entry_64.S 42.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <linux/err.h>
L
Linus Torvalds 已提交
40

R
Roland McGrath 已提交
41 42
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
43 44 45
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
46

47 48
.code64
.section .entry.text, "ax"
49

50
#ifdef CONFIG_PARAVIRT
51
ENTRY(native_usergs_sysret64)
52 53
	swapgs
	sysretq
54
ENDPROC(native_usergs_sysret64)
55 56
#endif /* CONFIG_PARAVIRT */

57
.macro TRACE_IRQS_IRETQ
58
#ifdef CONFIG_TRACE_IRQFLAGS
59 60
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
61 62 63 64 65
	TRACE_IRQS_ON
1:
#endif
.endm

66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
80
	call	debug_stack_set_zero
81
	TRACE_IRQS_OFF
82
	call	debug_stack_reset
83 84 85
.endm

.macro TRACE_IRQS_ON_DEBUG
86
	call	debug_stack_set_zero
87
	TRACE_IRQS_ON
88
	call	debug_stack_reset
89 90
.endm

91
.macro TRACE_IRQS_IRETQ_DEBUG
92 93
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
94 95 96 97 98
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
99 100 101
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
102 103
#endif

L
Linus Torvalds 已提交
104
/*
105
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
106
 *
107 108 109 110 111 112 113 114 115 116
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
117
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
118 119 120 121 122 123
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
124
 * rax  system call number
125 126
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
127 128
 * rdi  arg0
 * rsi  arg1
129
 * rdx  arg2
130
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
131 132
 * r8   arg4
 * r9   arg5
133
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
134
 *
L
Linus Torvalds 已提交
135 136
 * Only called from user space.
 *
137
 * When user can change pt_regs->foo always force IRET. That is because
138 139
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
140
 */
L
Linus Torvalds 已提交
141

142
ENTRY(entry_SYSCALL_64)
143 144 145 146 147
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
148 149 150 151 152 153
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
154
GLOBAL(entry_SYSCALL_64_after_swapgs)
155

156 157
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158

159 160
	TRACE_IRQS_OFF

161
	/* Construct struct pt_regs on stack */
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

179 180 181 182
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
183 184
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
185 186
	jnz	entry_SYSCALL64_slow_path

187
entry_SYSCALL_64_fastpath:
188 189 190 191 192 193 194
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
195
#if __SYSCALL_MASK == ~0
196
	cmpq	$__NR_syscall_max, %rax
197
#else
198 199
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
200
#endif
201 202
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
203 204 205

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
206 207
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
208
	 */
209
	call	*sys_call_table(, %rax, 8)
210 211
.Lentry_SYSCALL_64_after_fastpath_call:

212
	movq	%rax, RAX(%rsp)
213
1:
214 215

	/*
216 217 218
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
219
	 */
220 221
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
222 223
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
224
	jnz	1f
225

226 227
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
228 229 230
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
231
	movq	RSP(%rsp), %rsp
232
	USERGS_SYSRET64
L
Linus Torvalds 已提交
233

234 235 236 237 238 239
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
240 241
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
242
	SAVE_EXTRA_REGS
243
	movq	%rsp, %rdi
244 245
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
246

247 248
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
249
	SAVE_EXTRA_REGS
250
	movq	%rsp, %rdi
251 252 253
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
254
	RESTORE_EXTRA_REGS
255
	TRACE_IRQS_IRETQ		/* we're about to change IF */
256 257 258 259 260

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
261 262 263 264
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
265 266 267 268

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
269
	 * the kernel, since userspace controls RSP.
270
	 *
271
	 * If width of "canonical tail" ever becomes variable, this will need
272 273 274 275 276
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
277

278 279 280
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
281

282 283 284
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
285

286 287
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
288

289 290 291
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
292 293

	/*
294 295 296 297 298 299 300 301 302
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
303
	 *
304
	 *           movq	$stuck_here, %rcx
305 306 307 308 309 310
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
311 312
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
313 314 315

