phy.c 89.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include "e1000.h"

static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 36
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37
					  u16 *data, bool read, bool page_set);
38 39 40
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read);
41 42

/* Cable length tables */
43 44
static const u16 e1000_m88_cable_length_table[] = {
	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 46
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_m88_cable_length_table)
47

48 49 50 51 52 53 54 55 56
static const u16 e1000_igp_2_cable_length_table[] = {
	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
	124};
57
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58
		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define BM_PHY_REG_PAGE(offset) \
	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
#define BM_PHY_REG_NUM(offset) \
	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
		~MAX_PHY_REG_ADDRESS)))

#define HV_INTC_FC_PAGE_START             768
#define I82578_ADDR_REG                   29
#define I82577_ADDR_REG                   16
#define I82577_CFG_REG                    22
#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
#define I82577_CTRL_REG                   23

/* 82577 specific PHY registers */
#define I82577_PHY_CTRL_2            18
#define I82577_PHY_STATUS_2          26
#define I82577_PHY_DIAG_STATUS       31

/* I82577 PHY Status 2 */
#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
#define I82577_PHY_STATUS2_MDIX           0x0800
#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200

/* I82577 PHY Control 2 */
#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200

/* I82577 PHY Diagnostics Status */
#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2

/* BM PHY Copper Specific Control 1 */
#define BM_CS_CTRL1                       16

#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
	u32 manc;

	manc = er32(MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
	       E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
129
	s32 ret_val = 0;
130
	u16 phy_id;
131
	u16 retry_count = 0;
132

133
	if (!phy->ops.read_reg)
134
		return 0;
135

136 137 138
	while (retry_count < 2) {
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
139
			return ret_val;
140

141 142 143 144
		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
145
			return ret_val;
146

147 148 149 150
		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
151
			return 0;
152 153 154

		retry_count++;
	}
155 156

	return 0;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

/**
 *  e1000e_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}

/**
177
 *  e1000e_read_phy_reg_mdic - Read MDI control register
178 179 180 181
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
182
 *  Reads the MDI control register in the PHY at offset and stores the
183 184
 *  information read to data.
 **/
185
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
186 187 188 189 190
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
191
		e_dbg("PHY Address %d is out of range\n", offset);
192 193 194
		return -E1000_ERR_PARAM;
	}

195 196
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
197 198 199 200 201 202 203 204 205
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	ew32(MDIC, mdic);

206 207 208 209 210
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
211
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
212 213 214 215 216 217
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
218
		e_dbg("MDI Read did not complete\n");
219 220 221
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
222
		e_dbg("MDI Error\n");
223 224 225 226
		return -E1000_ERR_PHY;
	}
	*data = (u16) mdic;

227 228 229 230 231 232 233
	/*
	 * Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

234 235 236 237
	return 0;
}

/**
238
 *  e1000e_write_phy_reg_mdic - Write MDI control register
239 240 241 242 243 244
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
245
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
246 247 248 249 250
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
251
		e_dbg("PHY Address %d is out of range\n", offset);
252 253 254
		return -E1000_ERR_PARAM;
	}

255 256
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
257 258 259 260 261 262 263 264 265 266
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	ew32(MDIC, mdic);

267 268 269 270 271 272 273
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
274 275 276 277 278
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
279
		e_dbg("MDI Write did not complete\n");
280 281
		return -E1000_ERR_PHY;
	}
282
	if (mdic & E1000_MDIC_ERROR) {
283
		e_dbg("MDI Error\n");
284 285
		return -E1000_ERR_PHY;
	}
286

287 288 289 290 291 292 293
	/*
	 * Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	return 0;
}

/**
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

311
	ret_val = hw->phy.ops.acquire(hw);
312 313 314
	if (ret_val)
		return ret_val;

315 316
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
317

318
	hw->phy.ops.release(hw);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

336
	ret_val = hw->phy.ops.acquire(hw);
337 338 339
	if (ret_val)
		return ret_val;

340 341
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
342

343
	hw->phy.ops.release(hw);
344 345 346 347

	return ret_val;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/**
 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 *  @hw: pointer to the HW structure
 *  @page: page to set (shifted left when necessary)
 *
 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 *  must set it appropriately (if necessary) after this function returns.
 **/
s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
{
	e_dbg("Setting page 0x%x\n", page);

	hw->phy.addr = 1;

	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
}

366
/**
367
 *  __e1000e_read_phy_reg_igp - Read igp PHY register
368 369 370
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
371
 *  @locked: semaphore has already been acquired or not
372 373
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
374
 *  and stores the retrieved information in data.  Release any acquired
375 376
 *  semaphores before exiting.
 **/
377 378
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
                                    bool locked)
379
{
380
	s32 ret_val = 0;
381

382
	if (!locked) {
383
		if (!hw->phy.ops.acquire)
384
			return 0;
385

386
		ret_val = hw->phy.ops.acquire(hw);
387
		if (ret_val)
388
			return ret_val;
389
	}
390

391
	if (offset > MAX_PHY_MULTI_PAGE_REG)
392 393 394
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
395 396 397 398
	if (!ret_val)
		ret_val = e1000e_read_phy_reg_mdic(hw,
						   MAX_PHY_REG_ADDRESS & offset,
						   data);
399
	if (!locked)
400
		hw->phy.ops.release(hw);
401

402 403 404
	return ret_val;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/**
 *  e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores the
 *  retrieved information in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}

434 435 436 437 438
/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
439
 *  @locked: semaphore has already been acquired or not
440 441 442 443
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
444 445
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
                                     bool locked)
446
{
447
	s32 ret_val = 0;
448

449
	if (!locked) {
450
		if (!hw->phy.ops.acquire)
451
			return 0;
452

453
		ret_val = hw->phy.ops.acquire(hw);
454
		if (ret_val)
455
			return ret_val;
456
	}
457

458
	if (offset > MAX_PHY_MULTI_PAGE_REG)
459 460 461
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
462 463 464 465
	if (!ret_val)
		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
							offset,
						    data);
466
	if (!locked)
467
		hw->phy.ops.release(hw);
468 469 470 471 472

	return ret_val;
}

/**
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}

/**
 *  __e1000_read_kmrn_reg - Read kumeran register
502 503 504
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
505
 *  @locked: semaphore has already been acquired or not
506 507 508 509 510
 *
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release any acquired semaphores before exiting.
 **/
511 512
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
                                 bool locked)
513 514 515
{
	u32 kmrnctrlsta;

