tree_plugin.h 92.6 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33 34 35
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
36
#include "../locking/rtmutex_common.h"
37 38 39 40 41
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
42 43 44
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
46 47 48
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

49 50 51 52 53 54 55 56
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
57
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 59
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61 62 63
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
64
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 66
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
67
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 69
#endif
#ifdef CONFIG_PROVE_RCU
70
	pr_info("\tRCU lockdep checking is enabled.\n");
71 72
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73
	pr_info("\tRCU torture testing starts during boot.\n");
74
#endif
75
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76
	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 78
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
79
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 81
#endif
#if NUM_RCU_LVL_4 != 0
82
	pr_info("\tFour-level hierarchy is enabled.\n");
83
#endif
84
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86
	if (nr_cpu_ids != NR_CPUS)
87
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 89
}

90 91
#ifdef CONFIG_TREE_PREEMPT_RCU

92
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93
static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94

95 96
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

97 98 99
/*
 * Tell them what RCU they are running.
 */
100
static void __init rcu_bootup_announce(void)
101
{
102
	pr_info("Preemptible hierarchical RCU implementation.\n");
103
	rcu_bootup_announce_oddness();
104 105 106 107 108 109
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
110
static long rcu_batches_completed_preempt(void)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
P
Paul E. McKenney 已提交
126
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127 128 129
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
130
 *
131 132
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
133
 */
134
static void rcu_preempt_qs(void)
135
{
136 137 138 139 140 141 142 143
	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_preempt"),
				       __this_cpu_read(rcu_preempt_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
144 145 146
}

/*
147 148 149
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
150 151 152 153 154 155
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
156 157
 *
 * Caller must disable preemption.
158
 */
159
static void rcu_preempt_note_context_switch(int cpu)
160 161
{
	struct task_struct *t = current;
162
	unsigned long flags;
163 164 165
	struct rcu_data *rdp;
	struct rcu_node *rnp;

166
	if (t->rcu_read_lock_nesting > 0 &&
167
	    !t->rcu_read_unlock_special.b.blocked) {
168 169

		/* Possibly blocking in an RCU read-side critical section. */
170
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
171
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
172
		raw_spin_lock_irqsave(&rnp->lock, flags);
173
		smp_mb__after_unlock_lock();
174
		t->rcu_read_unlock_special.b.blocked = true;
175
		t->rcu_blocked_node = rnp;
176 177 178 179 180 181 182 183 184

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
185 186 187 188 189 190
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
191 192 193
		 *
		 * But first, note that the current CPU must still be
		 * on line!
194
		 */
195
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197 198 199
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
200 201 202 203
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
204 205 206 207 208
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
209 210 211 212 213
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
214
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
215
	} else if (t->rcu_read_lock_nesting < 0 &&
216
		   t->rcu_read_unlock_special.s) {
217 218 219 220 221 222

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
223 224 225 226 227 228 229 230 231 232 233
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
234
	rcu_preempt_qs();
235 236
}

237 238 239 240 241
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
242
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
243
{
244
	return rnp->gp_tasks != NULL;
245 246
}

247 248 249 250 251 252 253
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
254
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
255 256 257 258 259
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

260
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
261
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
262 263 264 265 266 267 268 269 270 271
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
272
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
273 274 275 276 277
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
278 279
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
280
	smp_mb__after_unlock_lock();
P
Paul E. McKenney 已提交
281
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
282 283
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

299 300 301 302 303
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
304
void rcu_read_unlock_special(struct task_struct *t)
305 306
{
	int empty;
307
	int empty_exp;
308
	int empty_exp_now;
309
	unsigned long flags;
310
	struct list_head *np;
311
#ifdef CONFIG_RCU_BOOST
312
	bool drop_boost_mutex = false;
313
#endif /* #ifdef CONFIG_RCU_BOOST */
314
	struct rcu_node *rnp;
315
	union rcu_special special;
316 317 318 319 320 321 322 323 324

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
325 326
	 * let it know that we have done so.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
327 328
	 */
	special = t->rcu_read_unlock_special;
329
	if (special.b.need_qs) {
330
		rcu_preempt_qs();
331
		if (!t->rcu_read_unlock_special.s) {
332 333 334
			local_irq_restore(flags);
			return;
		}
335 336
	}