	/* nothing to check for RSP */

316 317
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
318 319

	/*
320 321
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
322 323
	 */
syscall_return_via_sysret:
324 325
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
326
	movq	RSP(%rsp), %rsp
327 328 329 330 331
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
332
END(entry_SYSCALL_64)
333

334 335 336
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
337 338 339
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
340 341
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
342
	 * IRQs are on.
343 344 345 346
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

347 348 349 350 351 352
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
353
	popq	%rax
354
	jmp	entry_SYSCALL64_slow_path
355 356

1:
357
	jmp	*%rax				/* Called from C */
358 359 360 361 362 363 364 365 366 367 368 369 370 371
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

409 410 411
/*
 * A newly forked process directly context switches into this address.
 *
412
 * rax: prev task we switched from
413 414
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
415 416
 */
ENTRY(ret_from_fork)
417
	movq	%rax, %rdi
418
	call	schedule_tail			/* rdi: 'prev' task parameter */
419

420 421
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
422

423
2:
424 425 426 427 428
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
429 430 431 432 433 434 435 436 437 438 439 440

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
441 442
END(ret_from_fork)

443
/*
444 445
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
446
 */
447
	.align 8
448
ENTRY(irq_entries_start)
449 450
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
451
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
452 453 454 455
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
456 457
END(irq_entries_start)

458
/*
L
Linus Torvalds 已提交
459 460 461
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
462 463 464
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
465

466
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
467
	.macro interrupt func
468
	cld
469 470 471
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
472

473
	testb	$3, CS(%rsp)
474
	jz	1f
475 476 477 478 479

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
480
	SWAPGS
481 482 483 484 485 486 487 488 489 490 491

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

492
	CALL_enter_from_user_mode
493

494
1:
495
	/*
D
Denys Vlasenko 已提交
496
	 * Save previous stack pointer, optionally switch to interrupt stack.
497 498 499 500 501
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
502
	movq	%rsp, %rdi
503 504
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
505
	pushq	%rdi
506 507 508
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

509
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
510 511
	.endm

512 513 514 515
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
516 517
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
518
	ASM_CLAC
519
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
520
	interrupt do_IRQ
521
	/* 0(%rsp): old RSP */
522
ret_from_intr:
523
	DISABLE_INTERRUPTS(CLBR_NONE)
524
	TRACE_IRQS_OFF
525
	decl	PER_CPU_VAR(irq_count)
526

527
	/* Restore saved previous stack */
528
	popq	%rsp
529

530
	testb	$3, CS(%rsp)
531
	jz	retint_kernel
532

533 534 535 536
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
537
	TRACE_IRQS_IRETQ
538
	SWAPGS
539
	jmp	restore_regs_and_iret
540

541
/* Returning to kernel space */
542
retint_kernel:
543 544 545
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
546
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
547
	jnc	1f
548
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
549
	jnz	1f
550
	call	preempt_schedule_irq
551
	jmp	0b
552
1:
553
#endif
554 555 556 557
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
558 559 560 561 562

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
563
GLOBAL(restore_regs_and_iret)
564
	RESTORE_EXTRA_REGS
565
restore_c_regs_and_iret:
566 567
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
568 569 570
	INTERRUPT_RETURN

ENTRY(native_iret)
571 572 573 574
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
575
#ifdef CONFIG_X86_ESPFIX64
576 577
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
578
#endif
579

580
.global native_irq_return_iret
581
native_irq_return_iret:
A
Andy Lutomirski 已提交
582 583 584 585 586 587
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
588
	iretq
I
Ingo Molnar 已提交
589

