vector.c 25.8 KB
Newer Older
1 2 3 4 5
/*
 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
 *
 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
 *	Moved from arch/x86/kernel/apic/io_apic.c.
6 7
 * Jiang Liu <jiang.liu@linux.intel.com>
 *	Enable support of hierarchical irqdomains
8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/slab.h>
17
#include <asm/irqdomain.h>
18 19 20 21 22 23
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/i8259.h>
#include <asm/desc.h>
#include <asm/irq_remapping.h>

24 25 26 27 28 29 30
struct apic_chip_data {
	struct irq_cfg		cfg;
	cpumask_var_t		domain;
	cpumask_var_t		old_domain;
	u8			move_in_progress : 1;
};

31
struct irq_domain *x86_vector_domain;
32
EXPORT_SYMBOL_GPL(x86_vector_domain);
33
static DEFINE_RAW_SPINLOCK(vector_lock);
34
static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
35
static struct irq_chip lapic_controller;
36
#ifdef	CONFIG_X86_IO_APIC
37
static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
38
#endif
39 40 41 42 43 44 45 46 47 48 49 50 51 52

void lock_vector_lock(void)
{
	/* Used to the online set of cpus does not change
	 * during assign_irq_vector.
	 */
	raw_spin_lock(&vector_lock);
}

void unlock_vector_lock(void)
{
	raw_spin_unlock(&vector_lock);
}

53
static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
54
{
55
	if (!irqd)
56 57
		return NULL;

58 59
	while (irqd->parent_data)
		irqd = irqd->parent_data;
60

61
	return irqd->chip_data;
62 63
}

64
struct irq_cfg *irqd_cfg(struct irq_data *irqd)
65
{
66
	struct apic_chip_data *apicd = apic_chip_data(irqd);
67

68
	return apicd ? &apicd->cfg : NULL;
69
}
70
EXPORT_SYMBOL_GPL(irqd_cfg);
71 72

struct irq_cfg *irq_cfg(unsigned int irq)
73
{
74 75
	return irqd_cfg(irq_get_irq_data(irq));
}
76

77 78
static struct apic_chip_data *alloc_apic_chip_data(int node)
{
79
	struct apic_chip_data *apicd;
80

81 82
	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
	if (!apicd)
83
		return NULL;
84
	if (!zalloc_cpumask_var_node(&apicd->domain, GFP_KERNEL, node))
85
		goto out_data;
86
	if (!zalloc_cpumask_var_node(&apicd->old_domain, GFP_KERNEL, node))
87
		goto out_domain;
88
	return apicd;
89
out_domain:
90
	free_cpumask_var(apicd->domain);
91
out_data:
92
	kfree(apicd);
93 94 95
	return NULL;
}

96
static void free_apic_chip_data(struct apic_chip_data *apicd)
97
{
98 99 100 101
	if (apicd) {
		free_cpumask_var(apicd->domain);
		free_cpumask_var(apicd->old_domain);
		kfree(apicd);
102
	}
103 104
}

105
static int __assign_irq_vector(int irq, struct apic_chip_data *d,
106
			       const struct cpumask *mask,
107
			       struct irq_data *irqd)
108 109 110 111 112 113 114 115 116 117 118 119 120 121
{
	/*
	 * NOTE! The local APIC isn't very good at handling
	 * multiple interrupts at the same interrupt level.
	 * As the interrupt level is determined by taking the
	 * vector number and shifting that right by 4, we
	 * want to spread these out a bit so that they don't
	 * all fall in the same interrupt level.
	 *
	 * Also, we've got to be careful not to trash gate
	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
	 */
	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
	static int current_offset = VECTOR_OFFSET_START % 16;
122
	int cpu, vector;
123

124 125 126 127 128 129
	/*
	 * If there is still a move in progress or the previous move has not
	 * been cleaned up completely, tell the caller to come back later.
	 */
	if (d->move_in_progress ||
	    cpumask_intersects(d->old_domain, cpu_online_mask))
130 131 132
		return -EBUSY;

	/* Only try and allocate irqs on cpus that are present */
133
	cpumask_clear(d->old_domain);
134
	cpumask_clear(searched_cpumask);
135 136
	cpu = cpumask_first_and(mask, cpu_online_mask);
	while (cpu < nr_cpu_ids) {
137
		int new_cpu, offset;
138

