phy.c 90.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include "e1000.h"

static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 36
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37
					  u16 *data, bool read, bool page_set);
38 39 40
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read);
41 42

/* Cable length tables */
43 44
static const u16 e1000_m88_cable_length_table[] = {
	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 46
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_m88_cable_length_table)
47

48 49 50 51 52 53 54 55 56
static const u16 e1000_igp_2_cable_length_table[] = {
	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
	124};
57
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58
		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define BM_PHY_REG_PAGE(offset) \
	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
#define BM_PHY_REG_NUM(offset) \
	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
		~MAX_PHY_REG_ADDRESS)))

#define HV_INTC_FC_PAGE_START             768
#define I82578_ADDR_REG                   29
#define I82577_ADDR_REG                   16
#define I82577_CFG_REG                    22
#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
#define I82577_CTRL_REG                   23

/* 82577 specific PHY registers */
#define I82577_PHY_CTRL_2            18
#define I82577_PHY_STATUS_2          26
#define I82577_PHY_DIAG_STATUS       31

/* I82577 PHY Status 2 */
#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
#define I82577_PHY_STATUS2_MDIX           0x0800
#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200

/* I82577 PHY Control 2 */
#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200

/* I82577 PHY Diagnostics Status */
#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2

/* BM PHY Copper Specific Control 1 */
#define BM_CS_CTRL1                       16

#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
	u32 manc;

	manc = er32(MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
	       E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
129
	s32 ret_val = 0;
130
	u16 phy_id;
131
	u16 retry_count = 0;
132

133
	if (!phy->ops.read_reg)
134
		return 0;
135

136 137 138
	while (retry_count < 2) {
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
139
			return ret_val;
140

141 142 143 144
		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
145
			return ret_val;
146

147 148 149 150
		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
151
			return 0;
152 153 154

		retry_count++;
	}
155 156

	return 0;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

/**
 *  e1000e_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}

/**
177
 *  e1000e_read_phy_reg_mdic - Read MDI control register
178 179 180 181
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
182
 *  Reads the MDI control register in the PHY at offset and stores the
183 184
 *  information read to data.
 **/
185
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
186 187 188 189 190
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
191
		e_dbg("PHY Address %d is out of range\n", offset);
192 193 194
		return -E1000_ERR_PARAM;
	}

195 196
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
197 198 199 200 201 202 203 204 205
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	ew32(MDIC, mdic);

206 207 208 209 210
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
211
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
212 213 214 215 216 217
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
218
		e_dbg("MDI Read did not complete\n");
219 220 221
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
222
		e_dbg("MDI Error\n");
223 224 225 226
		return -E1000_ERR_PHY;
	}
	*data = (u16) mdic;

227 228 229 230 231 232 233
	/*
	 * Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

234 235 236 237
	return 0;
}

/**
238
 *  e1000e_write_phy_reg_mdic - Write MDI control register
239 240 241 242 243 244
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
245
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
246 247 248 249 250
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
251
		e_dbg("PHY Address %d is out of range\n", offset);
252 253 254
		return -E1000_ERR_PARAM;
	}

255 256
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
257 258 259 260 261 262 263 264 265 266
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	ew32(MDIC, mdic);

267 268 269 270 271 272 273
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
274 275 276 277 278
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
279
		e_dbg("MDI Write did not complete\n");
280 281
		return -E1000_ERR_PHY;
	}
282
	if (mdic & E1000_MDIC_ERROR) {
283
		e_dbg("MDI Error\n");
284 285
		return -E1000_ERR_PHY;
	}
286

287 288 289 290 291 292 293
	/*
	 * Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	return 0;
}

/**
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

311
	ret_val = hw->phy.ops.acquire(hw);
312 313 314
	if (ret_val)
		return ret_val;

315 316
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
317

318
	hw->phy.ops.release(hw);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

336
	ret_val = hw->phy.ops.acquire(hw);
337 338 339
	if (ret_val)
		return ret_val;

340 341
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
342

343
	hw->phy.ops.release(hw);
344 345 346 347

	return ret_val;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/**
 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 *  @hw: pointer to the HW structure
 *  @page: page to set (shifted left when necessary)
 *
 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 *  must set it appropriately (if necessary) after this function returns.
 **/
s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
{
	e_dbg("Setting page 0x%x\n", page);

	hw->phy.addr = 1;

	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
}

366
/**
367
 *  __e1000e_read_phy_reg_igp - Read igp PHY register
368 369 370
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
371
 *  @locked: semaphore has already been acquired or not
372 373
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
374
 *  and stores the retrieved information in data.  Release any acquired
375 376
 *  semaphores before exiting.
 **/
377 378
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
                                    bool locked)
379
{
380
	s32 ret_val = 0;
381

382
	if (!locked) {
383
		if (!hw->phy.ops.acquire)
384
			return 0;
385

386
		ret_val = hw->phy.ops.acquire(hw);
387
		if (ret_val)
388
			return ret_val;
389
	}
390

391
	if (offset > MAX_PHY_MULTI_PAGE_REG)
392 393 394
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
395 396 397 398
	if (!ret_val)
		ret_val = e1000e_read_phy_reg_mdic(hw,
						   MAX_PHY_REG_ADDRESS & offset,
						   data);
399
	if (!locked)
400
		hw->phy.ops.release(hw);
401

402 403 404
	return ret_val;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/**
 *  e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores the
 *  retrieved information in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}

434 435 436 437 438
/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
439
 *  @locked: semaphore has already been acquired or not
440 441 442 443
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
444 445
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
                                     bool locked)
446
{
447
	s32 ret_val = 0;
448

449
	if (!locked) {
450
		if (!hw->phy.ops.acquire)
451
			return 0;
452

453
		ret_val = hw->phy.ops.acquire(hw);
454
		if (ret_val)
455
			return ret_val;
456
	}
457

458
	if (offset > MAX_PHY_MULTI_PAGE_REG)
459 460 461
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
462 463 464 465
	if (!ret_val)
		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
							offset,
						    data);
466
	if (!locked)
467
		hw->phy.ops.release(hw);
468 469 470 471 472

	return ret_val;
}

/**
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}

/**
 *  __e1000_read_kmrn_reg - Read kumeran register
502 503 504
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
505
 *  @locked: semaphore has already been acquired or not
506 507 508 509 510
 *
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release any acquired semaphores before exiting.
 **/
511 512
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
                                 bool locked)
513 514 515
{
	u32 kmrnctrlsta;

