848 6849
		/*
		 * For the load comparisons with the other cpu's, consider
6850 6851 6852
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6853
		 *
6854
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6855
		 * multiplication to rid ourselves of the division works out
6856 6857
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6858
		 */
6859
		if (wl * busiest_capacity > busiest_load * capacity) {
6860
			busiest_load = wl;
6861
			busiest_capacity = capacity;
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6876
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6877

6878
static int need_active_balance(struct lb_env *env)
6879
{
6880 6881 6882
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6883 6884 6885 6886 6887 6888

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6889
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6890
			return 1;
6891 6892
	}

6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

6906 6907 6908
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6909 6910
static int active_load_balance_cpu_stop(void *data);

6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6942
	return balance_cpu == env->dst_cpu;
6943 6944
}

6945 6946 6947 6948 6949 6950
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6951
			int *continue_balancing)
6952
{
6953
	int ld_moved, cur_ld_moved, active_balance = 0;
6954
	struct sched_domain *sd_parent = sd->parent;
6955 6956 6957
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6958
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6959

6960 6961
	struct lb_env env = {
		.sd		= sd,
6962 6963
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6964
		.dst_grpmask    = sched_group_cpus(sd->groups),
6965
		.idle		= idle,
6966
		.loop_break	= sched_nr_migrate_break,
6967
		.cpus		= cpus,
6968
		.fbq_type	= all,
6969
		.tasks		= LIST_HEAD_INIT(env.tasks),
6970 6971
	};

6972 6973 6974 6975
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6976
	if (idle == CPU_NEWLY_IDLE)
6977 6978
		env.dst_grpmask = NULL;

6979 6980 6981 6982 6983
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6984 6985
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6986
		goto out_balanced;
6987
	}
6988

6989
	group = find_busiest_group(&env);
6990 6991 6992 6993 6994
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6995
	busiest = find_busiest_queue(&env, group);
6996 6997 6998 6999 7000
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7001
	BUG_ON(busiest == env.dst_rq);
7002

7003
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7004

7005 7006 7007
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7008 7009 7010 7011 7012 7013 7014 7015
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7016
		env.flags |= LBF_ALL_PINNED;
7017
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7018

7019
more_balance:
7020
		raw_spin_lock_irqsave(&busiest->lock, flags);
7021 7022 7023 7024 7025

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7026
		cur_ld_moved = detach_tasks(&env);
7027 7028

		/*
7029 7030 7031 7032 7033
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7034
		 */
7035 7036 7037 7038 7039 7040 7041 7042

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7043
		local_irq_restore(flags);
7044

7045 7046 7047 7048 7049
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7069
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7070

7071 7072 7073
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7074
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7075
			env.dst_cpu	 = env.new_dst_cpu;
7076
			env.flags	&= ~LBF_DST_PINNED;
7077 7078
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7079

7080 7081 7082 7083 7084 7085
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7086

7087 7088 7089 7090
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7091
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7092

7093
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7094 7095 7096
				*group_imbalance = 1;
		}

7097
		/* All tasks on this runqueue were pinned by CPU affinity */
7098
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7099
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7100 7101 7102
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7103
				goto redo;
7104
			}
7105
			goto out_all_pinned;
7106 7107 7108 7109 7110
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7111 7112 7113 7114 7115 7116 7117 7118
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7119

7120
		if (need_active_balance(&env)) {
7121 7122
			raw_spin_lock_irqsave(&busiest->lock, flags);

7123 7124 7125
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7126 7127
			 */
			if (!cpumask_test_cpu(this_cpu,
7128
					tsk_cpus_allowed(busiest->curr))) {
7129 7130
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7131
				env.flags |= LBF_ALL_PINNED;
7132 7133 7134
				goto out_one_pinned;
			}

7135 7136 7137 7138 7139
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7140 7141 7142 7143 7144 7145
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7146