139
		cpumask_copy(vector_cpumask, cpumask_of(cpu));
140

141 142 143
		/*
		 * Clear the offline cpus from @vector_cpumask for searching
		 * and verify whether the result overlaps with @mask. If true,
144
		 * then the call to apic->cpu_mask_to_apicid() will
145 146 147 148 149 150 151
		 * succeed as well. If not, no point in trying to find a
		 * vector in this mask.
		 */
		cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
		if (!cpumask_intersects(vector_searchmask, mask))
			goto next_cpu;

152 153
		if (cpumask_subset(vector_cpumask, d->domain)) {
			if (cpumask_equal(vector_cpumask, d->domain))
154
				goto success;
155
			/*
156 157
			 * Mark the cpus which are not longer in the mask for
			 * cleanup.
158
			 */
159 160 161
			cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
			vector = d->cfg.vector;
			goto update;
162 163 164 165 166 167
		}

		vector = current_vector;
		offset = current_offset;
next:
		vector += 16;
168
		if (vector >= FIRST_SYSTEM_VECTOR) {
169 170 171 172
			offset = (offset + 1) % 16;
			vector = FIRST_EXTERNAL_VECTOR + offset;
		}

173 174 175
		/* If the search wrapped around, try the next cpu */
		if (unlikely(current_vector == vector))
			goto next_cpu;
176

177
		if (test_bit(vector, system_vectors))
178 179
			goto next;

180
		for_each_cpu(new_cpu, vector_searchmask) {
181
			if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
182 183 184 185 186
				goto next;
		}
		/* Found one! */
		current_vector = vector;
		current_offset = offset;
187 188
		/* Schedule the old vector for cleanup on all cpus */
		if (d->cfg.vector)
189
			cpumask_copy(d->old_domain, d->domain);
190
		for_each_cpu(new_cpu, vector_searchmask)
191
			per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
192
		goto update;
193 194 195 196 197 198 199 200 201 202 203 204 205

next_cpu:
		/*
		 * We exclude the current @vector_cpumask from the requested
		 * @mask and try again with the next online cpu in the
		 * result. We cannot modify @mask, so we use @vector_cpumask
		 * as a temporary buffer here as it will be reassigned when
		 * calling apic->vector_allocation_domain() above.
		 */
		cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
		cpumask_andnot(vector_cpumask, mask, searched_cpumask);
		cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
		continue;
206
	}
207
	return -ENOSPC;
208

209
update:
210 211 212 213 214 215
	/*
	 * Exclude offline cpus from the cleanup mask and set the
	 * move_in_progress flag when the result is not empty.
	 */
	cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
	d->move_in_progress = !cpumask_empty(d->old_domain);
216
	d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0;
217 218
	d->cfg.vector = vector;
	cpumask_copy(d->domain, vector_cpumask);
219
success:
220 221 222 223
	/*
	 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
	 * as we already established, that mask & d->domain & cpu_online_mask
	 * is not empty.
224 225 226
	 *
	 * vector_searchmask is a subset of d->domain and has the offline
	 * cpus masked out.
227
	 */
228
	cpumask_and(vector_searchmask, vector_searchmask, mask);
229
	BUG_ON(apic->cpu_mask_to_apicid(vector_searchmask, irqd,
230
					&d->cfg.dest_apicid));
231
	return 0;
232 233
}

234
static int assign_irq_vector(int irq, struct apic_chip_data *apicd,
235
			     const struct cpumask *mask,
236
			     struct irq_data *irqd)
237 238 239 240 241
{
	int err;
	unsigned long flags;

	raw_spin_lock_irqsave(&vector_lock, flags);
242
	err = __assign_irq_vector(irq, apicd, mask, irqd);
243 244 245 246
	raw_spin_unlock_irqrestore(&vector_lock, flags);
	return err;
}

247
static int assign_irq_vector_policy(int irq, int node,
248
				    struct apic_chip_data *apicd,
249
				    struct irq_alloc_info *info,
250
				    struct irq_data *irqd)
251 252
{
	if (info && info->mask)
253
		return assign_irq_vector(irq, apicd, info->mask, irqd);
254
	if (node != NUMA_NO_NODE &&
255
	    assign_irq_vector(irq, apicd, cpumask_of_node(node), irqd) == 0)
256
		return 0;
257
	return assign_irq_vector(irq, apicd, cpu_online_mask, irqd);
258 259
}