516
	if (!locked) {
517 518
		s32 ret_val = 0;

519
		if (!hw->phy.ops.acquire)
520
			return 0;
521

522
		ret_val = hw->phy.ops.acquire(hw);
523
		if (ret_val)
524
			return ret_val;
525
	}
526 527 528 529

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
530
	e1e_flush();
531 532 533 534 535 536

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

537
	if (!locked)
538
		hw->phy.ops.release(hw);
539

540
	return 0;
541 542 543
}

/**
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
 *  e1000e_read_kmrn_reg -  Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset using the
 *  kumeran interface.  The information retrieved is stored in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_kmrn_reg(hw, offset, data, false);
}

/**
559
 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
560 561 562 563 564 565 566 567
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the kumeran interface.  The
 *  information retrieved is stored in data.
 *  Assumes semaphore already acquired.
 **/
568
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
569 570 571 572 573 574
{
	return __e1000_read_kmrn_reg(hw, offset, data, true);
}

/**
 *  __e1000_write_kmrn_reg - Write kumeran register
575 576 577
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
578
 *  @locked: semaphore has already been acquired or not
579 580 581 582 583
 *
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 *  at the offset using the kumeran interface.  Release any acquired semaphores
 *  before exiting.
 **/
584 585
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
                                  bool locked)
586 587 588
{
	u32 kmrnctrlsta;

589
	if (!locked) {
590 591
		s32 ret_val = 0;

592
		if (!hw->phy.ops.acquire)
593
			return 0;
594

595
		ret_val = hw->phy.ops.acquire(hw);
596
		if (ret_val)
597
			return ret_val;
598
	}
599 600 601 602

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
603
	e1e_flush();
604 605 606

	udelay(2);

607
	if (!locked)
608
		hw->phy.ops.release(hw);
609

610
	return 0;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 *  e1000e_write_kmrn_reg -  Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to the PHY register at the offset
 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 **/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_kmrn_reg(hw, offset, data, false);
}

/**
628
 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
629 630 631 632 633 634 635
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Write the data to PHY register at the offset using the kumeran interface.
 *  Assumes semaphore already acquired.
 **/
636
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
637 638 639 640
{
	return __e1000_write_kmrn_reg(hw, offset, data, true);
}

641 642 643 644 645 646 647 648 649 650 651
/**
 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up Carrier-sense on Transmit and downshift values.
 **/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;

652
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
653
	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
654
	if (ret_val)
655
		return ret_val;
656 657 658 659 660 661

	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;

	/* Enable downshift */
	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;

662
	return e1e_wphy(hw, I82577_CFG_REG, phy_data);
663 664
}

665 666 667 668 669 670 671 672 673 674 675 676 677
/**
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

678
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
679 680 681 682
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

683 684
	/* For BM PHY this bit is downshift enable */
	if (phy->type != e1000_phy_bm)
685
		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
686

687 688
	/*
	 * Options:
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

713 714
	/*
	 * Options:
715 716 717 718 719 720
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
B
Bruce Allan 已提交
721
	if (phy->disable_polarity_correction)
722 723
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

724
	/* Enable downshift on BM (disabled by default) */
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (phy->type == e1000_phy_bm) {
		/* For 82574/82583, first disable then enable downshift */
		if (phy->id == BME1000_E_PHY_ID_R2) {
			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
					   phy_data);
			if (ret_val)
				return ret_val;
			/* Commit the changes. */
			ret_val = e1000e_commit_phy(hw);
			if (ret_val) {
				e_dbg("Error committing the PHY changes\n");
				return ret_val;
			}
		}

741
		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
742
	}
743

744 745 746 747
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

748 749 750
	if ((phy->type == e1000_phy_m88) &&
	    (phy->revision < E1000_REVISION_4) &&
	    (phy->id != BME1000_E_PHY_ID_R2)) {
751 752
		/*
		 * Force TX_CLK in the Extended PHY Specific Control Register
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		 * to 25MHz clock.
		 */
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == 2) &&
		    (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

778 779 780 781 782 783 784 785 786 787 788 789
	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
		/* Set PHY page 0, register 29 to 0x0003 */
		ret_val = e1e_wphy(hw, 29, 0x0003);
		if (ret_val)
			return ret_val;

		/* Set PHY page 0, register 30 to 0x0000 */
		ret_val = e1e_wphy(hw, 30, 0x0000);
		if (ret_val)
			return ret_val;
	}

790 791
	/* Commit the changes. */
	ret_val = e1000e_commit_phy(hw);
792
	if (ret_val) {
793
		e_dbg("Error committing the PHY changes\n");
794 795
		return ret_val;
	}
796

797
	if (phy->type == e1000_phy_82578) {
798
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
799 800 801 802 803 804
		if (ret_val)
			return ret_val;

		/* 82578 PHY - set the downshift count to 1x. */
		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
805
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
806 807 808 809 810
		if (ret_val)
			return ret_val;
	}

	return 0;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
}

/**
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1000_phy_hw_reset(hw);
	if (ret_val) {
828
		e_dbg("Error resetting the PHY.\n");
829 830 831
		return ret_val;
	}

832 833 834 835 836
	/*
	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);
837 838

	/* disable lplu d0 during driver init */
839
	ret_val = e1000_set_d0_lplu_state(hw, false);
840
	if (ret_val) {
841
		e_dbg("Error Disabling LPLU D0\n");
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
		return ret_val;
	}
	/* Configure mdi-mdix settings */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
869 870
		/*
		 * when autonegotiation advertisement is only 1000Mbps then we
871
		 * should disable SmartSpeed and enable Auto MasterSlave
872 873
		 * resolution as hardware default.
		 */
874 875 876
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
877
					   &data);
878 879 880 881 882
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
883
					   data);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
			if (ret_val)
				return ret_val;

			/* Set auto Master/Slave resolution process */
			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
			if (ret_val)
				return ret_val;

			data &= ~CR_1000T_MS_ENABLE;
			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
		if (ret_val)
			return ret_val;