7147
			if (active_balance) {
7148 7149 7150
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7151
			}
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7170
		 * detach_tasks).
7171 7172 7173 7174 7175 7176 7177 7178
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7196 7197 7198 7199 7200 7201
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7202
	if (((env.flags & LBF_ALL_PINNED) &&
7203
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7204 7205 7206
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7207
	ld_moved = 0;
7208 7209 7210 7211
out:
	return ld_moved;
}

7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7239 7240 7241 7242
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7243
static int idle_balance(struct rq *this_rq)
7244
{
7245 7246
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7247 7248
	struct sched_domain *sd;
	int pulled_task = 0;
7249
	u64 curr_cost = 0;
7250

7251
	idle_enter_fair(this_rq);
7252

7253 7254 7255 7256 7257 7258
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7259 7260
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7261 7262 7263 7264 7265 7266
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7267
		goto out;
7268
	}
7269

7270 7271
	raw_spin_unlock(&this_rq->lock);

7272
	update_blocked_averages(this_cpu);
7273
	rcu_read_lock();
7274
	for_each_domain(this_cpu, sd) {
7275
		int continue_balancing = 1;
7276
		u64 t0, domain_cost;
7277 7278 7279 7280

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7281 7282
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7283
			break;
7284
		}
7285

7286
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7287 7288
			t0 = sched_clock_cpu(this_cpu);

7289
			pulled_task = load_balance(this_cpu, this_rq,
7290 7291
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7292 7293 7294 7295 7296 7297

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7298
		}
7299

7300
		update_next_balance(sd, 0, &next_balance);
7301 7302 7303 7304 7305 7306

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7307 7308
			break;
	}
7309
	rcu_read_unlock();
7310 7311 7312

	raw_spin_lock(&this_rq->lock);

7313 7314 7315
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7316
	/*
7317 7318 7319
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7320
	 */
7321
	if (this_rq->cfs.h_nr_running && !pulled_task)
7322
		pulled_task = 1;
7323

7324 7325 7326
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7327
		this_rq->next_balance = next_balance;
7328

7329
	/* Is there a task of a high priority class? */
7330
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7331 7332 7333 7334
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
7335
		this_rq->idle_stamp = 0;
7336
	}
7337

7338
	return pulled_task;
7339 7340 7341
}

/*
7342 7343 7344 7345
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7346
 */
7347
static int active_load_balance_cpu_stop(void *data)
7348
{
7349 7350
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7351
	int target_cpu = busiest_rq->push_cpu;
7352
	struct rq *target_rq = cpu_rq(target_cpu);
7353
	struct sched_domain *sd;
7354
	struct task_struct *p = NULL;
7355 7356 7357 7358 7359 7360 7361

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7362 7363 7364

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7365
		goto out_unlock;
7366 7367 7368 7369 7370 7371 7372 7373 7374

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7375
	rcu_read_lock();
7376 7377 7378 7379 7380 7381 7382
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7383 7384
		struct lb_env env = {
			.sd		= sd,
7385 7386 7387 7388
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7389 7390 7391
			.idle		= CPU_IDLE,
		};

7392 7393
		schedstat_inc(sd, alb_count);

7394 7395
		p = detach_one_task(&env);
		if (p)
7396 7397 7398 7399
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7400
	rcu_read_unlock();
7401 7402
out_unlock:
	busiest_rq->active_balance = 0;
7403 7404 7405 7406 7407 7408 7409
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7410
	return 0;
7411 7412
}

7413 7414 7415 7416 7417
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7418
#ifdef CONFIG_NO_HZ_COMMON
7419 7420 7421 7422 7423 7424
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7425
static struct {
7426
	cpumask_var_t idle_cpus_mask;
7427
	atomic_t nr_cpus;
7428 7429
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7430

7431
static inline int find_new_ilb(void)
7432
{
7433
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7434

7435 7436 7437 7438
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7439 7440
}

7441 7442 7443 7444 7445
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7446
static void nohz_balancer_kick(void)
7447 7448 7449 7450 7451
{
	int ilb_cpu;

	nohz.next_balance++;