260
static void clear_irq_vector(int irq, struct apic_chip_data *apicd)
261
{
262 263
	struct irq_desc *desc;
	int cpu, vector;
264

265
	if (!apicd->cfg.vector)
266
		return;
267

268 269
	vector = apicd->cfg.vector;
	for_each_cpu_and(cpu, apicd->domain, cpu_online_mask)
270
		per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
271

272 273
	apicd->cfg.vector = 0;
	cpumask_clear(apicd->domain);
274

275 276 277 278 279
	/*
	 * If move is in progress or the old_domain mask is not empty,
	 * i.e. the cleanup IPI has not been processed yet, we need to remove
	 * the old references to desc from all cpus vector tables.
	 */
280
	if (!apicd->move_in_progress && cpumask_empty(apicd->old_domain))
281 282
		return;

283
	desc = irq_to_desc(irq);
284
	for_each_cpu_and(cpu, apicd->old_domain, cpu_online_mask) {
285 286
		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
		     vector++) {
287
			if (per_cpu(vector_irq, cpu)[vector] != desc)
288
				continue;
289
			per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
290 291 292
			break;
		}
	}
293
	apicd->move_in_progress = 0;
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
void init_irq_alloc_info(struct irq_alloc_info *info,
			 const struct cpumask *mask)
{
	memset(info, 0, sizeof(*info));
	info->mask = mask;
}

void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
{
	if (src)
		*dst = *src;
	else
		memset(dst, 0, sizeof(*dst));
}

static void x86_vector_free_irqs(struct irq_domain *domain,
				 unsigned int virq, unsigned int nr_irqs)
{
314 315
	struct apic_chip_data *apicd;
	struct irq_data *irqd;
316
	unsigned long flags;
317 318 319
	int i;

	for (i = 0; i < nr_irqs; i++) {
320 321
		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
		if (irqd && irqd->chip_data) {
322
			raw_spin_lock_irqsave(&vector_lock, flags);
323 324 325
			clear_irq_vector(virq + i, irqd->chip_data);
			apicd = irqd->chip_data;
			irq_domain_reset_irq_data(irqd);
326
			raw_spin_unlock_irqrestore(&vector_lock, flags);
327
			free_apic_chip_data(apicd);
328 329
#ifdef	CONFIG_X86_IO_APIC
			if (virq + i < nr_legacy_irqs())
330
				legacy_irq_data[virq + i] = NULL;
331
#endif
332 333 334 335 336 337 338 339
		}
	}
}

static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
				 unsigned int nr_irqs, void *arg)
{
	struct irq_alloc_info *info = arg;
340 341
	struct apic_chip_data *apicd;
	struct irq_data *irqd;
342
	int i, err, node;
343 344 345 346 347 348 349 350 351

	if (disable_apic)
		return -ENXIO;

	/* Currently vector allocator can't guarantee contiguous allocations */
	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
		return -ENOSYS;

	for (i = 0; i < nr_irqs; i++) {
352 353 354
		irqd = irq_domain_get_irq_data(domain, virq + i);
		BUG_ON(!irqd);
		node = irq_data_get_node(irqd);
355
#ifdef	CONFIG_X86_IO_APIC
356
		if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
357
			apicd = legacy_irq_data[virq + i];
358 359
		else
#endif
360 361
			apicd = alloc_apic_chip_data(node);
		if (!apicd) {
362 363 364 365
			err = -ENOMEM;
			goto error;
		}

366 367 368 369 370 371
		irqd->chip = &lapic_controller;
		irqd->chip_data = apicd;
		irqd->hwirq = virq + i;
		irqd_set_single_target(irqd);
		err = assign_irq_vector_policy(virq + i, node, apicd, info,
					       irqd);
372 373 374 375 376 377 378 379 380 381 382
		if (err)
			goto error;
	}

	return 0;

error:
	x86_vector_free_irqs(domain, virq, i + 1);
	return err;
}

T
Thomas Gleixner 已提交
383 384 385
static const struct irq_domain_ops x86_vector_domain_ops = {
	.alloc	= x86_vector_alloc_irqs,
	.free	= x86_vector_free_irqs,
386 387
};