516
	if (!locked) {
517 518
		s32 ret_val = 0;

519
		if (!hw->phy.ops.acquire)
520
			return 0;
521

522
		ret_val = hw->phy.ops.acquire(hw);
523
		if (ret_val)
524
			return ret_val;
525
	}
526 527 528 529

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
530
	e1e_flush();
531 532 533 534 535 536

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

537
	if (!locked)
538
		hw->phy.ops.release(hw);
539

540
	return 0;
541 542 543
}

/**
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
 *  e1000e_read_kmrn_reg -  Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset using the
 *  kumeran interface.  The information retrieved is stored in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_kmrn_reg(hw, offset, data, false);
}

/**
559
 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
560 561 562 563 564 565 566 567
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the kumeran interface.  The
 *  information retrieved is stored in data.
 *  Assumes semaphore already acquired.
 **/
568
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
569 570 571 572 573 574
{
	return __e1000_read_kmrn_reg(hw, offset, data, true);
}

/**
 *  __e1000_write_kmrn_reg - Write kumeran register
575 576 577
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
578
 *  @locked: semaphore has already been acquired or not
579 580 581 582 583
 *
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 *  at the offset using the kumeran interface.  Release any acquired semaphores
 *  before exiting.
 **/
584 585
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
                                  bool locked)
586 587 588
{
	u32 kmrnctrlsta;

589
	if (!locked) {
590 591
		s32 ret_val = 0;

592
		if (!hw->phy.ops.acquire)
593
			return 0;
594

595
		ret_val = hw->phy.ops.acquire(hw);
596
		if (ret_val)
597
			return ret_val;
598
	}
599 600 601 602

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
603
	e1e_flush();
604 605 606

	udelay(2);

607
	if (!locked)
608
		hw->phy.ops.release(hw);
609

610
	return 0;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 *  e1000e_write_kmrn_reg -  Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to the PHY register at the offset
 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 **/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_kmrn_reg(hw, offset, data, false);
}

/**
628
 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
629 630 631 632 633 634 635
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Write the data to PHY register at the offset using the kumeran interface.
 *  Assumes semaphore already acquired.
 **/
636
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
637 638 639 640
{
	return __e1000_write_kmrn_reg(hw, offset, data, true);
}

641 642 643 644 645 646 647 648 649 650 651
/**
 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up Carrier-sense on Transmit and downshift values.
 **/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;

652
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
653
	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
654
	if (ret_val)
655
		return ret_val;
656 657 658 659 660 661

	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;

	/* Enable downshift */
	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;

662
	return e1e_wphy(hw, I82577_CFG_REG, phy_data);
663 664
}

665 666 667 668 669 670 671 672 673 674 675 676 677
/**
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

678
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
679 680 681 682
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

683 684
	/* For BM PHY this bit is downshift enable */
	if (phy->type != e1000_phy_bm)
685
		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
686

687 688
	/*
	 * Options:
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

713 714
	/*
	 * Options:
715 716 717 718 719 720
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
B
Bruce Allan 已提交
721
	if (phy->disable_polarity_correction)
722 723
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

724 725 726 727
	/* Enable downshift on BM (disabled by default) */
	if (phy->type == e1000_phy_bm)
		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;

728 729 730 731
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

732 733 734
	if ((phy->type == e1000_phy_m88) &&
	    (phy->revision < E1000_REVISION_4) &&
	    (phy->id != BME1000_E_PHY_ID_R2)) {
735 736
		/*
		 * Force TX_CLK in the Extended PHY Specific Control Register
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		 * to 25MHz clock.
		 */
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == 2) &&
		    (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

762 763 764 765 766 767 768 769 770 771 772 773
	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
		/* Set PHY page 0, register 29 to 0x0003 */
		ret_val = e1e_wphy(hw, 29, 0x0003);
		if (ret_val)
			return ret_val;

		/* Set PHY page 0, register 30 to 0x0000 */
		ret_val = e1e_wphy(hw, 30, 0x0000);
		if (ret_val)
			return ret_val;
	}

774 775
	/* Commit the changes. */
	ret_val = e1000e_commit_phy(hw);
776
	if (ret_val) {
777
		e_dbg("Error committing the PHY changes\n");
778 779
		return ret_val;
	}
780

781
	if (phy->type == e1000_phy_82578) {
782
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
783 784 785 786 787 788
		if (ret_val)
			return ret_val;

		/* 82578 PHY - set the downshift count to 1x. */
		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
789
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
790 791 792 793 794
		if (ret_val)
			return ret_val;
	}

	return 0;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
}

/**
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1000_phy_hw_reset(hw);
	if (ret_val) {
812
		e_dbg("Error resetting the PHY.\n");
813 814 815
		return ret_val;
	}

816 817 818 819 820
	/*
	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);
821 822

	/* disable lplu d0 during driver init */
823
	ret_val = e1000_set_d0_lplu_state(hw, false);
824
	if (ret_val) {
825
		e_dbg("Error Disabling LPLU D0\n");
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		return ret_val;
	}
	/* Configure mdi-mdix settings */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
853 854
		/*
		 * when autonegotiation advertisement is only 1000Mbps then we
855
		 * should disable SmartSpeed and enable Auto MasterSlave
856 857
		 * resolution as hardware default.
		 */
858 859 860
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
861
					   &data);
862 863 864 865 866
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
867
					   data);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
			if (ret_val)
				return ret_val;

			/* Set auto Master/Slave resolution process */
			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
			if (ret_val)
				return ret_val;

			data &= ~CR_1000T_MS_ENABLE;
			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
		if (ret_val)
			return ret_val;

		/* load defaults for future use */
		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
			((data & CR_1000T_MS_VALUE) ?
			e1000_ms_force_master :
			e1000_ms_force_slave) :
			e1000_ms_auto;

		switch (phy->ms_type) {
		case e1000_ms_force_master:
			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			data |= CR_1000T_MS_ENABLE;
			data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
	}

	return ret_val;
}

/**
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

942 943
	/*
	 * Need to parse both autoneg_advertised and fc and set up
944 945 946 947 948 949
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