7452
	ilb_cpu = find_new_ilb();
7453

7454 7455
	if (ilb_cpu >= nr_cpu_ids)
		return;
7456

7457
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7458 7459 7460 7461 7462 7463 7464 7465
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7466 7467 7468
	return;
}

7469
static inline void nohz_balance_exit_idle(int cpu)
7470 7471
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7472 7473 7474 7475 7476 7477 7478
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7479 7480 7481 7482
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7483 7484 7485
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7486
	int cpu = smp_processor_id();
7487 7488

	rcu_read_lock();
7489
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7490 7491 7492 7493 7494

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7495
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7496
unlock:
7497 7498 7499 7500 7501 7502
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7503
	int cpu = smp_processor_id();
7504 7505

	rcu_read_lock();
7506
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7507 7508 7509 7510 7511

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7512
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7513
unlock:
7514 7515 7516
	rcu_read_unlock();
}

7517
/*
7518
 * This routine will record that the cpu is going idle with tick stopped.
7519
 * This info will be used in performing idle load balancing in the future.
7520
 */
7521
void nohz_balance_enter_idle(int cpu)
7522
{
7523 7524 7525 7526 7527 7528
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7529 7530
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7531

7532 7533 7534 7535 7536 7537
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7538 7539 7540
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7541
}
7542

7543
static int sched_ilb_notifier(struct notifier_block *nfb,
7544 7545 7546 7547
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7548
		nohz_balance_exit_idle(smp_processor_id());
7549 7550 7551 7552 7553
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7554 7555 7556 7557
#endif

static DEFINE_SPINLOCK(balancing);

7558 7559 7560 7561
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7562
void update_max_interval(void)
7563 7564 7565 7566
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7567 7568 7569 7570
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7571
 * Balancing parameters are set up in init_sched_domains.
7572
 */
7573
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7574
{
7575
	int continue_balancing = 1;
7576
	int cpu = rq->cpu;
7577
	unsigned long interval;
7578
	struct sched_domain *sd;
7579 7580 7581
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7582 7583
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7584

7585
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7586

7587
	rcu_read_lock();
7588
	for_each_domain(cpu, sd) {
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7601 7602 7603
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7615
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7616 7617 7618 7619 7620 7621 7622 7623

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7624
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7625
				/*
7626
				 * The LBF_DST_PINNED logic could have changed
7627 7628
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7629
				 */
7630
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7631 7632
			}
			sd->last_balance = jiffies;
7633
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7634 7635 7636 7637 7638 7639 7640 7641
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7642 7643
	}
	if (need_decay) {
7644
		/*
7645 7646
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7647
		 */
7648 7649
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7650
	}
7651
	rcu_read_unlock();
7652 7653 7654 7655 7656 7657

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
7658
	if (likely(update_next_balance)) {
7659
		rq->next_balance = next_balance;
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
7674 7675
}

7676
#ifdef CONFIG_NO_HZ_COMMON
7677
/*
7678
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7679 7680
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7681
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7682
{
7683
	int this_cpu = this_rq->cpu;
7684 7685
	struct rq *rq;
	int balance_cpu;
7686 7687 7688
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7689

7690 7691 7692
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7693 7694

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7695
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7696 7697 7698 7699 7700 7701 7702
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7703
		if (need_resched())
7704 7705
			break;

V
Vincent Guittot 已提交
7706 7707
		rq = cpu_rq(balance_cpu);

7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7719

7720 7721 7722 7723
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
7724
	}
7725 7726 7727 7728 7729 7730 7731 7732

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
7733 7734
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7735 7736 7737
}

/*
7738
 * Current heuristic for kicking the idle load balancer in the presence
7739
 * of an idle cpu in the system.
7740
 *   - This rq has more than one task.
7741 7742 7743 7744
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
7745 7746
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7747
 */
7748
static inline bool nohz_kick_needed(struct rq *rq)
7749 7750
{
	unsigned long now = jiffies;
7751
	struct sched_domain *sd;
7752
	struct sched_group_capacity *sgc;
7753
	int nr_busy, cpu = rq->cpu;
7754
	bool kick = false;
7755