337 338
	/* Hardware IRQ handlers cannot block, complain if they get here. */
	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339 340 341 342 343
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
344 345
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
346

347 348 349 350 351 352
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
353
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
354
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355
			smp_mb__after_unlock_lock();
356
			if (rnp == t->rcu_blocked_node)
357
				break;
P
Paul E. McKenney 已提交
358
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359
		}
360
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
361 362
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363
		np = rcu_next_node_entry(t, rnp);
364
		list_del_init(&t->rcu_node_entry);
365
		t->rcu_blocked_node = NULL;
366
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367
						rnp->gpnum, t->pid);
368 369 370 371
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
372 373 374
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
375 376
		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377
#endif /* #ifdef CONFIG_RCU_BOOST */
378 379 380 381

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
382 383
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
384
		 */
385
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
386
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388 389 390 391 392 393
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
394
			rcu_report_unblock_qs_rnp(rnp, flags);
395
		} else {
396
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
397
		}
398

399 400
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
401 402
		if (drop_boost_mutex) {
			rt_mutex_unlock(&rnp->boost_mtx);
403 404
			complete(&rnp->boost_completion);
		}
405 406
#endif /* #ifdef CONFIG_RCU_BOOST */

407 408 409 410
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
411
		if (!empty_exp && empty_exp_now)
412
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413 414
	} else {
		local_irq_restore(flags);
415 416 417
	}
}

418 419 420 421 422 423 424 425 426 427 428
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

429
	raw_spin_lock_irqsave(&rnp->lock, flags);
430 431 432 433
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
434 435 436 437 438
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

462 463 464 465
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
466
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467 468 469 470 471
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
472
	pr_cont("\n");
473 474 475 476 477 478 479 480 481 482 483 484 485 486
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

487 488 489 490
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
491
static int rcu_print_task_stall(struct rcu_node *rnp)
492 493
{
	struct task_struct *t;
494
	int ndetected = 0;
495

496
	if (!rcu_preempt_blocked_readers_cgp(rnp))
497
		return 0;
498
	rcu_print_task_stall_begin(rnp);
499 500
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
501
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502
		pr_cont(" P%d", t->pid);
503 504
		ndetected++;
	}
505
	rcu_print_task_stall_end();
506
	return ndetected;
507 508
}

509 510 511 512 513 514
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
515 516 517
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
518 519 520
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
521
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522 523
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
524
	WARN_ON_ONCE(rnp->qsmask);
525 526
}

527 528
#ifdef CONFIG_HOTPLUG_CPU

529 530 531 532 533 534
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
535 536
 * Returns true if there were tasks blocking the current RCU grace
 * period.
537
 *
538 539 540
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
541 542
 * The caller must hold rnp->lock with irqs disabled.
 */
543 544 545
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
546 547 548
{
	struct list_head *lp;
	struct list_head *lp_root;
549
	int retval = 0;
550
	struct rcu_node *rnp_root = rcu_get_root(rsp);
551
	struct task_struct *t;
552

553 554
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
555
		return 0;  /* Shouldn't happen: at least one CPU online. */
556
	}
557 558 559

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
560 561

	/*
562 563 564 565 566 567 568
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
569
	 */
570
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571 572 573
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
574 575 576 577 578
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579
		smp_mb__after_unlock_lock();
580 581 582 583 584 585 586
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
587 588 589 590
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
591
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592
	}
593

594 595
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
596
#ifdef CONFIG_RCU_BOOST
597
	rnp->boost_tasks = NULL;
598 599 600 601 602
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
603
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604
	smp_mb__after_unlock_lock();
605
	if (rnp_root->boost_tasks != NULL &&
606 607
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
608 609 610 611
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

612
	return retval;
613 614
}

615 616
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

617 618 619 620 621 622 623 624 625 626 627 628
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
629
		rcu_preempt_qs();
630 631
		return;
	}
632
	if (t->rcu_read_lock_nesting > 0 &&
633 634
	    per_cpu(rcu_preempt_data, cpu).qs_pending &&
	    !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
635
		t->rcu_read_unlock_special.b.need_qs = true;
636 637
}