950 951
	/*
	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
952 953 954 955 956 957 958 959 960
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

961
	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
962 963 964

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
965
		e_dbg("Advertise 10mb Half duplex\n");
966 967 968 969 970
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
971
		e_dbg("Advertise 10mb Full duplex\n");
972 973 974 975 976
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
977
		e_dbg("Advertise 100mb Half duplex\n");
978 979 980 981 982
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
983
		e_dbg("Advertise 100mb Full duplex\n");
984 985 986 987 988
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
989
		e_dbg("Advertise 1000mb Half duplex request denied!\n");
990 991 992

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
993
		e_dbg("Advertise 1000mb Full duplex\n");
994 995 996
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

997 998
	/*
	 * Check for a software override of the flow control settings, and
999 1000 1001 1002 1003 1004 1005 1006 1007
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
1008
	 *          but not send pause frames).
1009
	 *      2:  Tx flow control is enabled (we can send pause frames
1010
	 *          but we do not support receiving pause frames).
1011
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1012
	 *  other:  No software override.  The flow control configuration
1013
	 *          in the EEPROM is used.
1014
	 */
1015
	switch (hw->fc.current_mode) {
1016
	case e1000_fc_none:
1017 1018
		/*
		 * Flow control (Rx & Tx) is completely disabled by a
1019 1020 1021 1022 1023
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:
1024 1025
		/*
		 * Rx Flow control is enabled, and Tx Flow control is
1026
		 * disabled, by a software over-ride.
1027 1028 1029 1030
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
1031 1032 1033 1034 1035 1036
		 * (in e1000e_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:
1037 1038
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
1039 1040 1041 1042 1043 1044
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:
1045 1046
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
1047 1048 1049 1050 1051
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
1052
		e_dbg("Flow control param set incorrectly\n");
1053
		return -E1000_ERR_CONFIG;
1054 1055 1056 1057 1058 1059
	}

	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

1060
	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1061

B
Bruce Allan 已提交
1062
	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);

	return ret_val;
}

/**
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
1075
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1076 1077 1078 1079 1080 1081 1082
 **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

1083 1084
	/*
	 * Perform some bounds checking on the autoneg advertisement
1085 1086 1087 1088
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

1089 1090
	/*
	 * If autoneg_advertised is zero, we assume it was not defaulted
1091 1092
	 * by the calling code so we set to advertise full capability.
	 */
B
Bruce Allan 已提交
1093
	if (!phy->autoneg_advertised)
1094 1095
		phy->autoneg_advertised = phy->autoneg_mask;

1096
	e_dbg("Reconfiguring auto-neg advertisement params\n");
1097 1098
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
1099
		e_dbg("Error Setting up Auto-Negotiation\n");
1100 1101
		return ret_val;
	}
1102
	e_dbg("Restarting Auto-Neg\n");
1103

1104 1105
	/*
	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

1117 1118
	/*
	 * Does the user want to wait for Auto-Neg to complete here, or
1119 1120
	 * check at a later time (for example, callback routine).
	 */
1121
	if (phy->autoneg_wait_to_complete) {
1122 1123
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
1124
			e_dbg("Error while waiting for autoneg to complete\n");
1125 1126 1127 1128
			return ret_val;
		}
	}

1129
	hw->mac.get_link_status = true;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

	return ret_val;
}

/**
 *  e1000e_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
1149 1150 1151 1152
		/*
		 * Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
1153 1154 1155 1156
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			return ret_val;
	} else {
1157 1158 1159 1160
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
1161
		e_dbg("Forcing Speed and Duplex\n");
1162 1163
		ret_val = e1000_phy_force_speed_duplex(hw);
		if (ret_val) {
1164
			e_dbg("Error Forcing Speed and Duplex\n");
1165 1166 1167 1168
			return ret_val;
		}
	}

1169 1170
	/*
	 * Check link status. Wait up to 100 microseconds for link to become
1171 1172
	 * valid.
	 */
1173 1174
	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
					      &link);
1175 1176 1177 1178
	if (ret_val)
		return ret_val;

	if (link) {
1179
		e_dbg("Valid link established!!!\n");
1180
		hw->mac.ops.config_collision_dist(hw);
1181 1182
		ret_val = e1000e_config_fc_after_link_up(hw);
	} else {
1183
		e_dbg("Unable to establish link!!!\n");
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1214 1215
	/*
	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1229
	e_dbg("IGP PSCR: %X\n", phy_data);
1230 1231 1232

	udelay(1);

1233
	if (phy->autoneg_wait_to_complete) {
1234
		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1235

1236 1237
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1238 1239 1240 1241
		if (ret_val)
			return ret_val;

		if (!link)
1242
			e_dbg("Link taking longer than expected.\n");
1243 1244

		/* Try once more */
1245 1246
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
1259
 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1260 1261 1262 1263 1264 1265 1266 1267 1268
 *  successful completion, else return corresponding error code.
 **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

1269 1270
	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1282
	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1294 1295 1296 1297
	/* Reset the phy to commit changes. */
	ret_val = e1000e_commit_phy(hw);
	if (ret_val)
		return ret_val;
1298

1299
	if (phy->autoneg_wait_to_complete) {
1300
		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1301 1302 1303 1304 1305 1306 1307

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
1308 1309 1310 1311 1312 1313 1314
			if (hw->phy.type != e1000_phy_m88) {
				e_dbg("Link taking longer than expected.\n");
			} else {
				/*
				 * We didn't get link.
				 * Reset the DSP and cross our fingers.
				 */
1315 1316
				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
						   0x001d);
1317 1318 1319 1320 1321 1322
				if (ret_val)
					return ret_val;
				ret_val = e1000e_phy_reset_dsp(hw);
				if (ret_val)
					return ret_val;
			}
1323 1324 1325 1326 1327 1328 1329 1330 1331
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;
	}

1332 1333 1334
	if (hw->phy.type != e1000_phy_m88)
		return 0;

1335 1336 1337 1338
	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

1339 1340
	/*
	 * Resetting the phy means we need to re-force TX_CLK in the
1341 1342 1343 1344 1345 1346 1347 1348
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1349 1350
	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	 * duplex.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

	return ret_val;
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
	if (ret_val)
1380
		return ret_val;
1381 1382 1383 1384 1385