7756
	if (unlikely(rq->idle_balance))
7757
		return false;
7758

7759 7760 7761 7762
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7763
	set_cpu_sd_state_busy();
7764
	nohz_balance_exit_idle(cpu);
7765 7766 7767 7768 7769 7770

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
7771
		return false;
7772 7773

	if (time_before(now, nohz.next_balance))
7774
		return false;
7775

7776
	if (rq->nr_running >= 2)
7777
		return true;
7778

7779
	rcu_read_lock();
7780 7781
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
7782 7783
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7784

7785 7786 7787 7788 7789
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

7790
	}
7791

7792 7793 7794 7795 7796 7797 7798 7799
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
7800

7801
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7802
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7803 7804 7805 7806
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
7807

7808
unlock:
7809
	rcu_read_unlock();
7810
	return kick;
7811 7812
}
#else
7813
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7814 7815 7816 7817 7818 7819
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7820 7821
static void run_rebalance_domains(struct softirq_action *h)
{
7822
	struct rq *this_rq = this_rq();
7823
	enum cpu_idle_type idle = this_rq->idle_balance ?
7824 7825 7826
						CPU_IDLE : CPU_NOT_IDLE;

	/*
7827
	 * If this cpu has a pending nohz_balance_kick, then do the
7828
	 * balancing on behalf of the other idle cpus whose ticks are
7829 7830 7831 7832
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
7833
	 */
7834
	nohz_idle_balance(this_rq, idle);
7835
	rebalance_domains(this_rq, idle);
7836 7837 7838 7839 7840
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7841
void trigger_load_balance(struct rq *rq)
7842 7843
{
	/* Don't need to rebalance while attached to NULL domain */
7844 7845 7846 7847
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7848
		raise_softirq(SCHED_SOFTIRQ);
7849
#ifdef CONFIG_NO_HZ_COMMON
7850
	if (nohz_kick_needed(rq))
7851
		nohz_balancer_kick();
7852
#endif
7853 7854
}

7855 7856 7857
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7858 7859

	update_runtime_enabled(rq);
7860 7861 7862 7863 7864
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7865 7866 7867

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7868 7869
}

7870
#endif /* CONFIG_SMP */
7871

7872 7873 7874
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7875
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7876 7877 7878 7879 7880 7881
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7882
		entity_tick(cfs_rq, se, queued);
7883
	}
7884

7885
	if (static_branch_unlikely(&sched_numa_balancing))
7886
		task_tick_numa(rq, curr);
7887 7888 7889
}

/*
P
Peter Zijlstra 已提交
7890 7891 7892
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7893
 */
P
Peter Zijlstra 已提交
7894
static void task_fork_fair(struct task_struct *p)
7895
{
7896 7897
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7898
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7899 7900 7901
	struct rq *rq = this_rq();
	unsigned long flags;

7902
	raw_spin_lock_irqsave(&rq->lock, flags);
7903

7904 7905
	update_rq_clock(rq);

7906 7907 7908
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7909 7910 7911 7912 7913 7914 7915 7916 7917
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7918

7919
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7920

7921 7922
	if (curr)
		se->vruntime = curr->vruntime;
7923
	place_entity(cfs_rq, se, 1);
7924

P
Peter Zijlstra 已提交
7925
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7926
		/*
7927 7928 7929
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7930
		swap(curr->vruntime, se->vruntime);
7931
		resched_curr(rq);
7932
	}
7933

7934 7935
	se->vruntime -= cfs_rq->min_vruntime;

7936
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7937 7938
}

7939 7940 7941 7942
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7943 7944
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7945
{
7946
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7947 7948
		return;

7949 7950 7951 7952 7953
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7954
	if (rq->curr == p) {
7955
		if (p->prio > oldprio)
7956
			resched_curr(rq);
7957
	} else
7958
		check_preempt_curr(rq, p, 0);
7959 7960
}

7961
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
7962 7963 7964 7965
{
	struct sched_entity *se = &p->se;