		/* load defaults for future use */
		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
			((data & CR_1000T_MS_VALUE) ?
			e1000_ms_force_master :
			e1000_ms_force_slave) :
			e1000_ms_auto;

		switch (phy->ms_type) {
		case e1000_ms_force_master:
			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			data |= CR_1000T_MS_ENABLE;
			data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
	}

	return ret_val;
}

/**
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

958 959
	/*
	 * Need to parse both autoneg_advertised and fc and set up
960 961 962 963 964 965
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

966 967
	/*
	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
968 969 970 971 972 973 974 975 976
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

977
	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
978 979 980

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
981
		e_dbg("Advertise 10mb Half duplex\n");
982 983 984 985 986
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
987
		e_dbg("Advertise 10mb Full duplex\n");
988 989 990 991 992
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
993
		e_dbg("Advertise 100mb Half duplex\n");
994 995 996 997 998
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
999
		e_dbg("Advertise 100mb Full duplex\n");
1000 1001 1002 1003 1004
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1005
		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1006 1007 1008

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1009
		e_dbg("Advertise 1000mb Full duplex\n");
1010 1011 1012
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

1013 1014
	/*
	 * Check for a software override of the flow control settings, and
1015 1016 1017 1018 1019 1020 1021 1022 1023
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
1024
	 *          but not send pause frames).
1025
	 *      2:  Tx flow control is enabled (we can send pause frames
1026
	 *          but we do not support receiving pause frames).
1027
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1028
	 *  other:  No software override.  The flow control configuration
1029
	 *          in the EEPROM is used.
1030
	 */
1031
	switch (hw->fc.current_mode) {
1032
	case e1000_fc_none:
1033 1034
		/*
		 * Flow control (Rx & Tx) is completely disabled by a
1035 1036 1037 1038 1039
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:
1040 1041
		/*
		 * Rx Flow control is enabled, and Tx Flow control is
1042
		 * disabled, by a software over-ride.
1043 1044 1045 1046
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
1047 1048 1049 1050 1051 1052
		 * (in e1000e_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:
1053 1054
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
1055 1056 1057 1058 1059 1060
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:
1061 1062
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
1063 1064 1065 1066 1067
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
1068
		e_dbg("Flow control param set incorrectly\n");
1069
		return -E1000_ERR_CONFIG;
1070 1071 1072 1073 1074 1075
	}

	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

1076
	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1077

B
Bruce Allan 已提交
1078
	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);

	return ret_val;
}

/**
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
1091
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1092 1093 1094 1095 1096 1097 1098
 **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

1099 1100
	/*
	 * Perform some bounds checking on the autoneg advertisement
1101 1102 1103 1104
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

1105 1106
	/*
	 * If autoneg_advertised is zero, we assume it was not defaulted
1107 1108
	 * by the calling code so we set to advertise full capability.
	 */
B
Bruce Allan 已提交
1109
	if (!phy->autoneg_advertised)
1110 1111
		phy->autoneg_advertised = phy->autoneg_mask;

1112
	e_dbg("Reconfiguring auto-neg advertisement params\n");
1113 1114
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
1115
		e_dbg("Error Setting up Auto-Negotiation\n");
1116 1117
		return ret_val;
	}
1118
	e_dbg("Restarting Auto-Neg\n");
1119

1120 1121
	/*
	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

1133 1134
	/*
	 * Does the user want to wait for Auto-Neg to complete here, or
1135 1136
	 * check at a later time (for example, callback routine).
	 */
1137
	if (phy->autoneg_wait_to_complete) {
1138 1139
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
1140
			e_dbg("Error while waiting for autoneg to complete\n");
1141 1142 1143 1144
			return ret_val;
		}
	}

1145
	hw->mac.get_link_status = true;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	return ret_val;
}

/**
 *  e1000e_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
1165 1166 1167 1168
		/*
		 * Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
1169 1170 1171 1172
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			return ret_val;
	} else {
1173 1174 1175 1176
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
1177
		e_dbg("Forcing Speed and Duplex\n");
1178 1179
		ret_val = e1000_phy_force_speed_duplex(hw);
		if (ret_val) {
1180
			e_dbg("Error Forcing Speed and Duplex\n");
1181 1182 1183 1184
			return ret_val;
		}
	}

1185 1186
	/*
	 * Check link status. Wait up to 100 microseconds for link to become
1187 1188
	 * valid.
	 */
1189 1190
	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
					      &link);
1191 1192 1193 1194
	if (ret_val)
		return ret_val;

	if (link) {
1195
		e_dbg("Valid link established!!!\n");
1196
		hw->mac.ops.config_collision_dist(hw);
1197 1198
		ret_val = e1000e_config_fc_after_link_up(hw);
	} else {
1199
		e_dbg("Unable to establish link!!!\n");
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1230 1231
	/*
	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1245
	e_dbg("IGP PSCR: %X\n", phy_data);
1246 1247 1248

	udelay(1);

1249
	if (phy->autoneg_wait_to_complete) {
1250
		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1251

1252 1253
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1254 1255 1256 1257
		if (ret_val)
			return ret_val;

		if (!link)
1258
			e_dbg("Link taking longer than expected.\n");
1259 1260

		/* Try once more */
1261 1262
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
1275
 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1276 1277 1278 1279 1280 1281 1282 1283 1284
 *  successful completion, else return corresponding error code.
 **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

1285 1286
	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1298
	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1310 1311 1312 1313
	/* Reset the phy to commit changes. */
	ret_val = e1000e_commit_phy(hw);
	if (ret_val)
		return ret_val;
1314

1315
	if (phy->autoneg_wait_to_complete) {
1316
		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1317 1318 1319 1320 1321 1322 1323

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
1324 1325 1326 1327 1328 1329 1330
			if (hw->phy.type != e1000_phy_m88) {
				e_dbg("Link taking longer than expected.\n");
			} else {
				/*
				 * We didn't get link.
				 * Reset the DSP and cross our fingers.
				 */
1331 1332
				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
						   0x001d);
1333 1334 1335 1336 1337 1338
				if (ret_val)
					return ret_val;
				ret_val = e1000e_phy_reset_dsp(hw);
				if (ret_val)
					return ret_val;
			}
1339 1340 1341 1342 1343 1344 1345 1346 1347
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;
	}

1348 1349 1350
	if (hw->phy.type != e1000_phy_m88)
		return 0;