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
	if (ret_val)
1386
		return ret_val;
1387 1388 1389 1390

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
1391
		return ret_val;
1392 1393 1394 1395 1396 1397

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
1398
		return ret_val;
1399 1400 1401 1402 1403 1404 1405 1406

	e_dbg("IFE PMC: %X\n", data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");

1407 1408
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1409
		if (ret_val)
1410
			return ret_val;
1411 1412 1413 1414 1415

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
1416 1417
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
1418
		if (ret_val)
1419
			return ret_val;
1420 1421
	}

1422
	return 0;
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the PHY_CONTROL register for these settings to
 *  take affect.
 **/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
1443
	hw->fc.current_mode = e1000_fc_none;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	/* Force speed/duplex on the mac */
	ctrl = er32(CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1460
		e_dbg("Half Duplex\n");
1461 1462 1463
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1464
		e_dbg("Full Duplex\n");
1465 1466 1467 1468 1469 1470 1471
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= MII_CR_SPEED_100;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1472
		e_dbg("Forcing 100mb\n");
1473 1474 1475 1476
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl |= MII_CR_SPEED_10;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1477
		e_dbg("Forcing 10mb\n");
1478 1479
	}

1480
	hw->mac.ops.config_collision_dist(hw);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	ew32(CTRL, ctrl);
}

/**
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
1511
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1512 1513
		if (ret_val)
			return ret_val;
1514 1515
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1516 1517
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1518 1519
		 * SmartSpeed, so performance is maintained.
		 */
1520 1521
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1522
					   &data);
1523 1524 1525 1526 1527
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528
					   data);
1529 1530 1531 1532
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533
					   &data);
1534 1535 1536 1537 1538
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539
					   data);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
1564
 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_m88:
	case e1000_phy_gg82563:
1580
	case e1000_phy_bm:
1581
	case e1000_phy_82578:
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		offset	= M88E1000_PHY_SPEC_STATUS;
		mask	= M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
		offset	= IGP01E1000_PHY_LINK_HEALTH;
		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
1592
		phy->speed_downgraded = false;
1593 1594 1595 1596 1597 1598
		return 0;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
B
Bruce Allan 已提交
1599
		phy->speed_downgraded = !!(phy_data & mask);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	return ret_val;
}

/**
 *  e1000_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
1612
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
1637
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1638 1639 1640 1641 1642
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

1643 1644 1645 1646
	/*
	 * Polarity is determined based on the speed of
	 * our connection.
	 */
1647 1648 1649 1650 1651 1652 1653 1654 1655
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset	= IGP01E1000_PHY_PCS_INIT_REG;
		mask	= IGP01E1000_PHY_POLARITY_MASK;
	} else {
1656 1657
		/*
		 * This really only applies to 10Mbps since
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset	= IGP01E1000_PHY_PORT_STATUS;
		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = e1e_rphy(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = (data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**
 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
 *  Polarity is determined on the polarity reversal feature being enabled.
 **/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	/*
	 * Polarity is determined based on the reversal feature being enabled.
	 */
	if (phy->polarity_correction) {
		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask = IFE_PESC_POLARITY_REVERSED;
	} else {
		offset = IFE_PHY_SPECIAL_CONTROL;
		mask = IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = (phy_data & mask)
		                       ? e1000_rev_polarity_reversed
		                       : e1000_rev_polarity_normal;

	return ret_val;
}

1707
/**
1708
 *  e1000_wait_autoneg - Wait for auto-neg completion
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

1732 1733
	/*
	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	 * has completed.
	 */
	return ret_val;
}

/**
 *  e1000e_phy_has_link_generic - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
			       u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
1755 1756
		/*
		 * Some PHYs require the PHY_STATUS register to be read
1757 1758 1759 1760 1761
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
1762 1763 1764 1765 1766 1767
			/*
			 * If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			udelay(usec_interval);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval/1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations);

	return ret_val;
}

/**
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
1807
		return ret_val;
1808 1809

	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1810
	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1811 1812 1813

	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
		return -E1000_ERR_PHY;
1814

1815
	phy->min_cable_length = e1000_m88_cable_length_table[index];
1816
	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1817 1818 1819

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

1820
	return 0;
1821 1822 1823 1824 1825 1826 1827 1828
}

/**
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
1829
 *  cable.  By reading the AGC registers, which represent the
B
Bruce Allan 已提交
1830
 *  combination of coarse and fine gain value, the value can be put
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1841 1842 1843 1844 1845 1846
	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
	       IGP02E1000_PHY_AGC_A,
	       IGP02E1000_PHY_AGC_B,
	       IGP02E1000_PHY_AGC_C,
	       IGP02E1000_PHY_AGC_D
	};
1847 1848 1849 1850 1851 1852 1853

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			return ret_val;

1854 1855
		/*
		 * Getting bits 15:9, which represent the combination of
B
Bruce Allan 已提交
1856
		 * coarse and fine gain values.  The result is a number
1857
		 * that can be put into the lookup table to obtain the
1858 1859
		 * approximate cable length.
		 */
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				IGP02E1000_AGC_LENGTH_MASK;

		/* Array index bound check. */
		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
		    (cur_agc_index == 0))
			return -E1000_ERR_PHY;

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

B
Bruce Allan 已提交
1890
	return 0;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
}

/**
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u16 phy_data;
	bool link;

1910
	if (phy->media_type != e1000_media_type_copper) {
1911
		e_dbg("Phy info is only valid for copper media\n");
1912 1913 1914 1915 1916 1917 1918 1919
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1920
		e_dbg("Phy info is only valid if link is up\n");
1921 1922 1923 1924 1925 1926 1927
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
1928 1929
	phy->polarity_correction = !!(phy_data &
				      M88E1000_PSCR_POLARITY_REVERSAL);
1930 1931 1932 1933 1934 1935 1936 1937 1938

	ret_val = e1000_check_polarity_m88(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
1939
	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1988
		e_dbg("Phy info is only valid if link is up\n");
1989 1990 1991
		return -E1000_ERR_CONFIG;
	}

1992
	phy->polarity_correction = true;
1993 1994 1995 1996 1997 1998 1999 2000 2001

	ret_val = e1000_check_polarity_igp(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
2002
	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/**
 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 **/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
2045
		return ret_val;
2046 2047 2048