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
int __init arch_probe_nr_irqs(void)
{
	int nr;

	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
		nr_irqs = NR_VECTORS * nr_cpu_ids;

	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
	/*
	 * for MSI and HT dyn irq
	 */
	if (gsi_top <= NR_IRQS_LEGACY)
		nr +=  8 * nr_cpu_ids;
	else
		nr += gsi_top * 16;
#endif
	if (nr < nr_irqs)
		nr_irqs = nr;

408 409 410 411 412
	/*
	 * We don't know if PIC is present at this point so we need to do
	 * probe() to get the right number of legacy IRQs.
	 */
	return legacy_pic->probe();
413 414
}

415
#ifdef	CONFIG_X86_IO_APIC
416
static void __init init_legacy_irqs(void)
417 418
{
	int i, node = cpu_to_node(0);
419
	struct apic_chip_data *apicd;
420 421 422

	/*
	 * For legacy IRQ's, start with assigning irq0 to irq15 to
423
	 * ISA_IRQ_VECTOR(i) for all cpu's.
424 425
	 */
	for (i = 0; i < nr_legacy_irqs(); i++) {
426 427
		apicd = legacy_irq_data[i] = alloc_apic_chip_data(node);
		BUG_ON(!apicd);
428

429 430 431
		apicd->cfg.vector = ISA_IRQ_VECTOR(i);
		cpumask_copy(apicd->domain, cpumask_of(0));
		irq_set_chip_data(i, apicd);
432 433 434
	}
}
#else
435
static inline void init_legacy_irqs(void) { }
436 437
#endif

438 439
int __init arch_early_irq_init(void)
{
440 441
	struct fwnode_handle *fn;

442 443
	init_legacy_irqs();

444 445 446 447
	fn = irq_domain_alloc_named_fwnode("VECTOR");
	BUG_ON(!fn);
	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
						   NULL);
448
	BUG_ON(x86_vector_domain == NULL);
449
	irq_domain_free_fwnode(fn);
450 451
	irq_set_default_host(x86_vector_domain);

452
	arch_init_msi_domain(x86_vector_domain);
453
	arch_init_htirq_domain(x86_vector_domain);
454

455
	BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
456
	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
457
	BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
458

459 460 461
	return arch_early_ioapic_init();
}

462 463
/* Temporary hack to keep things working */
static void vector_update_shutdown_irqs(void)
464
{
465
	struct irq_desc *desc;
466
	int irq;
467

468
	for_each_irq_desc(irq, desc) {
469 470
		struct irq_data *irqd = irq_desc_get_irq_data(desc);
		struct apic_chip_data *ad = apic_chip_data(irqd);
471

472 473
		if (ad && cpumask_test_cpu(cpu, ad->domain) && ad->cfg.vector)
			this_cpu_write(vector_irq[ad->cfg.vector], desc);
474 475 476
	}
}

477 478 479 480 481 482 483 484 485 486 487 488 489
static struct irq_desc *__setup_vector_irq(int vector)
{
	int isairq = vector - ISA_IRQ_VECTOR(0);

	/* Check whether the irq is in the legacy space */
	if (isairq < 0 || isairq >= nr_legacy_irqs())
		return VECTOR_UNUSED;
	/* Check whether the irq is handled by the IOAPIC */
	if (test_bit(isairq, &io_apic_irqs))
		return VECTOR_UNUSED;
	return irq_to_desc(isairq);
}

490
/*
491
 * Setup the vector to irq mappings. Must be called with vector_lock held.
492 493 494
 */
void setup_vector_irq(int cpu)
{
495
	unsigned int vector;
496

497
	lockdep_assert_held(&vector_lock);
498
	/*
499 500 501 502 503 504 505
	 * The interrupt affinity logic never targets interrupts to offline
	 * CPUs. The exception are the legacy PIC interrupts. In general
	 * they are only targeted to CPU0, but depending on the platform
	 * they can be distributed to any online CPU in hardware. The
	 * kernel has no influence on that. So all active legacy vectors
	 * must be installed on all CPUs. All non legacy interrupts can be
	 * cleared.
506
	 */
507 508
	for (vector = 0; vector < NR_VECTORS; vector++)
		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
509