638 639
#ifdef CONFIG_RCU_BOOST

640 641
static void rcu_preempt_do_callbacks(void)
{
642
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
643 644
}

645 646
#endif /* #ifdef CONFIG_RCU_BOOST */

647
/*
P
Paul E. McKenney 已提交
648
 * Queue a preemptible-RCU callback for invocation after a grace period.
649 650 651
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
652
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
653 654 655
}
EXPORT_SYMBOL_GPL(call_rcu);

656 657 658 659 660
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
661 662 663 664 665
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666 667 668
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
669 670 671
 */
void synchronize_rcu(void)
{
672 673 674 675
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
676 677
	if (!rcu_scheduler_active)
		return;
678 679 680 681
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
682 683 684
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

685
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
686
static unsigned long sync_rcu_preempt_exp_count;
687 688 689 690 691 692 693 694 695 696
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
697
	return rnp->exp_tasks != NULL;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
723 724 725
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
726 727
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
728 729
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
730 731 732 733
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
734
	raw_spin_lock_irqsave(&rnp->lock, flags);
735
	smp_mb__after_unlock_lock();
736
	for (;;) {
737 738
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
739
			break;
740
		}
741
		if (rnp->parent == NULL) {
742
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
743 744
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
745
				wake_up(&sync_rcu_preempt_exp_wq);
746
			}
747 748 749
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
750
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
751
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
752
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
753
		smp_mb__after_unlock_lock();
754 755 756 757 758 759 760 761 762
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
763 764
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
765 766 767 768
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
769
	unsigned long flags;
770
	int must_wait = 0;
771

772
	raw_spin_lock_irqsave(&rnp->lock, flags);
773
	smp_mb__after_unlock_lock();
774
	if (list_empty(&rnp->blkd_tasks)) {
775
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
776
	} else {
777
		rnp->exp_tasks = rnp->blkd_tasks.next;
778
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
779 780
		must_wait = 1;
	}
781
	if (!must_wait)
782
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
801 802 803
 */
void synchronize_rcu_expedited(void)
{
804 805 806
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
807
	unsigned long snap;
808 809 810 811 812 813
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

814 815 816 817 818 819 820 821 822 823
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

824 825 826 827 828 829
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
830 831 832 833 834
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
835
		if (trycount++ < 10) {
836
			udelay(trycount * num_online_cpus());
837
		} else {
838
			put_online_cpus();
839
			wait_rcu_gp(call_rcu);
840 841 842
			return;
		}
	}
843 844
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
845
		goto unlock_mb_ret; /* Others did our work for us. */
846
	}
847

848
	/* force all RCU readers onto ->blkd_tasks lists. */
849 850 851 852
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
853
		raw_spin_lock_irqsave(&rnp->lock, flags);
854
		smp_mb__after_unlock_lock();
855
		rnp->expmask = rnp->qsmaskinit;
856
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
857 858
	}

859
	/* Snapshot current state of ->blkd_tasks lists. */
860 861 862 863 864
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

865
	put_online_cpus();
866

867
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
868 869 870 871 872 873
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
874 875
	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
					sync_rcu_preempt_exp_count + 1;
876 877 878 879
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
880 881 882
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

883 884
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
885 886 887 888 889
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
890 891 892
 */
void rcu_barrier(void)
{
893
	_rcu_barrier(&rcu_preempt_state);
894 895 896
}
EXPORT_SYMBOL_GPL(rcu_barrier);

897
/*
P
Paul E. McKenney 已提交
898
 * Initialize preemptible RCU's state structures.
899 900 901
 */
static void __init __rcu_init_preempt(void)
{
902
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
903 904
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
919
	t->rcu_read_unlock_special.b.blocked = true;
920 921 922
	__rcu_read_unlock();
}

923 924
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

925
static struct rcu_state *rcu_state_p = &rcu_sched_state;
926

927 928 929
/*
 * Tell them what RCU they are running.
 */
930
static void __init rcu_bootup_announce(void)
931
{
932
	pr_info("Hierarchical RCU implementation.\n");
933
	rcu_bootup_announce_oddness();
934 935 936 937 938 939 940 941 942 943 944
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

945 946 947 948 949 950 951 952
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