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
2049
		return -E1000_ERR_CONFIG;
2050 2051 2052 2053
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
2054
		return ret_val;
B
Bruce Allan 已提交
2055
	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2056 2057 2058 2059

	if (phy->polarity_correction) {
		ret_val = e1000_check_polarity_ife(hw);
		if (ret_val)
2060
			return ret_val;
2061 2062 2063 2064 2065 2066 2067 2068 2069
	} else {
		/* Polarity is forced */
		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
2070
		return ret_val;
2071

B
Bruce Allan 已提交
2072
	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2073 2074 2075 2076 2077 2078

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

2079
	return 0;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
/**
 *  e1000e_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_ctrl;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= MII_CR_RESET;
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

	udelay(1);

	return ret_val;
}

/**
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
2115
 *  reset and release the semaphore (if necessary).
2116 2117 2118 2119 2120 2121 2122
 **/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl;

2123
	ret_val = phy->ops.check_reset_block(hw);
2124 2125 2126
	if (ret_val)
		return 0;

2127
	ret_val = phy->ops.acquire(hw);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	if (ret_val)
		return ret_val;

	ctrl = er32(CTRL);
	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
	e1e_flush();

	udelay(phy->reset_delay_us);

	ew32(CTRL, ctrl);
	e1e_flush();

	udelay(150);

2142
	phy->ops.release(hw);
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

	return e1000_get_phy_cfg_done(hw);
}

/**
 *  e1000e_get_cfg_done - Generic configuration done
 *  @hw: pointer to the HW structure
 *
 *  Generic function to wait 10 milli-seconds for configuration to complete
 *  and return success.
 **/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
	mdelay(10);
2157

2158 2159 2160
	return 0;
}

2161 2162 2163 2164 2165 2166 2167 2168
/**
 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
 **/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
2169
	e_dbg("Running IGP 3 PHY init script\n");
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	/* PHY init IGP 3 */
	/* Enable rise/fall, 10-mode work in class-A */
	e1e_wphy(hw, 0x2F5B, 0x9018);
	/* Remove all caps from Replica path filter */
	e1e_wphy(hw, 0x2F52, 0x0000);
	/* Bias trimming for ADC, AFE and Driver (Default) */
	e1e_wphy(hw, 0x2FB1, 0x8B24);
	/* Increase Hybrid poly bias */
	e1e_wphy(hw, 0x2FB2, 0xF8F0);
	/* Add 4% to Tx amplitude in Gig mode */
	e1e_wphy(hw, 0x2010, 0x10B0);
	/* Disable trimming (TTT) */
	e1e_wphy(hw, 0x2011, 0x0000);
	/* Poly DC correction to 94.6% + 2% for all channels */
	e1e_wphy(hw, 0x20DD, 0x249A);
	/* ABS DC correction to 95.9% */
	e1e_wphy(hw, 0x20DE, 0x00D3);
	/* BG temp curve trim */
	e1e_wphy(hw, 0x28B4, 0x04CE);
	/* Increasing ADC OPAMP stage 1 currents to max */
	e1e_wphy(hw, 0x2F70, 0x29E4);
	/* Force 1000 ( required for enabling PHY regs configuration) */
	e1e_wphy(hw, 0x0000, 0x0140);
	/* Set upd_freq to 6 */
	e1e_wphy(hw, 0x1F30, 0x1606);
	/* Disable NPDFE */
	e1e_wphy(hw, 0x1F31, 0xB814);
	/* Disable adaptive fixed FFE (Default) */
	e1e_wphy(hw, 0x1F35, 0x002A);
	/* Enable FFE hysteresis */
	e1e_wphy(hw, 0x1F3E, 0x0067);
	/* Fixed FFE for short cable lengths */
	e1e_wphy(hw, 0x1F54, 0x0065);
	/* Fixed FFE for medium cable lengths */
	e1e_wphy(hw, 0x1F55, 0x002A);
	/* Fixed FFE for long cable lengths */
	e1e_wphy(hw, 0x1F56, 0x002A);
	/* Enable Adaptive Clip Threshold */
	e1e_wphy(hw, 0x1F72, 0x3FB0);
	/* AHT reset limit to 1 */
	e1e_wphy(hw, 0x1F76, 0xC0FF);
	/* Set AHT master delay to 127 msec */
	e1e_wphy(hw, 0x1F77, 0x1DEC);
	/* Set scan bits for AHT */
	e1e_wphy(hw, 0x1F78, 0xF9EF);
	/* Set AHT Preset bits */
	e1e_wphy(hw, 0x1F79, 0x0210);
	/* Change integ_factor of channel A to 3 */
	e1e_wphy(hw, 0x1895, 0x0003);
	/* Change prop_factor of channels BCD to 8 */
	e1e_wphy(hw, 0x1796, 0x0008);
	/* Change cg_icount + enable integbp for channels BCD */
	e1e_wphy(hw, 0x1798, 0xD008);
	/*
	 * Change cg_icount + enable integbp + change prop_factor_master
	 * to 8 for channel A
	 */
	e1e_wphy(hw, 0x1898, 0xD918);
	/* Disable AHT in Slave mode on channel A */
	e1e_wphy(hw, 0x187A, 0x0800);
	/*
	 * Enable LPLU and disable AN to 1000 in non-D0a states,
	 * Enable SPD+B2B
	 */
	e1e_wphy(hw, 0x0019, 0x008D);
	/* Enable restart AN on an1000_dis change */
	e1e_wphy(hw, 0x001B, 0x2080);
	/* Enable wh_fifo read clock in 10/100 modes */
	e1e_wphy(hw, 0x0014, 0x0045);
	/* Restart AN, Speed selection is 1000 */
	e1e_wphy(hw, 0x0000, 0x1340);

	return 0;
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/* Internal function pointers */

/**
 *  e1000_get_phy_cfg_done - Generic PHY configuration done
 *  @hw: pointer to the HW structure
 *
 *  Return success if silicon family did not implement a family specific
 *  get_cfg_done function.
 **/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
	if (hw->phy.ops.get_cfg_done)
		return hw->phy.ops.get_cfg_done(hw);