1351 1352 1353 1354
	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

1355 1356
	/*
	 * Resetting the phy means we need to re-force TX_CLK in the
1357 1358 1359 1360 1361 1362 1363 1364
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1365 1366
	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	 * duplex.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

	return ret_val;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/**
 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
	if (ret_val)
1396
		return ret_val;
1397 1398 1399 1400 1401

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
	if (ret_val)
1402
		return ret_val;
1403 1404 1405 1406

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
1407
		return ret_val;
1408 1409 1410 1411 1412 1413

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
1414
		return ret_val;
1415 1416 1417 1418 1419 1420 1421 1422

	e_dbg("IFE PMC: %X\n", data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");

1423 1424
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1425
		if (ret_val)
1426
			return ret_val;
1427 1428 1429 1430 1431

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
1432 1433
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1434
		if (ret_val)
1435
			return ret_val;
1436 1437
	}

1438
	return 0;
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/**
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the PHY_CONTROL register for these settings to
 *  take affect.
 **/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
1459
	hw->fc.current_mode = e1000_fc_none;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	/* Force speed/duplex on the mac */
	ctrl = er32(CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1476
		e_dbg("Half Duplex\n");
1477 1478 1479
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1480
		e_dbg("Full Duplex\n");
1481 1482 1483 1484 1485 1486 1487
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= MII_CR_SPEED_100;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1488
		e_dbg("Forcing 100mb\n");
1489 1490 1491 1492
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl |= MII_CR_SPEED_10;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1493
		e_dbg("Forcing 10mb\n");
1494 1495
	}

1496
	hw->mac.ops.config_collision_dist(hw);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	ew32(CTRL, ctrl);
}

/**
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
1527
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1528 1529
		if (ret_val)
			return ret_val;
1530 1531
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1532 1533
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1534 1535
		 * SmartSpeed, so performance is maintained.
		 */
1536 1537
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1538
					   &data);
1539 1540 1541 1542 1543
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1544
					   data);
1545 1546 1547 1548
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1549
					   &data);
1550 1551 1552 1553 1554
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1555
					   data);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
1580
 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_m88:
	case e1000_phy_gg82563:
1596
	case e1000_phy_bm:
1597
	case e1000_phy_82578:
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		offset	= M88E1000_PHY_SPEC_STATUS;
		mask	= M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
		offset	= IGP01E1000_PHY_LINK_HEALTH;
		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
1608
		phy->speed_downgraded = false;
1609 1610 1611 1612 1613 1614
		return 0;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
B
Bruce Allan 已提交
1615
		phy->speed_downgraded = !!(phy_data & mask);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	return ret_val;
}

/**
 *  e1000_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
1628
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
1653
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1654 1655 1656 1657 1658
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

1659 1660 1661 1662
	/*
	 * Polarity is determined based on the speed of
	 * our connection.
	 */
1663 1664 1665 1666 1667 1668 1669 1670 1671
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset	= IGP01E1000_PHY_PCS_INIT_REG;
		mask	= IGP01E1000_PHY_POLARITY_MASK;
	} else {
1672 1673
		/*
		 * This really only applies to 10Mbps since
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset	= IGP01E1000_PHY_PORT_STATUS;
		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = e1e_rphy(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = (data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/**
 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
 *  Polarity is determined on the polarity reversal feature being enabled.
 **/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	/*
	 * Polarity is determined based on the reversal feature being enabled.
	 */
	if (phy->polarity_correction) {
		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask = IFE_PESC_POLARITY_REVERSED;
	} else {
		offset = IFE_PHY_SPECIAL_CONTROL;
		mask = IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = (phy_data & mask)
		                       ? e1000_rev_polarity_reversed
		                       : e1000_rev_polarity_normal;

	return ret_val;
}

1723
/**
1724
 *  e1000_wait_autoneg - Wait for auto-neg completion
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

1748 1749
	/*
	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	 * has completed.
	 */
	return ret_val;
}

/**
 *  e1000e_phy_has_link_generic - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
			       u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
1771 1772
		/*
		 * Some PHYs require the PHY_STATUS register to be read
1773 1774 1775 1776 1777
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
1778 1779 1780 1781 1782 1783
			/*
			 * If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			udelay(usec_interval);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval/1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations);

	return ret_val;
}

/**
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
1823
		return ret_val;
1824 1825

	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1826
	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1827 1828 1829

	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
		return -E1000_ERR_PHY;
1830

1831
	phy->min_cable_length = e1000_m88_cable_length_table[index];
1832
	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1833 1834 1835

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

1836
	return 0;
1837 1838 1839 1840 1841 1842 1843 1844
}

/**
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
1845
 *  cable.  By reading the AGC registers, which represent the
B
Bruce Allan 已提交
1846
 *  combination of coarse and fine gain value, the value can be put
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1857 1858 1859 1860 1861 1862
	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
	       IGP02E1000_PHY_AGC_A,
	       IGP02E1000_PHY_AGC_B,
	       IGP02E1000_PHY_AGC_C,
	       IGP02E1000_PHY_AGC_D
	};
1863 1864 1865 1866 1867 1868 1869

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			return ret_val;

1870 1871
		/*
		 * Getting bits 15:9, which represent the combination of
B
Bruce Allan 已提交
1872
		 * coarse and fine gain values.  The result is a number
1873
		 * that can be put into the lookup table to obtain the
1874 1875
		 * approximate cable length.
		 */
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				IGP02E1000_AGC_LENGTH_MASK;

		/* Array index bound check. */
		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
		    (cur_agc_index == 0))
			return -E1000_ERR_PHY;

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

B
Bruce Allan 已提交
1906
	return 0;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

/**
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u16 phy_data;
	bool link;

1926
	if (phy->media_type != e1000_media_type_copper) {
1927
		e_dbg("Phy info is only valid for copper media\n");
1928 1929 1930 1931 1932 1933 1934 1935
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1936
		e_dbg("Phy info is only valid if link is up\n");
1937 1938 1939 1940 1941 1942 1943
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
1944 1945
	phy->polarity_correction = !!(phy_data &
				      M88E1000_PSCR_POLARITY_REVERSAL);
1946 1947 1948 1949 1950 1951 1952 1953 1954

	ret_val = e1000_check_polarity_m88(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
1955
	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
2004
		e_dbg("Phy info is only valid if link is up\n");
2005 2006 2007
		return -E1000_ERR_CONFIG;
	}