953
/*
P
Paul E. McKenney 已提交
954
 * Because preemptible RCU does not exist, there are never any preempted
955 956
 * RCU readers.
 */
957
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
958 959 960 961
{
	return 0;
}

962 963 964
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
965
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
966
	__releases(rnp->lock)
967
{
P
Paul E. McKenney 已提交
968
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
969 970 971 972
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

973
/*
P
Paul E. McKenney 已提交
974
 * Because preemptible RCU does not exist, we never have to check for
975 976 977 978 979 980
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

981
/*
P
Paul E. McKenney 已提交
982
 * Because preemptible RCU does not exist, we never have to check for
983 984
 * tasks blocked within RCU read-side critical sections.
 */
985
static int rcu_print_task_stall(struct rcu_node *rnp)
986
{
987
	return 0;
988 989
}

990
/*
P
Paul E. McKenney 已提交
991
 * Because there is no preemptible RCU, there can be no readers blocked,
992 993
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
994 995 996
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
997
	WARN_ON_ONCE(rnp->qsmask);
998 999
}

1000 1001
#ifdef CONFIG_HOTPLUG_CPU

1002
/*
P
Paul E. McKenney 已提交
1003
 * Because preemptible RCU does not exist, it never needs to migrate
1004 1005 1006
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1007
 */
1008 1009 1010
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1011
{
1012
	return 0;
1013 1014
}

1015 1016
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1017
/*
P
Paul E. McKenney 已提交
1018
 * Because preemptible RCU does not exist, it never has any callbacks
1019 1020
 * to check.
 */
1021
static void rcu_preempt_check_callbacks(int cpu)
1022 1023 1024
{
}

1025 1026
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1027
 * But because preemptible RCU does not exist, map to rcu-sched.
1028 1029 1030 1031 1032 1033 1034
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1035 1036 1037
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1038
 * Because preemptible RCU does not exist, there is never any need to
1039 1040 1041
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1042 1043
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1044 1045 1046 1047 1048
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1049
/*
P
Paul E. McKenney 已提交
1050
 * Because preemptible RCU does not exist, rcu_barrier() is just
1051 1052 1053 1054 1055 1056 1057 1058
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1059
/*
P
Paul E. McKenney 已提交
1060
 * Because preemptible RCU does not exist, it need not be initialized.
1061 1062 1063 1064 1065
 */
static void __init __rcu_init_preempt(void)
{
}

1066 1067 1068 1069 1070 1071 1072 1073
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

1074
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1075

1076 1077
#ifdef CONFIG_RCU_BOOST

1078
#include "../locking/rtmutex_common.h"
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1093
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
1135
	smp_mb__after_unlock_lock();
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1152
	if (rnp->exp_tasks != NULL) {
1153
		tb = rnp->exp_tasks;
1154 1155
		rnp->n_exp_boosts++;
	} else {
1156
		tb = rnp->boost_tasks;
1157 1158 1159
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
1178
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1179
	init_completion(&rnp->boost_completion);
1180
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1181 1182 1183
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1184

1185
	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1186
	wait_for_completion(&rnp->boost_completion);
1187

1188 1189
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1202
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1203
	for (;;) {
1204
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1205
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1206
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1207
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1208
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1209 1210 1211 1212 1213 1214
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1215
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1216
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1217
			schedule_timeout_interruptible(2);
1218
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1219 1220 1221
			spincnt = 0;
		}
	}
1222
	/* NOTREACHED */
1223
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1224 1225 1226 1227 1228 1229 1230 1231 1232
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1233 1234 1235
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1236
 */
1237
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1238
	__releases(rnp->lock)
1239 1240 1241
{
	struct task_struct *t;

1242 1243
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1244
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1245
		return;
1246
	}
1247 1248 1249 1250 1251 1252 1253
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1254
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1255
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1256 1257
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1258
	} else {
1259
		rcu_initiate_boost_trace(rnp);
1260 1261
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271 1272
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1273
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1274 1275 1276 1277
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1278 1279 1280
	local_irq_restore(flags);
}

1281 1282 1283 1284 1285 1286
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1287
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1305
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1306
						 struct rcu_node *rnp)
1307
{
T
Thomas Gleixner 已提交
1308
	int rnp_index = rnp - &rsp->node[0];
1309 1310 1311 1312 1313 1314
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1315 1316 1317 1318