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
 *  @hw: pointer to the HW structure
 *
 *  When the silicon family has not implemented a forced speed/duplex
 *  function for the PHY, simply return 0.
 **/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
	if (hw->phy.ops.force_speed_duplex)
		return hw->phy.ops.force_speed_duplex(hw);

	return 0;
}

/**
 *  e1000e_get_phy_type_from_id - Get PHY type from id
 *  @phy_id: phy_id read from the phy
 *
 *  Returns the phy type from the id.
 **/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	switch (phy_id) {
	case M88E1000_I_PHY_ID:
	case M88E1000_E_PHY_ID:
	case M88E1111_I_PHY_ID:
	case M88E1011_I_PHY_ID:
		phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
		phy_type = e1000_phy_igp_2;
		break;
	case GG82563_E_PHY_ID:
		phy_type = e1000_phy_gg82563;
		break;
	case IGP03E1000_E_PHY_ID:
		phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy_type = e1000_phy_ife;
		break;
2309 2310 2311 2312
	case BME1000_E_PHY_ID:
	case BME1000_E_PHY_ID_R2:
		phy_type = e1000_phy_bm;
		break;
2313 2314 2315 2316 2317 2318
	case I82578_E_PHY_ID:
		phy_type = e1000_phy_82578;
		break;
	case I82577_E_PHY_ID:
		phy_type = e1000_phy_82577;
		break;
2319 2320 2321
	case I82579_E_PHY_ID:
		phy_type = e1000_phy_82579;
		break;
2322 2323 2324 2325 2326 2327 2328
	default:
		phy_type = e1000_phy_unknown;
		break;
	}
	return phy_type;
}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
/**
 *  e1000e_determine_phy_address - Determines PHY address.
 *  @hw: pointer to the HW structure
 *
 *  This uses a trial and error method to loop through possible PHY
 *  addresses. It tests each by reading the PHY ID registers and
 *  checking for a match.
 **/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
2339 2340
	u32 phy_addr = 0;
	u32 i;
2341 2342
	enum e1000_phy_type phy_type = e1000_phy_unknown;

2343 2344 2345 2346 2347 2348 2349
	hw->phy.id = phy_type;

	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
		hw->phy.addr = phy_addr;
		i = 0;

		do {
2350 2351 2352
			e1000e_get_phy_id(hw);
			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);

2353
			/*
2354 2355 2356
			 * If phy_type is valid, break - we found our
			 * PHY address
			 */
2357 2358 2359
			if (phy_type  != e1000_phy_unknown)
				return 0;

2360
			usleep_range(1000, 2000);
2361 2362 2363
			i++;
		} while (i < 10);
	}
2364

2365
	return -E1000_ERR_PHY_TYPE;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
}

/**
 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
 *  @page: page to access
 *
 *  Returns the phy address for the page requested.
 **/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
	u32 phy_addr = 2;

	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000e_write_phy_reg_bm - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

2398
	ret_val = hw->phy.ops.acquire(hw);
2399 2400 2401
	if (ret_val)
		return ret_val;

2402 2403 2404
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2405
							 false, false);
2406
		goto release;
2407 2408 2409 2410 2411
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2412 2413
		u32 page_shift, page_select;

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2430
		if (ret_val)
2431
			goto release;
2432 2433 2434 2435 2436
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                    data);

2437
release:
2438
	hw->phy.ops.release(hw);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

2457
	ret_val = hw->phy.ops.acquire(hw);
2458 2459 2460
	if (ret_val)
		return ret_val;

2461 2462 2463
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2464
							 true, false);
2465
		goto release;
2466 2467 2468 2469 2470
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2471 2472
		u32 page_shift, page_select;

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2489
		if (ret_val)
2490
			goto release;
2491 2492 2493 2494
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                   data);
2495
release:
2496
	hw->phy.ops.release(hw);
2497 2498 2499
	return ret_val;
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
/**
 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2515
	ret_val = hw->phy.ops.acquire(hw);
2516 2517 2518
	if (ret_val)
		return ret_val;

2519 2520 2521
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2522
							 true, false);
2523
		goto release;
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2534
		if (ret_val)
2535
			goto release;
2536 2537 2538 2539
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
2540
release:
2541
	hw->phy.ops.release(hw);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	return ret_val;
}

/**
 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2559
	ret_val = hw->phy.ops.acquire(hw);
2560 2561 2562
	if (ret_val)
		return ret_val;

2563 2564 2565
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2566
							 false, false);
2567
		goto release;
2568 2569 2570 2571 2572 2573 2574 2575 2576
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2577
		if (ret_val)
2578
			goto release;
2579 2580 2581 2582 2583
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

2584
release:
2585
	hw->phy.ops.release(hw);
2586 2587 2588
	return ret_val;
}

2589
/**
2590
 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2591
 *  @hw: pointer to the HW structure
2592
 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2593
 *
2594 2595
 *  Assumes semaphore already acquired and phy_reg points to a valid memory
 *  address to store contents of the BM_WUC_ENABLE_REG register.
2596
 **/
2597
s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2598 2599
{
	s32 ret_val;
2600
	u16 temp;
2601

2602
	/* All page select, port ctrl and wakeup registers use phy address 1 */
2603 2604
	hw->phy.addr = 1;

2605 2606 2607 2608
	/* Select Port Control Registers page */
	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
	if (ret_val) {
		e_dbg("Could not set Port Control page\n");
2609
		return ret_val;
2610
	}
2611

2612
	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
B
Bruce Allan 已提交
2613
	if (ret_val) {
2614 2615
		e_dbg("Could not read PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2616
		return ret_val;
B
Bruce Allan 已提交
2617
	}
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627
	/*
	 * Enable both PHY wakeup mode and Wakeup register page writes.
	 * Prevent a power state change by disabling ME and Host PHY wakeup.
	 */
	temp = *phy_reg;
	temp |= BM_WUC_ENABLE_BIT;
	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);

	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
B
Bruce Allan 已提交
2628
	if (ret_val) {
2629 2630
		e_dbg("Could not write PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2631
		return ret_val;
B
Bruce Allan 已提交
2632
	}
2633

2634 2635 2636 2637 2638
	/*
	 * Select Host Wakeup Registers page - caller now able to write
	 * registers on the Wakeup registers page
	 */
	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
}