2008
	phy->polarity_correction = true;
2009 2010 2011 2012 2013 2014 2015 2016 2017

	ret_val = e1000_check_polarity_igp(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
2018
	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 **/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
2061
		return ret_val;
2062 2063 2064

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
2065
		return -E1000_ERR_CONFIG;
2066 2067 2068 2069
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
2070
		return ret_val;
B
Bruce Allan 已提交
2071
	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2072 2073 2074 2075

	if (phy->polarity_correction) {
		ret_val = e1000_check_polarity_ife(hw);
		if (ret_val)
2076
			return ret_val;
2077 2078 2079 2080 2081 2082 2083 2084 2085
	} else {
		/* Polarity is forced */
		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
2086
		return ret_val;
2087

B
Bruce Allan 已提交
2088
	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2089 2090 2091 2092 2093 2094

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

2095
	return 0;
2096 2097
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 *  e1000e_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_ctrl;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= MII_CR_RESET;
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

	udelay(1);

	return ret_val;
}

/**
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
2131
 *  reset and release the semaphore (if necessary).
2132 2133 2134 2135 2136 2137 2138
 **/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl;

2139
	ret_val = phy->ops.check_reset_block(hw);
2140 2141 2142
	if (ret_val)
		return 0;

2143
	ret_val = phy->ops.acquire(hw);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	if (ret_val)
		return ret_val;

	ctrl = er32(CTRL);
	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
	e1e_flush();

	udelay(phy->reset_delay_us);

	ew32(CTRL, ctrl);
	e1e_flush();

	udelay(150);

2158
	phy->ops.release(hw);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	return e1000_get_phy_cfg_done(hw);
}

/**
 *  e1000e_get_cfg_done - Generic configuration done
 *  @hw: pointer to the HW structure
 *
 *  Generic function to wait 10 milli-seconds for configuration to complete
 *  and return success.
 **/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
	mdelay(10);
2173

2174 2175 2176
	return 0;
}

2177 2178 2179 2180 2181 2182 2183 2184
/**
 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
 **/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
2185
	e_dbg("Running IGP 3 PHY init script\n");
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	/* PHY init IGP 3 */
	/* Enable rise/fall, 10-mode work in class-A */
	e1e_wphy(hw, 0x2F5B, 0x9018);
	/* Remove all caps from Replica path filter */
	e1e_wphy(hw, 0x2F52, 0x0000);
	/* Bias trimming for ADC, AFE and Driver (Default) */
	e1e_wphy(hw, 0x2FB1, 0x8B24);
	/* Increase Hybrid poly bias */
	e1e_wphy(hw, 0x2FB2, 0xF8F0);
	/* Add 4% to Tx amplitude in Gig mode */
	e1e_wphy(hw, 0x2010, 0x10B0);
	/* Disable trimming (TTT) */
	e1e_wphy(hw, 0x2011, 0x0000);
	/* Poly DC correction to 94.6% + 2% for all channels */
	e1e_wphy(hw, 0x20DD, 0x249A);
	/* ABS DC correction to 95.9% */
	e1e_wphy(hw, 0x20DE, 0x00D3);
	/* BG temp curve trim */
	e1e_wphy(hw, 0x28B4, 0x04CE);
	/* Increasing ADC OPAMP stage 1 currents to max */
	e1e_wphy(hw, 0x2F70, 0x29E4);
	/* Force 1000 ( required for enabling PHY regs configuration) */
	e1e_wphy(hw, 0x0000, 0x0140);
	/* Set upd_freq to 6 */
	e1e_wphy(hw, 0x1F30, 0x1606);
	/* Disable NPDFE */
	e1e_wphy(hw, 0x1F31, 0xB814);
	/* Disable adaptive fixed FFE (Default) */
	e1e_wphy(hw, 0x1F35, 0x002A);
	/* Enable FFE hysteresis */
	e1e_wphy(hw, 0x1F3E, 0x0067);
	/* Fixed FFE for short cable lengths */
	e1e_wphy(hw, 0x1F54, 0x0065);
	/* Fixed FFE for medium cable lengths */
	e1e_wphy(hw, 0x1F55, 0x002A);
	/* Fixed FFE for long cable lengths */
	e1e_wphy(hw, 0x1F56, 0x002A);
	/* Enable Adaptive Clip Threshold */
	e1e_wphy(hw, 0x1F72, 0x3FB0);
	/* AHT reset limit to 1 */
	e1e_wphy(hw, 0x1F76, 0xC0FF);
	/* Set AHT master delay to 127 msec */
	e1e_wphy(hw, 0x1F77, 0x1DEC);
	/* Set scan bits for AHT */
	e1e_wphy(hw, 0x1F78, 0xF9EF);
	/* Set AHT Preset bits */
	e1e_wphy(hw, 0x1F79, 0x0210);
	/* Change integ_factor of channel A to 3 */
	e1e_wphy(hw, 0x1895, 0x0003);
	/* Change prop_factor of channels BCD to 8 */
	e1e_wphy(hw, 0x1796, 0x0008);
	/* Change cg_icount + enable integbp for channels BCD */
	e1e_wphy(hw, 0x1798, 0xD008);
	/*
	 * Change cg_icount + enable integbp + change prop_factor_master
	 * to 8 for channel A
	 */
	e1e_wphy(hw, 0x1898, 0xD918);
	/* Disable AHT in Slave mode on channel A */
	e1e_wphy(hw, 0x187A, 0x0800);
	/*
	 * Enable LPLU and disable AN to 1000 in non-D0a states,
	 * Enable SPD+B2B
	 */
	e1e_wphy(hw, 0x0019, 0x008D);
	/* Enable restart AN on an1000_dis change */
	e1e_wphy(hw, 0x001B, 0x2080);
	/* Enable wh_fifo read clock in 10/100 modes */
	e1e_wphy(hw, 0x0014, 0x0045);
	/* Restart AN, Speed selection is 1000 */
	e1e_wphy(hw, 0x0000, 0x1340);

	return 0;
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/* Internal function pointers */

/**
 *  e1000_get_phy_cfg_done - Generic PHY configuration done
 *  @hw: pointer to the HW structure
 *
 *  Return success if silicon family did not implement a family specific
 *  get_cfg_done function.
 **/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
	if (hw->phy.ops.get_cfg_done)
		return hw->phy.ops.get_cfg_done(hw);