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1319
	rsp->boost = 1;
1320 1321 1322
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1323
			   "rcub/%d", rnp_index);
1324 1325 1326
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1327
	smp_mb__after_unlock_lock();
1328 1329
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330
	sp.sched_priority = RCU_BOOST_PRIO;
1331
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1332
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1333 1334 1335
	return 0;
}

1336 1337
static void rcu_kthread_do_work(void)
{
1338 1339
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1340 1341 1342
	rcu_preempt_do_callbacks();
}

1343
static void rcu_cpu_kthread_setup(unsigned int cpu)
1344 1345 1346
{
	struct sched_param sp;

1347 1348
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1349 1350
}

1351
static void rcu_cpu_kthread_park(unsigned int cpu)
1352
{
1353
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1354 1355
}

1356
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1357
{
1358
	return __this_cpu_read(rcu_cpu_has_work);
1359 1360 1361 1362
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1363 1364
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1365
 */
1366
static void rcu_cpu_kthread(unsigned int cpu)
1367
{
1368 1369
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1370
	int spincnt;
1371

1372
	for (spincnt = 0; spincnt < 10; spincnt++) {
1373
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1374 1375
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1376 1377
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1378 1379
		work = *workp;
		*workp = 0;
1380
		local_irq_enable();
1381 1382 1383
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1384
		if (*workp == 0) {
1385
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1386 1387
			*statusp = RCU_KTHREAD_WAITING;
			return;
1388 1389
		}
	}
1390
	*statusp = RCU_KTHREAD_YIELDING;
1391
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1392
	schedule_timeout_interruptible(2);
1393
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1394
	*statusp = RCU_KTHREAD_WAITING;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1406
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1407
{
T
Thomas Gleixner 已提交
1408 1409
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1410 1411 1412
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1413
	if (!t)
1414
		return;
T
Thomas Gleixner 已提交
1415
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1426
	set_cpus_allowed_ptr(t, cm);
1427 1428 1429
	free_cpumask_var(cm);
}

1430 1431 1432 1433 1434 1435 1436 1437
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1438 1439

/*
1440
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1441
 */
1442
static void __init rcu_spawn_boost_kthreads(void)
1443 1444
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1445
	int cpu;
1446

1447
	for_each_possible_cpu(cpu)
1448
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1449
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1450 1451
	rnp = rcu_get_root(rcu_state_p);
	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1452
	if (NUM_RCU_NODES > 1) {
1453 1454
		rcu_for_each_leaf_node(rcu_state_p, rnp)
			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1455 1456 1457
	}
}

1458
static void rcu_prepare_kthreads(int cpu)
1459
{
1460
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1461 1462 1463
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1464
	if (rcu_scheduler_fully_active)
1465
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1466 1467
}

1468 1469
#else /* #ifdef CONFIG_RCU_BOOST */

1470
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1471
	__releases(rnp->lock)
1472
{
1473
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1474 1475
}

1476
static void invoke_rcu_callbacks_kthread(void)
1477
{
1478
	WARN_ON_ONCE(1);
1479 1480
}

1481 1482 1483 1484 1485
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1486 1487 1488 1489
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1490
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1491 1492 1493
{
}

1494
static void __init rcu_spawn_boost_kthreads(void)
1495 1496 1497
{
}

1498
static void rcu_prepare_kthreads(int cpu)
1499 1500 1501
{
}

1502 1503
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1504 1505 1506 1507 1508 1509 1510 1511
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1512 1513
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1514
 */
1515
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1516
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1517
{
1518
	*delta_jiffies = ULONG_MAX;
1519
	return rcu_cpu_has_callbacks(cpu, NULL);
1520
}
1521
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1522 1523 1524 1525 1526 1527 1528 1529 1530

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1531
/*
1532
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1533 1534 1535 1536 1537 1538
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1547 1548
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1564 1565 1566
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1567 1568 1569 1570 1571
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1572
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1573
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1574