/**
 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
 *  @hw: pointer to the HW structure
 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
 *
 *  Restore BM_WUC_ENABLE_REG to its original value.
 *
 *  Assumes semaphore already acquired and *phy_reg is the contents of the
 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
 *  caller.
 **/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
	s32 ret_val = 0;

	/* Select Port Control Registers page */
	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
B
Bruce Allan 已提交
2658
	if (ret_val) {
2659
		e_dbg("Could not set Port Control page\n");
2660
		return ret_val;
B
Bruce Allan 已提交
2661
	}
2662

2663 2664 2665 2666 2667
	/* Restore 769.17 to its original value */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
	if (ret_val)
		e_dbg("Could not restore PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2668

2669 2670
	return ret_val;
}
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
/**
 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to read or write
 *  @read: determines if operation is read or write
 *  @page_set: BM_WUC_PAGE already set and access enabled
 *
 *  Read the PHY register at offset and store the retrieved information in
 *  data, or write data to PHY register at offset.  Note the procedure to
 *  access the PHY wakeup registers is different than reading the other PHY
 *  registers. It works as such:
 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
 *  2) Set page to 800 for host (801 if we were manageability)
 *  3) Write the address using the address opcode (0x11)
 *  4) Read or write the data using the data opcode (0x12)
 *  5) Restore 769.17.2 to its original value
 *
 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
 *
 *  Assumes semaphore is already acquired.  When page_set==true, assumes
 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
 **/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read, bool page_set)
{
	s32 ret_val;
	u16 reg = BM_PHY_REG_NUM(offset);
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 phy_reg = 0;

	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
	if ((hw->mac.type == e1000_pchlan) &&
	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
		e_dbg("Attempting to access page %d while gig enabled.\n",
		      page);

	if (!page_set) {
		/* Enable access to PHY wakeup registers */
		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
		if (ret_val) {
			e_dbg("Could not enable PHY wakeup reg access\n");
2716
			return ret_val;
2717 2718 2719 2720 2721 2722
		}
	}

	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);

	/* Write the Wakeup register page offset value using opcode 0x11 */
2723
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
B
Bruce Allan 已提交
2724
	if (ret_val) {
2725
		e_dbg("Could not write address opcode to page %d\n", page);
2726
		return ret_val;
B
Bruce Allan 已提交
2727
	}
2728 2729

	if (read) {
2730
		/* Read the Wakeup register page value using opcode 0x12 */
2731 2732 2733
		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
		                                   data);
	} else {
2734
		/* Write the Wakeup register page value using opcode 0x12 */
2735 2736 2737 2738
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						    *data);
	}

B
Bruce Allan 已提交
2739
	if (ret_val) {
2740
		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2741
		return ret_val;
B
Bruce Allan 已提交
2742
	}
2743

2744 2745
	if (!page_set)
		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2746 2747 2748 2749

	return ret_val;
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/**
 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg &= ~MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
}

/**
 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2784
	usleep_range(1000, 2000);
2785 2786
}

2787 2788 2789 2790 2791 2792 2793 2794 2795
/**
 *  e1000e_commit_phy - Soft PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Performs a soft PHY reset on those that apply. This is a function pointer
 *  entry point called by drivers.
 **/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
2796 2797
	if (hw->phy.ops.commit)
		return hw->phy.ops.commit(hw);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

	return 0;
}

/**
 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D0
 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.  This is a function pointer entry point called by drivers.
 **/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
	if (hw->phy.ops.set_d0_lplu_state)
		return hw->phy.ops.set_d0_lplu_state(hw, active);

	return 0;
}
2823 2824

/**
2825
 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2826 2827 2828
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
2829
 *  @locked: semaphore has already been acquired or not
2830 2831
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2832
 *  and stores the retrieved information in data.  Release any acquired
2833 2834
 *  semaphore before exiting.
 **/
2835
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2836
				   bool locked, bool page_set)
2837 2838 2839 2840
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);
2841
	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2842

2843
	if (!locked) {
2844
		ret_val = hw->phy.ops.acquire(hw);
2845 2846 2847 2848
		if (ret_val)
			return ret_val;
	}

2849 2850
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
2851 2852
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true, page_set);
2853 2854 2855 2856 2857 2858 2859 2860 2861
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         data, true);
		goto out;
	}

2862 2863 2864
	if (!page_set) {
		if (page == HV_INTC_FC_PAGE_START)
			page = 0;
2865

2866 2867 2868 2869
		if (reg > MAX_PHY_MULTI_PAGE_REG) {
			/* Page is shifted left, PHY expects (page x 32) */
			ret_val = e1000_set_page_igp(hw,
						     (page << IGP_PAGE_SHIFT));
2870

2871
			hw->phy.addr = phy_addr;
2872

2873 2874 2875
			if (ret_val)
				goto out;
		}
2876 2877
	}

2878 2879 2880
	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
	      page << IGP_PAGE_SHIFT, reg);

2881 2882 2883
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);
out:
2884
	if (!locked)
2885
		hw->phy.ops.release(hw);
2886

2887 2888 2889 2890
	return ret_val;
}

/**
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
 *  e1000_read_phy_reg_hv -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores
 *  the retrieved information in data.  Release the acquired semaphore
 *  before exiting.
 **/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
2902
	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
}

/**
 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
}

/**
 *  e1000_read_phy_reg_page_hv - Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired and page already set.
 **/
s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2931 2932 2933 2934
}

/**
 *  __e1000_write_phy_reg_hv - Write HV PHY register
2935 2936 2937
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
2938
 *  @locked: semaphore has already been acquired or not
2939 2940 2941 2942
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
2943
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2944
				    bool locked, bool page_set)
2945 2946 2947 2948
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);
2949
	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2950

2951
	if (!locked) {
2952
		ret_val = hw->phy.ops.acquire(hw);
2953 2954 2955 2956
		if (ret_val)
			return ret_val;
	}

2957 2958
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
2959 2960
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false, page_set);
2961 2962 2963 2964 2965 2966 2967 2968 2969
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         &data, false);
		goto out;
	}

2970 2971 2972
	if (!page_set) {
		if (page == HV_INTC_FC_PAGE_START)
			page = 0;
2973