510 511 512 513 514 515
	/*
	 * Until the rewrite of the managed interrupt management is in
	 * place it's necessary to walk the irq descriptors and check for
	 * interrupts which are targeted at this CPU.
	 */
	vector_update_shutdown_irqs();
516 517
}

518
static int apic_retrigger_irq(struct irq_data *irqd)
519
{
520
	struct apic_chip_data *apicd = apic_chip_data(irqd);
521 522 523 524
	unsigned long flags;
	int cpu;

	raw_spin_lock_irqsave(&vector_lock, flags);
525 526
	cpu = cpumask_first_and(apicd->domain, cpu_online_mask);
	apic->send_IPI_mask(cpumask_of(cpu), apicd->cfg.vector);
527 528 529 530 531
	raw_spin_unlock_irqrestore(&vector_lock, flags);

	return 1;
}

532
void apic_ack_edge(struct irq_data *irqd)
533
{
534 535
	irq_complete_move(irqd_cfg(irqd));
	irq_move_irq(irqd);
536 537 538
	ack_APIC_irq();
}

539
static int apic_set_affinity(struct irq_data *irqd,
540
			     const struct cpumask *dest, bool force)
541
{
542 543
	struct apic_chip_data *apicd = irqd->chip_data;
	int err, irq = irqd->irq;
544

545
	if (!IS_ENABLED(CONFIG_SMP))
546 547 548 549 550
		return -EPERM;

	if (!cpumask_intersects(dest, cpu_online_mask))
		return -EINVAL;

551
	err = assign_irq_vector(irq, apicd, dest, irqd);
552
	return err ? err : IRQ_SET_MASK_OK;
553 554 555
}

static struct irq_chip lapic_controller = {
T
Thomas Gleixner 已提交
556
	.name			= "APIC",
557
	.irq_ack		= apic_ack_edge,
558
	.irq_set_affinity	= apic_set_affinity,
559 560 561
	.irq_retrigger		= apic_retrigger_irq,
};

562
#ifdef CONFIG_SMP
563
static void __send_cleanup_vector(struct apic_chip_data *apicd)
564
{
565
	raw_spin_lock(&vector_lock);
566 567 568 569
	cpumask_and(apicd->old_domain, apicd->old_domain, cpu_online_mask);
	apicd->move_in_progress = 0;
	if (!cpumask_empty(apicd->old_domain))
		apic->send_IPI_mask(apicd->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
570
	raw_spin_unlock(&vector_lock);
571 572
}

573 574
void send_cleanup_vector(struct irq_cfg *cfg)
{
575
	struct apic_chip_data *apicd;
576

577 578 579
	apicd = container_of(cfg, struct apic_chip_data, cfg);
	if (apicd->move_in_progress)
		__send_cleanup_vector(apicd);
580 581
}

582
asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
583 584 585
{
	unsigned vector, me;

586
	entering_ack_irq();
587

588 589 590
	/* Prevent vectors vanishing under us */
	raw_spin_lock(&vector_lock);

591 592
	me = smp_processor_id();
	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
593
		struct apic_chip_data *apicd;
594 595
		struct irq_desc *desc;
		unsigned int irr;
596

597
	retry:
598 599
		desc = __this_cpu_read(vector_irq[vector]);
		if (IS_ERR_OR_NULL(desc))
600 601
			continue;

602 603 604 605 606 607
		if (!raw_spin_trylock(&desc->lock)) {
			raw_spin_unlock(&vector_lock);
			cpu_relax();
			raw_spin_lock(&vector_lock);
			goto retry;
		}
608

609 610
		apicd = apic_chip_data(irq_desc_get_irq_data(desc));
		if (!apicd)
611
			goto unlock;
612 613

		/*
614 615
		 * Nothing to cleanup if irq migration is in progress
		 * or this cpu is not set in the cleanup mask.
616
		 */
617 618
		if (apicd->move_in_progress ||
		    !cpumask_test_cpu(me, apicd->old_domain))
619 620
			goto unlock;