1575 1576 1577 1578
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1579

1580
extern int tick_nohz_active;
1581 1582

/*
1583 1584 1585
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1586
 */
1587
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1588
{
1589 1590
	bool cbs_ready = false;
	struct rcu_data *rdp;
1591
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1592 1593
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1594

1595 1596
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1597
		return false;
1598 1599
	rdtp->last_advance_all = jiffies;

1600 1601 1602
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1603

1604 1605 1606 1607 1608 1609 1610
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1611
			note_gp_changes(rsp, rdp);
1612

1613 1614 1615 1616
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1617 1618
}

1619
/*
1620 1621 1622 1623
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1624
 *
1625
 * The caller must have disabled interrupts.
1626
 */
1627
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1628
int rcu_needs_cpu(int cpu, unsigned long *dj)
1629 1630 1631
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

1632 1633 1634
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1635
	/* If no callbacks, RCU doesn't need the CPU. */
1636 1637
	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
		*dj = ULONG_MAX;
1638 1639
		return 0;
	}
1640 1641 1642 1643 1644

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1645 1646
		return 1;
	}
1647 1648 1649
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1650
	if (!rdtp->all_lazy) {
1651 1652
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1653
	} else {
1654
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1655
	}
1656 1657
	return 0;
}
1658
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1659

1660
/*
1661 1662 1663 1664 1665 1666
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1667 1668
 *
 * The caller must have disabled interrupts.
1669
 */
1670
static void rcu_prepare_for_idle(int cpu)
1671
{
1672
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1673
	bool needwake;
1674
	struct rcu_data *rdp;
1675
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1676 1677
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1678 1679 1680
	int tne;

	/* Handle nohz enablement switches conservatively. */
1681
	tne = ACCESS_ONCE(tick_nohz_active);
1682
	if (tne != rdtp->tick_nohz_enabled_snap) {
1683
		if (rcu_cpu_has_callbacks(cpu, NULL))
1684 1685 1686 1687 1688 1689
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1690

1691
	/* If this is a no-CBs CPU, no callbacks, just return. */
1692
	if (rcu_is_nocb_cpu(cpu))
1693 1694
		return;

1695
	/*
1696 1697 1698
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1699
	 */
1700 1701
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1702 1703
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1704
		invoke_rcu_core();
1705 1706 1707
		return;
	}

1708
	/*
1709 1710
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1711
	 */
1712
	if (rdtp->last_accelerate == jiffies)
1713
		return;
1714 1715 1716 1717 1718 1719 1720
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1721
		smp_mb__after_unlock_lock();
1722
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1723
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1724 1725
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1726
	}
1727
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1728
}
1729

1730 1731 1732 1733 1734 1735 1736
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(int cpu)
{
1737
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1738
	if (rcu_is_nocb_cpu(cpu))
1739
		return;
1740 1741
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1742
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1743 1744
}

1745
/*
1746 1747 1748 1749 1750 1751
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1752 1753 1754
 */
static void rcu_idle_count_callbacks_posted(void)
{
1755
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1787
		rdp = raw_cpu_ptr(rsp->rda);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1809
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1820
		cond_resched_rcu_qs();
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1841
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1842 1843 1844 1845 1846 1847 1848

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1849
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1850
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1851

1852 1853 1854 1855 1856
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1857 1858 1859 1860 1861 1862
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1863
	*cp = '\0';
1864 1865 1866 1867 1868 1869 1870
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1871
	pr_cont("\n");
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1902
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1903 1904 1905
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1906
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1907 1908 1909 1910 1911 1912
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1913
	pr_err("\t");
1914 1915 1916 1917 1918 1919
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1920
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1921 1922 1923 1924 1925
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1926 1927 1928
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1929
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1930 1931 1932 1933 1934 1935
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
1936
	pr_cont(" {");
1937 1938 1939 1940
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
1941
	pr_cont(" %d", cpu);
1942 1943 1944 1945
}

static void print_cpu_stall_info_end(void)
{
1946
	pr_cont("} ");
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1992 1993 1994 1995 1996 1997 1998
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1999
/*
2000 2001
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
2002
 */
2003
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2004
{
2005
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2006 2007 2008
}

/*
2009
 * Set the root rcu_node structure's ->need_future_gp field
2010 2011 2012 2013 2014
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
2015
 */
2016 2017
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
2018
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2019 2020 2021
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
2022
{
2023 2024
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2025 2026
}