2974 2975 2976 2977 2978 2979 2980
		/*
		 * Workaround MDIO accesses being disabled after entering IEEE
		 * Power Down (when bit 11 of the PHY Control register is set)
		 */
		if ((hw->phy.type == e1000_phy_82578) &&
		    (hw->phy.revision >= 1) &&
		    (hw->phy.addr == 2) &&
B
Bruce Allan 已提交
2981
		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2982 2983 2984 2985 2986 2987 2988
			u16 data2 = 0x7EFF;
			ret_val = e1000_access_phy_debug_regs_hv(hw,
								 (1 << 6) | 0x3,
								 &data2, false);
			if (ret_val)
				goto out;
		}
2989

2990 2991 2992 2993
		if (reg > MAX_PHY_MULTI_PAGE_REG) {
			/* Page is shifted left, PHY expects (page x 32) */
			ret_val = e1000_set_page_igp(hw,
						     (page << IGP_PAGE_SHIFT));
2994

2995
			hw->phy.addr = phy_addr;
2996

2997 2998 2999
			if (ret_val)
				goto out;
		}
3000 3001
	}

3002 3003 3004
	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
	      page << IGP_PAGE_SHIFT, reg);

3005 3006 3007 3008
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);

out:
3009
	if (!locked)
3010
		hw->phy.ops.release(hw);
3011

3012 3013 3014
	return ret_val;
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
/**
 *  e1000_write_phy_reg_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register at the offset.
 *  Release the acquired semaphores before exiting.
 **/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
3026
	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
}

/**
 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired.
 **/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
}

/**
 *  e1000_write_phy_reg_page_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired and page already set.
 **/
s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3055 3056
}

3057
/**
3058
 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
 *  @page: page to be accessed
 **/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
	u32 phy_addr = 2;

	if (page >= HV_INTC_FC_PAGE_START)
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to be read or written
3076
 *  @read: determines if operation is read or write
3077
 *
3078 3079
 *  Reads the PHY register at offset and stores the retreived information
 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3080 3081
 *  to access these regs uses the address port and data port to read/write.
 *  These accesses done with PHY address 2 and without using pages.
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
 **/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read)
{
	s32 ret_val;
	u32 addr_reg = 0;
	u32 data_reg = 0;

	/* This takes care of the difference with desktop vs mobile phy */
	addr_reg = (hw->phy.type == e1000_phy_82578) ?
	           I82578_ADDR_REG : I82577_ADDR_REG;
	data_reg = addr_reg + 1;

	/* All operations in this function are phy address 2 */
	hw->phy.addr = 2;

	/* masking with 0x3F to remove the page from offset */
	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
	if (ret_val) {
3101
		e_dbg("Could not write the Address Offset port register\n");
3102
		return ret_val;
3103 3104 3105 3106 3107 3108 3109 3110
	}

	/* Read or write the data value next */
	if (read)
		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
	else
		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);

3111
	if (ret_val)
3112
		e_dbg("Could not access the Data port register\n");
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

	return ret_val;
}

/**
 *  e1000_link_stall_workaround_hv - Si workaround
 *  @hw: pointer to the HW structure
 *
 *  This function works around a Si bug where the link partner can get
 *  a link up indication before the PHY does.  If small packets are sent
 *  by the link partner they can be placed in the packet buffer without
 *  being properly accounted for by the PHY and will stall preventing
 *  further packets from being received.  The workaround is to clear the
 *  packet buffer after the PHY detects link up.
 **/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 data;

	if (hw->phy.type != e1000_phy_82578)
3134
		return 0;
3135

3136
	/* Do not apply workaround if in PHY loopback bit 14 set */
3137
	e1e_rphy(hw, PHY_CONTROL, &data);
3138
	if (data & PHY_CONTROL_LB)
3139
		return 0;
3140

3141
	/* check if link is up and at 1Gbps */
3142
	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3143
	if (ret_val)
3144
		return ret_val;
3145

3146 3147
	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
		BM_CS_STATUS_SPEED_MASK;
3148

3149 3150
	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
		     BM_CS_STATUS_SPEED_1000))
3151
		return 0;
3152

3153
	msleep(200);
3154 3155

	/* flush the packets in the fifo buffer */
3156 3157
	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3158
	if (ret_val)
3159
		return ret_val;
3160

3161
	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
}

/**
 *  e1000_check_polarity_82577 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

3178
	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

	if (!ret_val)
		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
 *  @hw: pointer to the HW structure
 *
3192
 *  Calls the PHY setup function to force speed and duplex.
3193 3194 3195 3196 3197 3198 3199 3200
 **/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

3201
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3202
	if (ret_val)
3203
		return ret_val;
3204 3205 3206

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

3207
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3208
	if (ret_val)
3209
		return ret_val;
3210 3211 3212 3213

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
3214
		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3215

3216 3217
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
3218
		if (ret_val)
3219
			return ret_val;
3220 3221

		if (!link)
3222
			e_dbg("Link taking longer than expected.\n");
3223 3224

		/* Try once more */
3225 3226
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	}

	return ret_val;
}

/**
 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
3250
		return ret_val;
3251 3252

	if (!link) {
3253
		e_dbg("Phy info is only valid if link is up\n");
3254
		return -E1000_ERR_CONFIG;
3255 3256 3257 3258 3259 3260
	}

	phy->polarity_correction = true;

	ret_val = e1000_check_polarity_82577(hw);
	if (ret_val)
3261
		return ret_val;
3262

3263
	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3264
	if (ret_val)
3265
		return ret_val;
3266

B
Bruce Allan 已提交
3267
	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3268 3269 3270 3271 3272

	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
3273
			return ret_val;
3274

3275
		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3276
		if (ret_val)
3277
			return ret_val;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
		                ? e1000_1000t_rx_status_ok
		                : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
		                 ? e1000_1000t_rx_status_ok
		                 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

3292
	return 0;
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
}

/**
 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
 *  @hw: pointer to the HW structure
 *
 * Reads the diagnostic status register and verifies result is valid before
 * placing it in the phy_cable_length field.
 **/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, length;

3308
	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3309
	if (ret_val)
3310
		return ret_val;
3311 3312 3313 3314 3315

	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;

	if (length == E1000_CABLE_LENGTH_UNDEFINED)
B
Bruce Allan 已提交
3316
		ret_val = -E1000_ERR_PHY;
3317 3318 3319

	phy->cable_length = length;

3320
	return 0;
3321
}