621 622 623 624 625 626 627 628 629 630 631 632
		/*
		 * We have two cases to handle here:
		 * 1) vector is unchanged but the target mask got reduced
		 * 2) vector and the target mask has changed
		 *
		 * #1 is obvious, but in #2 we have two vectors with the same
		 * irq descriptor: the old and the new vector. So we need to
		 * make sure that we only cleanup the old vector. The new
		 * vector has the current @vector number in the config and
		 * this cpu is part of the target mask. We better leave that
		 * one alone.
		 */
633 634
		if (vector == apicd->cfg.vector &&
		    cpumask_test_cpu(me, apicd->domain))
635 636 637 638 639 640 641 642 643 644 645 646 647 648
			goto unlock;

		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
		/*
		 * Check if the vector that needs to be cleanedup is
		 * registered at the cpu's IRR. If so, then this is not
		 * the best time to clean it up. Lets clean it up in the
		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
		 * to myself.
		 */
		if (irr  & (1 << (vector % 32))) {
			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
			goto unlock;
		}
649
		__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
650
		cpumask_clear_cpu(me, apicd->old_domain);
651 652 653 654
unlock:
		raw_spin_unlock(&desc->lock);
	}

655 656
	raw_spin_unlock(&vector_lock);

657
	exiting_irq();
658 659 660 661 662
}

static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
{
	unsigned me;
663
	struct apic_chip_data *apicd;
664

665 666
	apicd = container_of(cfg, struct apic_chip_data, cfg);
	if (likely(!apicd->move_in_progress))
667 668 669
		return;

	me = smp_processor_id();
670 671
	if (vector == apicd->cfg.vector && cpumask_test_cpu(me, apicd->domain))
		__send_cleanup_vector(apicd);
672 673 674 675 676 677 678
}

void irq_complete_move(struct irq_cfg *cfg)
{
	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
}

679
/*
680
 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
681 682
 */
void irq_force_complete_move(struct irq_desc *desc)
683
{
684 685
	struct irq_data *irqd;
	struct apic_chip_data *apicd;
686
	struct irq_cfg *cfg;
687
	unsigned int cpu;
688

689 690 691 692 693 694 695 696 697
	/*
	 * The function is called for all descriptors regardless of which
	 * irqdomain they belong to. For example if an IRQ is provided by
	 * an irq_chip as part of a GPIO driver, the chip data for that
	 * descriptor is specific to the irq_chip in question.
	 *
	 * Check first that the chip_data is what we expect
	 * (apic_chip_data) before touching it any further.
	 */
698
	irqd = irq_domain_get_irq_data(x86_vector_domain,
699
					  irq_desc_get_irq(desc));
700
	if (!irqd)
701 702
		return;

703 704
	apicd = apic_chip_data(irqd);
	cfg = apicd ? &apicd->cfg : NULL;
705

706 707
	if (!cfg)
		return;
708

709
	/*
710 711 712 713
	 * This is tricky. If the cleanup of @data->old_domain has not been
	 * done yet, then the following setaffinity call will fail with
	 * -EBUSY. This can leave the interrupt in a stale state.
	 *
714 715
	 * All CPUs are stuck in stop machine with interrupts disabled so
	 * calling __irq_complete_move() would be completely pointless.
716 717
	 */
	raw_spin_lock(&vector_lock);
718 719 720 721
	/*
	 * Clean out all offline cpus (including the outgoing one) from the
	 * old_domain mask.
	 */
722
	cpumask_and(apicd->old_domain, apicd->old_domain, cpu_online_mask);
723 724 725 726 727 728

	/*
	 * If move_in_progress is cleared and the old_domain mask is empty,
	 * then there is nothing to cleanup. fixup_irqs() will take care of
	 * the stale vectors on the outgoing cpu.
	 */
729
	if (!apicd->move_in_progress && cpumask_empty(apicd->old_domain)) {
730
		raw_spin_unlock(&vector_lock);
731 732 733 734 735 736 737 738 739 740 741
		return;
	}