2027
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
2028
/* Is the specified CPU a no-CBs CPU? */
2029
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
2030 2031 2032 2033 2034
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
2035
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
		return;
2046
	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2047
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
2048
		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2049 2050 2051 2052
		wake_up(&rdp_leader->nocb_wq);
	}
}

P
Paul E. McKenney 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
2064 2065
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2076
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
2077 2078 2079

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
2080
	if (rcu_nocb_poll || !t) {
2081 2082
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
2083
		return;
2084
	}
P
Paul E. McKenney 已提交
2085 2086
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
2087
		if (!irqs_disabled_flags(flags)) {
2088 2089
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
2090 2091 2092
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
2093
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2094 2095 2096
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
2097 2098
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2099
		/* ... or if many callbacks queued. */
2100 2101 2102 2103 2104 2105 2106 2107 2108
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
2109
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2110 2111
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2126
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2127 2128
{

2129
	if (!rcu_is_nocb_cpu(rdp->cpu))
2130
		return false;
2131
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2132 2133 2134
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
2135 2136
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
2137 2138
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
2139 2140
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

2152
	return true;
P
Paul E. McKenney 已提交
2153 2154 2155 2156 2157 2158 2159
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2160 2161
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2162 2163 2164 2165 2166
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2167
	if (!rcu_is_nocb_cpu(smp_processor_id()))
2168
		return false;
P
Paul E. McKenney 已提交
2169 2170 2171 2172 2173 2174
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2175
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2176 2177 2178 2179 2180 2181
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2182
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2183 2184 2185 2186
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
2187
	return true;
P
Paul E. McKenney 已提交
2188 2189 2190
}

/*
2191 2192
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2193
 */
2194
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2195
{
2196
	unsigned long c;
2197
	bool d;
2198
	unsigned long flags;
2199
	bool needwake;
2200 2201 2202
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2203
	smp_mb__after_unlock_lock();
2204
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2205
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2206 2207
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2208 2209

	/*
2210 2211
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2212
	 */
2213
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2214
	for (;;) {
2215 2216 2217 2218
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2219
			break;
2220
		WARN_ON(signal_pending(current));
2221
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2222
	}
2223
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2224
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2244
				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
		rdp->nocb_gp_count_lazy =
			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2279
		WARN_ON(signal_pending(current));
2280 2281 2282
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2283 2284
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2285 2286 2287
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
			if (ACCESS_ONCE(rdp->nocb_head)) {
				/* Found CB, so short-circuit next wait. */
2288
				my_rdp->nocb_leader_sleep = false;
2289 2290 2291 2292 2293 2294 2295 2296 2297
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2298 2299
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2300 2301
	 * traversing our follower list.
	 */
2302 2303
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2304 2305 2306 2307

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
		if (ACCESS_ONCE(rdp->nocb_head))
2308
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2309 2310 2311 2312 2313 2314 2315 2316 2317
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
		atomic_long_add(rdp->nocb_gp_count_lazy,
				&rdp->nocb_follower_count_lazy);
2318
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
						 ACCESS_ONCE(rdp->nocb_follower_head));
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2359
		WARN_ON(signal_pending(current));
2360 2361 2362 2363
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2364 2365
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2366 2367 2368
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
		list = ACCESS_ONCE(rdp->nocb_follower_head);
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
		rdp->nocb_p_count += c;
		rdp->nocb_p_count_lazy += cl;
P
Paul E. McKenney 已提交
2396 2397 2398 2399 2400 2401 2402 2403

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2404 2405
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2406
				schedule_timeout_interruptible(1);
2407 2408
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2420 2421 2422
		ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) =
						rdp->nocb_p_count_lazy - cl;
2423
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2424 2425 2426 2427
	}
	return 0;
}

2428
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2429
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2430 2431 2432 2433 2434 2435 2436
{
	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2437 2438
	int ndw;

2439 2440
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2441 2442 2443 2444
	ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
	ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2445 2446
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2463 2464 2465 2466
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
		for_each_cpu(cpu, rcu_nocb_mask) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);