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
 *  @hw: pointer to the HW structure
 *
 *  When the silicon family has not implemented a forced speed/duplex
 *  function for the PHY, simply return 0.
 **/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
	if (hw->phy.ops.force_speed_duplex)
		return hw->phy.ops.force_speed_duplex(hw);

	return 0;
}

/**
 *  e1000e_get_phy_type_from_id - Get PHY type from id
 *  @phy_id: phy_id read from the phy
 *
 *  Returns the phy type from the id.
 **/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	switch (phy_id) {
	case M88E1000_I_PHY_ID:
	case M88E1000_E_PHY_ID:
	case M88E1111_I_PHY_ID:
	case M88E1011_I_PHY_ID:
		phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
		phy_type = e1000_phy_igp_2;
		break;
	case GG82563_E_PHY_ID:
		phy_type = e1000_phy_gg82563;
		break;
	case IGP03E1000_E_PHY_ID:
		phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy_type = e1000_phy_ife;
		break;
2325 2326 2327 2328
	case BME1000_E_PHY_ID:
	case BME1000_E_PHY_ID_R2:
		phy_type = e1000_phy_bm;
		break;
2329 2330 2331 2332 2333 2334
	case I82578_E_PHY_ID:
		phy_type = e1000_phy_82578;
		break;
	case I82577_E_PHY_ID:
		phy_type = e1000_phy_82577;
		break;
2335 2336 2337
	case I82579_E_PHY_ID:
		phy_type = e1000_phy_82579;
		break;
2338 2339 2340 2341 2342 2343 2344
	default:
		phy_type = e1000_phy_unknown;
		break;
	}
	return phy_type;
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/**
 *  e1000e_determine_phy_address - Determines PHY address.
 *  @hw: pointer to the HW structure
 *
 *  This uses a trial and error method to loop through possible PHY
 *  addresses. It tests each by reading the PHY ID registers and
 *  checking for a match.
 **/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
2355 2356
	u32 phy_addr = 0;
	u32 i;
2357 2358
	enum e1000_phy_type phy_type = e1000_phy_unknown;

2359 2360 2361 2362 2363 2364 2365
	hw->phy.id = phy_type;

	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
		hw->phy.addr = phy_addr;
		i = 0;

		do {
2366 2367 2368
			e1000e_get_phy_id(hw);
			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);

2369
			/*
2370 2371 2372
			 * If phy_type is valid, break - we found our
			 * PHY address
			 */
2373 2374 2375
			if (phy_type  != e1000_phy_unknown)
				return 0;

2376
			usleep_range(1000, 2000);
2377 2378 2379
			i++;
		} while (i < 10);
	}
2380

2381
	return -E1000_ERR_PHY_TYPE;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
}

/**
 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
 *  @page: page to access
 *
 *  Returns the phy address for the page requested.
 **/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
	u32 phy_addr = 2;

	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000e_write_phy_reg_bm - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

2414
	ret_val = hw->phy.ops.acquire(hw);
2415 2416 2417
	if (ret_val)
		return ret_val;

2418 2419 2420
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2421
							 false, false);
2422
		goto release;
2423 2424 2425 2426 2427
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2428 2429
		u32 page_shift, page_select;

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2446
		if (ret_val)
2447
			goto release;
2448 2449 2450 2451 2452
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                    data);

2453
release:
2454
	hw->phy.ops.release(hw);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

2473
	ret_val = hw->phy.ops.acquire(hw);
2474 2475 2476
	if (ret_val)
		return ret_val;

2477 2478 2479
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2480
							 true, false);
2481
		goto release;
2482 2483 2484 2485 2486
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487 2488
		u32 page_shift, page_select;

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2505
		if (ret_val)
2506
			goto release;
2507 2508 2509 2510
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                   data);
2511
release:
2512
	hw->phy.ops.release(hw);
2513 2514 2515
	return ret_val;
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/**
 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2531
	ret_val = hw->phy.ops.acquire(hw);
2532 2533 2534
	if (ret_val)
		return ret_val;

2535 2536 2537
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2538
							 true, false);
2539
		goto release;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2550
		if (ret_val)
2551
			goto release;
2552 2553 2554 2555
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
2556
release:
2557
	hw->phy.ops.release(hw);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	return ret_val;
}

/**
 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2575
	ret_val = hw->phy.ops.acquire(hw);
2576 2577 2578
	if (ret_val)
		return ret_val;

2579 2580 2581
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2582
							 false, false);
2583
		goto release;
2584 2585 2586 2587 2588 2589 2590 2591 2592
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2593
		if (ret_val)
2594
			goto release;
2595 2596 2597 2598 2599
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

2600
release:
2601
	hw->phy.ops.release(hw);
2602 2603 2604
	return ret_val;
}

2605
/**
2606
 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2607
 *  @hw: pointer to the HW structure
2608
 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2609
 *
2610 2611
 *  Assumes semaphore already acquired and phy_reg points to a valid memory
 *  address to store contents of the BM_WUC_ENABLE_REG register.
2612
 **/
2613
s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2614 2615
{
	s32 ret_val;
2616
	u16 temp;
2617

2618
	/* All page select, port ctrl and wakeup registers use phy address 1 */
2619 2620
	hw->phy.addr = 1;

2621 2622 2623 2624
	/* Select Port Control Registers page */
	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
	if (ret_val) {
		e_dbg("Could not set Port Control page\n");
2625
		return ret_val;
2626
	}
2627

2628
	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
B
Bruce Allan 已提交
2629
	if (ret_val) {
2630 2631
		e_dbg("Could not read PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2632
		return ret_val;
B
Bruce Allan 已提交
2633
	}
2634

2635 2636 2637 2638 2639 2640 2641 2642 2643
	/*
	 * Enable both PHY wakeup mode and Wakeup register page writes.
	 * Prevent a power state change by disabling ME and Host PHY wakeup.
	 */
	temp = *phy_reg;
	temp |= BM_WUC_ENABLE_BIT;
	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);

	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
B
Bruce Allan 已提交
2644
	if (ret_val) {
2645 2646
		e_dbg("Could not write PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2647
		return ret_val;
B
Bruce Allan 已提交
2648
	}
2649

2650 2651 2652 2653 2654
	/*
	 * Select Host Wakeup Registers page - caller now able to write
	 * registers on the Wakeup registers page
	 */
	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
}