	/*
7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
7976
	 *
7977 7978 7979 7980
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
7981
	 */
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
7994 7995 7996 7997 7998 7999 8000
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8001

8002
	/* Catch up with the cfs_rq and remove our load when we leave */
8003
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8004 8005
}

8006
static void attach_task_cfs_rq(struct task_struct *p)
8007
{
8008
	struct sched_entity *se = &p->se;
8009
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8010 8011

#ifdef CONFIG_FAIR_GROUP_SCHED
8012 8013 8014 8015 8016 8017
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8018

8019
	/* Synchronize task with its cfs_rq */
8020 8021 8022 8023 8024
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8025

8026 8027 8028 8029 8030 8031 8032 8033
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8034

8035
	if (task_on_rq_queued(p)) {
8036
		/*
8037 8038 8039
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8040
		 */
8041 8042 8043 8044
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8045
	}
8046 8047
}

8048 8049 8050 8051 8052 8053 8054 8055 8056
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8057 8058 8059 8060 8061 8062 8063
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8064 8065
}

8066 8067 8068 8069 8070 8071 8072
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8073
#ifdef CONFIG_SMP
8074 8075
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8076
#endif
8077 8078
}

P
Peter Zijlstra 已提交
8079
#ifdef CONFIG_FAIR_GROUP_SCHED
8080
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8081
{
8082
	detach_task_cfs_rq(p);
8083
	set_task_rq(p, task_cpu(p));
8084 8085 8086 8087 8088

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8089
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8090
}
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8101 8102 8103
		if (tg->se) {
			if (tg->se[i])
				remove_entity_load_avg(tg->se[i]);
8104
			kfree(tg->se[i]);
8105
		}
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8142
		init_entity_runnable_average(se);
8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8187
	if (!parent) {
8188
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8189 8190
		se->depth = 0;
	} else {
8191
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8192 8193
		se->depth = parent->depth + 1;
	}
8194 8195

	se->my_q = cfs_rq;
8196 8197
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8228 8229 8230

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8231
		for_each_sched_entity(se)
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8253

8254
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8255 8256 8257 8258 8259 8260 8261 8262 8263
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8264
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8265 8266 8267 8268

	return rr_interval;
}

8269 8270 8271
/*
 * All the scheduling class methods:
 */
8272
const struct sched_class fair_sched_class = {
8273
	.next			= &idle_sched_class,
8274 8275 8276
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8277
	.yield_to_task		= yield_to_task_fair,
8278

I
Ingo Molnar 已提交
8279
	.check_preempt_curr	= check_preempt_wakeup,
8280 8281 8282 8283

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8284
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8285
	.select_task_rq		= select_task_rq_fair,
8286
	.migrate_task_rq	= migrate_task_rq_fair,
8287

8288 8289
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8290 8291

	.task_waking		= task_waking_fair,
8292
	.task_dead		= task_dead_fair,
8293
	.set_cpus_allowed	= set_cpus_allowed_common,
8294
#endif
8295

8296
	.set_curr_task          = set_curr_task_fair,
8297
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8298
	.task_fork		= task_fork_fair,
8299 8300

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8301
	.switched_from		= switched_from_fair,
8302
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8303

8304 8305
	.get_rr_interval	= get_rr_interval_fair,

8306 8307
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8308
#ifdef CONFIG_FAIR_GROUP_SCHED
8309
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8310
#endif
8311 8312 8313
};

#ifdef CONFIG_SCHED_DEBUG
8314
void print_cfs_stats(struct seq_file *m, int cpu)
8315 8316 8317
{
	struct cfs_rq *cfs_rq;

8318
	rcu_read_lock();
8319
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8320
		print_cfs_rq(m, cpu, cfs_rq);
8321
	rcu_read_unlock();
8322
}
8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8344 8345 8346 8347 8348 8349

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8350
#ifdef CONFIG_NO_HZ_COMMON
8351
	nohz.next_balance = jiffies;
8352
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8353
	cpu_notifier(sched_ilb_notifier, 0);
8354 8355 8356 8357
#endif
#endif /* SMP */

}