			/*
			 * If there are early callbacks, they will need
			 * to be moved to the nocb lists.
			 */
			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
				     &rdp->nxtlist &&
				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
			init_nocb_callback_list(rdp);
		}
2508
		rcu_organize_nocb_kthreads(rsp);
2509
	}
2510 2511
}

P
Paul E. McKenney 已提交
2512 2513 2514 2515 2516
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2517
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
			rdp_last = rdp;
			rdp = rdp->nocb_next_follower;
			rdp_last->nocb_next_follower = NULL;
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2591 2592 2593 2594 2595
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2596
 * Initialize leader-follower relationships for all no-CBs CPU.
2597
 */
2598
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2599 2600
{
	int cpu;
2601 2602
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2603
	struct rcu_data *rdp;
2604 2605
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2606

2607
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2608
		return;
2609 2610 2611 2612 2613 2614 2615 2616 2617
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2618 2619
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2631 2632 2633 2634
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2635
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2636
{
2637
	if (!rcu_is_nocb_cpu(rdp->cpu))
2638
		return false;
2639

P
Paul E. McKenney 已提交
2640
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2641
	return true;
P
Paul E. McKenney 已提交
2642 2643
}

2644 2645
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2646
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2647 2648 2649
{
}

2650 2651 2652 2653 2654 2655 2656
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2657 2658

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2659
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2660
{
2661
	return false;
P
Paul E. McKenney 已提交
2662 2663 2664
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2665 2666
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2667
{
2668
	return false;
P
Paul E. McKenney 已提交
2669 2670 2671 2672 2673 2674
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2675
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2676 2677 2678 2679 2680 2681 2682 2683
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2684 2685 2686 2687 2688
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2689 2690 2691
{
}

2692
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2693
{
2694
	return false;
P
Paul E. McKenney 已提交
2695 2696 2697
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2708
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2709 2710 2711 2712 2713 2714
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2715 2716 2717 2718


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2719
static int full_sysidle_state;		/* Current system-idle state. */
2720 2721 2722 2723 2724 2725
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
	unsigned long j;

2736 2737 2738 2739
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2760
	smp_mb__before_atomic();
2761
	atomic_inc(&rdtp->dynticks_idle);
2762
	smp_mb__after_atomic();
2763 2764 2765
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
	int oldstate = ACCESS_ONCE(full_sysidle_state);
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2798 2799 2800 2801 2802 2803 2804
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
2805 2806 2807 2808
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2831
	smp_mb__before_atomic();
2832
	atomic_inc(&rdtp->dynticks_idle);
2833
	smp_mb__after_atomic();
2834
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
 * does not count as idle.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2863 2864 2865 2866
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2867 2868 2869 2870 2871
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2872
	if (!*isidle || rdp->rsp != rcu_state_p ||
2873 2874
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2875 2876
	if (rcu_gp_in_progress(rdp->rsp))
		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2898
	return rsp == rcu_state_p;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
	switch (ACCESS_ONCE(full_sysidle_state)) {
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2965 2966
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2967 2968 2969 2970 2971 2972 2973 2974 2975
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2976
	if (rsp != rcu_state_p)
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2993 2994 2995 2996
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
	ACCESS_ONCE(rshp->inuse) = 0;
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
3023 3024
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
	int rss = ACCESS_ONCE(full_sysidle_state);

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
3050
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3051 3052 3053 3054
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
3055
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
			oldrss = rss;
			rss = ACCESS_ONCE(full_sysidle_state);
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3082
	    !rcu_gp_in_progress(rcu_state_p) &&
3083 3084 3085
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
3086 3087
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

3098 3099 3100 3101 3102 3103 3104 3105
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

3121 3122 3123 3124 3125
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3126 3127 3128 3129 3130 3131 3132 3133

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3134
 * CONFIG_RCU_NOCB_CPU CPUs.
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
		return 1;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return 0;
}
3146 3147 3148 3149 3150 3151 3152

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
3153
	int __maybe_unused cpu;
3154

3155
	if (!tick_nohz_full_enabled())
3156
		return;
3157 3158 3159
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3160
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3161 3162 3163 3164
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
	if (!is_housekeeping_cpu(raw_smp_processor_id()))
		housekeeping_affine(current);
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3165
}
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}