	/*
	 * 1) The interrupt is in move_in_progress state. That means that we
	 *    have not seen an interrupt since the io_apic was reprogrammed to
	 *    the new vector.
	 *
	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
	 *    have not been processed yet.
	 */
742
	if (apicd->move_in_progress) {
743
		/*
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
		 * In theory there is a race:
		 *
		 * set_ioapic(new_vector) <-- Interrupt is raised before update
		 *			      is effective, i.e. it's raised on
		 *			      the old vector.
		 *
		 * So if the target cpu cannot handle that interrupt before
		 * the old vector is cleaned up, we get a spurious interrupt
		 * and in the worst case the ioapic irq line becomes stale.
		 *
		 * But in case of cpu hotplug this should be a non issue
		 * because if the affinity update happens right before all
		 * cpus rendevouz in stop machine, there is no way that the
		 * interrupt can be blocked on the target cpu because all cpus
		 * loops first with interrupts enabled in stop machine, so the
		 * old vector is not yet cleaned up when the interrupt fires.
		 *
		 * So the only way to run into this issue is if the delivery
		 * of the interrupt on the apic/system bus would be delayed
		 * beyond the point where the target cpu disables interrupts
		 * in stop machine. I doubt that it can happen, but at least
		 * there is a theroretical chance. Virtualization might be
		 * able to expose this, but AFAICT the IOAPIC emulation is not
		 * as stupid as the real hardware.
		 *
		 * Anyway, there is nothing we can do about that at this point
		 * w/o refactoring the whole fixup_irq() business completely.
		 * We print at least the irq number and the old vector number,
		 * so we have the necessary information when a problem in that
		 * area arises.
774
		 */
775
		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
776
			irqd->irq, cfg->old_vector);
777
	}
778 779 780 781
	/*
	 * If old_domain is not empty, then other cpus still have the irq
	 * descriptor set in their vector array. Clean it up.
	 */
782
	for_each_cpu(cpu, apicd->old_domain)
783 784 785
		per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED;

	/* Cleanup the left overs of the (half finished) move */
786 787
	cpumask_clear(apicd->old_domain);
	apicd->move_in_progress = 0;
788
	raw_spin_unlock(&vector_lock);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
}
#endif

static void __init print_APIC_field(int base)
{
	int i;

	printk(KERN_DEBUG);

	for (i = 0; i < 8; i++)
		pr_cont("%08x", apic_read(base + i*0x10));

	pr_cont("\n");
}

static void __init print_local_APIC(void *dummy)
{
	unsigned int i, v, ver, maxlvt;
	u64 icr;

809 810
	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
		 smp_processor_id(), hard_smp_processor_id());
811
	v = apic_read(APIC_ID);
812
	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
813
	v = apic_read(APIC_LVR);
814
	pr_info("... APIC VERSION: %08x\n", v);
815 816 817 818
	ver = GET_APIC_VERSION(v);
	maxlvt = lapic_get_maxlvt();

	v = apic_read(APIC_TASKPRI);
819
	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
820 821 822 823 824

	/* !82489DX */
	if (APIC_INTEGRATED(ver)) {
		if (!APIC_XAPIC(ver)) {
			v = apic_read(APIC_ARBPRI);
825 826
			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
				 v, v & APIC_ARBPRI_MASK);
827 828
		}
		v = apic_read(APIC_PROCPRI);
829
		pr_debug("... APIC PROCPRI: %08x\n", v);
830 831 832 833 834 835 836 837
	}

	/*
	 * Remote read supported only in the 82489DX and local APIC for
	 * Pentium processors.
	 */
	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
		v = apic_read(APIC_RRR);
838
		pr_debug("... APIC RRR: %08x\n", v);
839 840 841
	}

	v = apic_read(APIC_LDR);
842
	pr_debug("... APIC LDR: %08x\n", v);
843 844
	if (!x2apic_enabled()) {
		v = apic_read(APIC_DFR);
845
		pr_debug("... APIC DFR: %08x\n", v);
846 847
	}
	v = apic_read(APIC_SPIV);
848
	pr_debug("... APIC SPIV: %08x\n", v);
849

850
	pr_debug("... APIC ISR field:\n");
851
	print_APIC_field(APIC_ISR);
852
	pr_debug("... APIC TMR field:\n");
853
	print_APIC_field(APIC_TMR);
854
	pr_debug("... APIC IRR field:\n");
855 856 857 858 859 860 861 862 863
	print_APIC_field(APIC_IRR);