/**
 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
 *  @hw: pointer to the HW structure
 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
 *
 *  Restore BM_WUC_ENABLE_REG to its original value.
 *
 *  Assumes semaphore already acquired and *phy_reg is the contents of the
 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
 *  caller.
 **/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
	s32 ret_val = 0;

	/* Select Port Control Registers page */
	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
B
Bruce Allan 已提交
2674
	if (ret_val) {
2675
		e_dbg("Could not set Port Control page\n");
2676
		return ret_val;
B
Bruce Allan 已提交
2677
	}
2678

2679 2680 2681 2682 2683
	/* Restore 769.17 to its original value */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
	if (ret_val)
		e_dbg("Could not restore PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2684

2685 2686
	return ret_val;
}
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/**
 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to read or write
 *  @read: determines if operation is read or write
 *  @page_set: BM_WUC_PAGE already set and access enabled
 *
 *  Read the PHY register at offset and store the retrieved information in
 *  data, or write data to PHY register at offset.  Note the procedure to
 *  access the PHY wakeup registers is different than reading the other PHY
 *  registers. It works as such:
 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
 *  2) Set page to 800 for host (801 if we were manageability)
 *  3) Write the address using the address opcode (0x11)
 *  4) Read or write the data using the data opcode (0x12)
 *  5) Restore 769.17.2 to its original value
 *
 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
 *
 *  Assumes semaphore is already acquired.  When page_set==true, assumes
 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
 **/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read, bool page_set)
{
	s32 ret_val;
	u16 reg = BM_PHY_REG_NUM(offset);
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 phy_reg = 0;

	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
	if ((hw->mac.type == e1000_pchlan) &&
	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
		e_dbg("Attempting to access page %d while gig enabled.\n",
		      page);

	if (!page_set) {
		/* Enable access to PHY wakeup registers */
		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
		if (ret_val) {
			e_dbg("Could not enable PHY wakeup reg access\n");
2732
			return ret_val;
2733 2734 2735 2736 2737 2738
		}
	}

	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);

	/* Write the Wakeup register page offset value using opcode 0x11 */
2739
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
B
Bruce Allan 已提交
2740
	if (ret_val) {
2741
		e_dbg("Could not write address opcode to page %d\n", page);
2742
		return ret_val;
B
Bruce Allan 已提交
2743
	}
2744 2745

	if (read) {
2746
		/* Read the Wakeup register page value using opcode 0x12 */
2747 2748 2749
		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
		                                   data);
	} else {
2750
		/* Write the Wakeup register page value using opcode 0x12 */
2751 2752 2753 2754
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						    *data);
	}

B
Bruce Allan 已提交
2755
	if (ret_val) {
2756
		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2757
		return ret_val;
B
Bruce Allan 已提交
2758
	}
2759

2760 2761
	if (!page_set)
		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2762 2763 2764 2765

	return ret_val;
}

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/**
 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg &= ~MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
}

/**
 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2800
	usleep_range(1000, 2000);
2801 2802
}

2803 2804 2805 2806 2807 2808 2809 2810 2811
/**
 *  e1000e_commit_phy - Soft PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Performs a soft PHY reset on those that apply. This is a function pointer
 *  entry point called by drivers.
 **/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
2812 2813
	if (hw->phy.ops.commit)
		return hw->phy.ops.commit(hw);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

	return 0;
}

/**
 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D0
 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.  This is a function pointer entry point called by drivers.
 **/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
	if (hw->phy.ops.set_d0_lplu_state)
		return hw->phy.ops.set_d0_lplu_state(hw, active);

	return 0;
}
2839 2840

/**
2841
 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2842 2843 2844
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
2845
 *  @locked: semaphore has already been acquired or not
2846 2847
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2848
 *  and stores the retrieved information in data.  Release any acquired
2849 2850
 *  semaphore before exiting.
 **/
2851
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2852
				   bool locked, bool page_set)
2853 2854 2855 2856
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);
2857
	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2858

2859
	if (!locked) {
2860
		ret_val = hw->phy.ops.acquire(hw);
2861 2862 2863 2864
		if (ret_val)
			return ret_val;
	}

2865 2866
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
2867 2868
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true, page_set);
2869 2870 2871 2872 2873 2874 2875 2876 2877
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         data, true);
		goto out;
	}

2878 2879 2880
	if (!page_set) {
		if (page == HV_INTC_FC_PAGE_START)
			page = 0;
2881

2882 2883 2884 2885
		if (reg > MAX_PHY_MULTI_PAGE_REG) {
			/* Page is shifted left, PHY expects (page x 32) */
			ret_val = e1000_set_page_igp(hw,
						     (page << IGP_PAGE_SHIFT));
2886

2887
			hw->phy.addr = phy_addr;
2888

2889 2890 2891
			if (ret_val)
				goto out;
		}
2892 2893
	}

2894 2895 2896
	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
	      page << IGP_PAGE_SHIFT, reg);

2897 2898 2899
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);
out:
2900
	if (!locked)
2901
		hw->phy.ops.release(hw);
2902

2903 2904 2905 2906
	return ret_val;
}

/**
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
 *  e1000_read_phy_reg_hv -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores
 *  the retrieved information in data.  Release the acquired semaphore
 *  before exiting.
 **/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
2918
	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
}

/**
 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
}

/**
 *  e1000_read_phy_reg_page_hv - Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired and page already set.
 **/
s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2947 2948 2949 2950
}

/**
 *  __e1000_write_phy_reg_hv - Write HV PHY register
2951 2952 2953
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
2954
 *  @locked: semaphore has already been acquired or not
2955 2956 2957 2958
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
2959
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2960
				    bool locked, bool page_set)
2961 2962 2963 2964
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);
2965
	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2966

2967
	if (!locked) {
2968
		ret_val = hw->phy.ops.acquire(hw);
2969 2970 2971 2972
		if (ret_val)
			return ret_val;
	}

2973 2974
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
2975 2976
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false, page_set);
2977 2978 2979 2980 2981 2982 2983 2984 2985
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         &data, false);
		goto out;
	}

2986 2987 2988
	if (!page_set) {
		if (page == HV_INTC_FC_PAGE_START)
			page = 0;
2989