	/* !82489DX */
	if (APIC_INTEGRATED(ver)) {
		/* Due to the Pentium erratum 3AP. */
		if (maxlvt > 3)
			apic_write(APIC_ESR, 0);

		v = apic_read(APIC_ESR);
864
		pr_debug("... APIC ESR: %08x\n", v);
865 866 867
	}

	icr = apic_icr_read();
868 869
	pr_debug("... APIC ICR: %08x\n", (u32)icr);
	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
870 871

	v = apic_read(APIC_LVTT);
872
	pr_debug("... APIC LVTT: %08x\n", v);
873 874 875 876

	if (maxlvt > 3) {
		/* PC is LVT#4. */
		v = apic_read(APIC_LVTPC);
877
		pr_debug("... APIC LVTPC: %08x\n", v);
878 879
	}
	v = apic_read(APIC_LVT0);
880
	pr_debug("... APIC LVT0: %08x\n", v);
881
	v = apic_read(APIC_LVT1);
882
	pr_debug("... APIC LVT1: %08x\n", v);
883 884 885 886

	if (maxlvt > 2) {
		/* ERR is LVT#3. */
		v = apic_read(APIC_LVTERR);
887
		pr_debug("... APIC LVTERR: %08x\n", v);
888 889 890
	}

	v = apic_read(APIC_TMICT);
891
	pr_debug("... APIC TMICT: %08x\n", v);
892
	v = apic_read(APIC_TMCCT);
893
	pr_debug("... APIC TMCCT: %08x\n", v);
894
	v = apic_read(APIC_TDCR);
895
	pr_debug("... APIC TDCR: %08x\n", v);
896 897 898 899

	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
		v = apic_read(APIC_EFEAT);
		maxlvt = (v >> 16) & 0xff;
900
		pr_debug("... APIC EFEAT: %08x\n", v);
901
		v = apic_read(APIC_ECTRL);
902
		pr_debug("... APIC ECTRL: %08x\n", v);
903 904
		for (i = 0; i < maxlvt; i++) {
			v = apic_read(APIC_EILVTn(i));
905
			pr_debug("... APIC EILVT%d: %08x\n", i, v);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
		}
	}
	pr_cont("\n");
}

static void __init print_local_APICs(int maxcpu)
{
	int cpu;

	if (!maxcpu)
		return;

	preempt_disable();
	for_each_online_cpu(cpu) {
		if (cpu >= maxcpu)
			break;
		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
	}
	preempt_enable();
}

static void __init print_PIC(void)
{
	unsigned int v;
	unsigned long flags;

	if (!nr_legacy_irqs())
		return;

935
	pr_debug("\nprinting PIC contents\n");
936 937 938 939

	raw_spin_lock_irqsave(&i8259A_lock, flags);

	v = inb(0xa1) << 8 | inb(0x21);
940
	pr_debug("... PIC  IMR: %04x\n", v);
941 942

	v = inb(0xa0) << 8 | inb(0x20);
943
	pr_debug("... PIC  IRR: %04x\n", v);
944 945 946 947 948 949 950 951 952

	outb(0x0b, 0xa0);
	outb(0x0b, 0x20);
	v = inb(0xa0) << 8 | inb(0x20);
	outb(0x0a, 0xa0);
	outb(0x0a, 0x20);

	raw_spin_unlock_irqrestore(&i8259A_lock, flags);

953
	pr_debug("... PIC  ISR: %04x\n", v);
954 955

	v = inb(0x4d1) << 8 | inb(0x4d0);
956
	pr_debug("... PIC ELCR: %04x\n", v);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
}

static int show_lapic __initdata = 1;
static __init int setup_show_lapic(char *arg)
{
	int num = -1;

	if (strcmp(arg, "all") == 0) {
		show_lapic = CONFIG_NR_CPUS;
	} else {
		get_option(&arg, &num);
		if (num >= 0)
			show_lapic = num;
	}

	return 1;
}
__setup("show_lapic=", setup_show_lapic);

static int __init print_ICs(void)
{
	if (apic_verbosity == APIC_QUIET)
		return 0;

	print_PIC();

	/* don't print out if apic is not there */
984
	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
985 986 987 988 989 990 991 992 993
		return 0;

	print_local_APICs(show_lapic);
	print_IO_APICs();

	return 0;
}

late_initcall(print_ICs);