2990 2991 2992 2993 2994 2995 2996
		/*
		 * Workaround MDIO accesses being disabled after entering IEEE
		 * Power Down (when bit 11 of the PHY Control register is set)
		 */
		if ((hw->phy.type == e1000_phy_82578) &&
		    (hw->phy.revision >= 1) &&
		    (hw->phy.addr == 2) &&
B
Bruce Allan 已提交
2997
		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2998 2999 3000 3001 3002 3003 3004
			u16 data2 = 0x7EFF;
			ret_val = e1000_access_phy_debug_regs_hv(hw,
								 (1 << 6) | 0x3,
								 &data2, false);
			if (ret_val)
				goto out;
		}
3005

3006 3007 3008 3009
		if (reg > MAX_PHY_MULTI_PAGE_REG) {
			/* Page is shifted left, PHY expects (page x 32) */
			ret_val = e1000_set_page_igp(hw,
						     (page << IGP_PAGE_SHIFT));
3010

3011
			hw->phy.addr = phy_addr;
3012

3013 3014 3015
			if (ret_val)
				goto out;
		}
3016 3017
	}

3018 3019 3020
	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
	      page << IGP_PAGE_SHIFT, reg);

3021 3022 3023 3024
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);

out:
3025
	if (!locked)
3026
		hw->phy.ops.release(hw);
3027

3028 3029 3030
	return ret_val;
}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
/**
 *  e1000_write_phy_reg_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register at the offset.
 *  Release the acquired semaphores before exiting.
 **/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
3042
	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
}

/**
 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired.
 **/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
}

/**
 *  e1000_write_phy_reg_page_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired and page already set.
 **/
s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3071 3072
}

3073
/**
3074
 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
 *  @page: page to be accessed
 **/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
	u32 phy_addr = 2;

	if (page >= HV_INTC_FC_PAGE_START)
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to be read or written
3092
 *  @read: determines if operation is read or write
3093
 *
3094 3095
 *  Reads the PHY register at offset and stores the retreived information
 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3096 3097
 *  to access these regs uses the address port and data port to read/write.
 *  These accesses done with PHY address 2 and without using pages.
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
 **/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read)
{
	s32 ret_val;
	u32 addr_reg = 0;
	u32 data_reg = 0;

	/* This takes care of the difference with desktop vs mobile phy */
	addr_reg = (hw->phy.type == e1000_phy_82578) ?
	           I82578_ADDR_REG : I82577_ADDR_REG;
	data_reg = addr_reg + 1;

	/* All operations in this function are phy address 2 */
	hw->phy.addr = 2;

	/* masking with 0x3F to remove the page from offset */
	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
	if (ret_val) {
3117
		e_dbg("Could not write the Address Offset port register\n");
3118
		return ret_val;
3119 3120 3121 3122 3123 3124 3125 3126
	}

	/* Read or write the data value next */
	if (read)
		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
	else
		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);

3127
	if (ret_val)
3128
		e_dbg("Could not access the Data port register\n");
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149

	return ret_val;
}

/**
 *  e1000_link_stall_workaround_hv - Si workaround
 *  @hw: pointer to the HW structure
 *
 *  This function works around a Si bug where the link partner can get
 *  a link up indication before the PHY does.  If small packets are sent
 *  by the link partner they can be placed in the packet buffer without
 *  being properly accounted for by the PHY and will stall preventing
 *  further packets from being received.  The workaround is to clear the
 *  packet buffer after the PHY detects link up.
 **/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 data;

	if (hw->phy.type != e1000_phy_82578)
3150
		return 0;
3151

3152
	/* Do not apply workaround if in PHY loopback bit 14 set */
3153
	e1e_rphy(hw, PHY_CONTROL, &data);
3154
	if (data & PHY_CONTROL_LB)
3155
		return 0;
3156

3157
	/* check if link is up and at 1Gbps */
3158
	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3159
	if (ret_val)
3160
		return ret_val;
3161

3162 3163
	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
		BM_CS_STATUS_SPEED_MASK;
3164

3165 3166
	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
		     BM_CS_STATUS_SPEED_1000))
3167
		return 0;
3168

3169
	msleep(200);
3170 3171

	/* flush the packets in the fifo buffer */
3172 3173
	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3174
	if (ret_val)
3175
		return ret_val;
3176

3177
	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
}

/**
 *  e1000_check_polarity_82577 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

3194
	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

	if (!ret_val)
		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
 *  @hw: pointer to the HW structure
 *
3208
 *  Calls the PHY setup function to force speed and duplex.
3209 3210 3211 3212 3213 3214 3215 3216
 **/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

3217
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3218
	if (ret_val)
3219
		return ret_val;
3220 3221 3222

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

3223
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3224
	if (ret_val)
3225
		return ret_val;
3226 3227 3228 3229

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
3230
		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3231

3232 3233
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
3234
		if (ret_val)
3235
			return ret_val;
3236 3237

		if (!link)
3238
			e_dbg("Link taking longer than expected.\n");
3239 3240

		/* Try once more */
3241 3242
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	}

	return ret_val;
}

/**
 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
3266
		return ret_val;
3267 3268

	if (!link) {
3269
		e_dbg("Phy info is only valid if link is up\n");
3270
		return -E1000_ERR_CONFIG;
3271 3272 3273 3274 3275 3276
	}

	phy->polarity_correction = true;

	ret_val = e1000_check_polarity_82577(hw);
	if (ret_val)
3277
		return ret_val;
3278

3279
	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3280
	if (ret_val)
3281
		return ret_val;
3282

B
Bruce Allan 已提交
3283
	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3284 3285 3286 3287 3288

	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
3289
			return ret_val;
3290

3291
		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3292
		if (ret_val)
3293
			return ret_val;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
		                ? e1000_1000t_rx_status_ok
		                : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
		                 ? e1000_1000t_rx_status_ok
		                 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

3308
	return 0;
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
}

/**
 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
 *  @hw: pointer to the HW structure
 *
 * Reads the diagnostic status register and verifies result is valid before
 * placing it in the phy_cable_length field.
 **/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, length;

3324
	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3325
	if (ret_val)
3326
		return ret_val;
3327 3328 3329 3330 3331

	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;

	if (length == E1000_CABLE_LENGTH_UNDEFINED)
B
Bruce Allan 已提交
3332
		ret_val = -E1000_ERR_PHY;
3333 3334 3335

	phy->cable_length = length;

3336
	return 0;
3337
}