590
#ifdef CONFIG_X86_ESPFIX64
591
native_irq_return_ldt:
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
614
	SWAPGS
615
	movq	PER_CPU_VAR(espfix_waddr), %rdi
616 617
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
618
	movq	%rax, (1*8)(%rdi)
619
	movq	(2*8)(%rsp), %rax		/* user CS */
620
	movq	%rax, (2*8)(%rdi)
621
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
622
	movq	%rax, (3*8)(%rdi)
623
	movq	(5*8)(%rsp), %rax		/* user SS */
624
	movq	%rax, (5*8)(%rdi)
625
	movq	(4*8)(%rsp), %rax		/* user RSP */
626
	movq	%rax, (4*8)(%rdi)
627 628 629 630 631 632 633 634 635 636 637 638 639
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
640
	orq	PER_CPU_VAR(espfix_stack), %rax
641
	SWAPGS
642
	movq	%rax, %rsp
643 644 645 646 647 648 649 650 651 652 653 654

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
655
	jmp	native_irq_return_iret
656
#endif
657
END(common_interrupt)
658

L
Linus Torvalds 已提交
659 660
/*
 * APIC interrupts.
661
 */
662
.macro apicinterrupt3 num sym do_sym
663
ENTRY(\sym)
664
	ASM_CLAC
665
	pushq	$~(\num)
666
.Lcommon_\sym:
667
	interrupt \do_sym
668
	jmp	ret_from_intr
669 670
END(\sym)
.endm
L
Linus Torvalds 已提交
671

672 673 674 675 676 677 678 679 680 681 682 683
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

684 685 686 687 688 689 690 691 692
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

693
.macro apicinterrupt num sym do_sym
694
PUSH_SECTION_IRQENTRY
695 696
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
697
POP_SECTION_IRQENTRY
698 699
.endm

700
#ifdef CONFIG_SMP
701 702
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
703
#endif
L
Linus Torvalds 已提交
704

N
Nick Piggin 已提交
705
#ifdef CONFIG_X86_UV
706
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
707
#endif
708 709 710

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
711

712
#ifdef CONFIG_HAVE_KVM
713 714
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
715 716
#endif

717
#ifdef CONFIG_X86_MCE_THRESHOLD
718
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
719 720
#endif

721
#ifdef CONFIG_X86_MCE_AMD
722
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
723 724
#endif

725
#ifdef CONFIG_X86_THERMAL_VECTOR
726
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
727
#endif
728

729
#ifdef CONFIG_SMP
730 731 732
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
733
#endif
L
Linus Torvalds 已提交
734

735 736
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
737

738
#ifdef CONFIG_IRQ_WORK
739
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
740 741
#endif

L
Linus Torvalds 已提交
742 743
/*
 * Exception entry points.
744
 */
745
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
746 747

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
748
ENTRY(\sym)
749 750 751 752 753
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

754
	ASM_CLAC
755
	PARAVIRT_ADJUST_EXCEPTION_FRAME
756 757

	.ifeq \has_error_code
758
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
759 760
	.endif

761
	ALLOC_PT_GPREGS_ON_STACK
762 763

	.if \paranoid
764
	.if \paranoid == 1
765 766
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
767
	.endif
768
	call	paranoid_entry
769
	.else
770
	call	error_entry
771
	.endif
772
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
773 774

	.if \paranoid
775
	.if \shift_ist != -1
776
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
777
	.else
778
	TRACE_IRQS_OFF
779
	.endif
780
	.endif
781

782
	movq	%rsp, %rdi			/* pt_regs pointer */
783 784

	.if \has_error_code
785 786
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
787
	.else
788
	xorl	%esi, %esi			/* no error code */
789 790
	.endif

791
	.if \shift_ist != -1
792
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
793 794
	.endif

795
	call	\do_sym
796

797
	.if \shift_ist != -1
798
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
799 800
	.endif

801
	/* these procedures expect "no swapgs" flag in ebx */
802
	.if \paranoid
803
	jmp	paranoid_exit
804
	.else
805
	jmp	error_exit
806 807
	.endif

808 809 810 811 812 813 814
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
815
	call	error_entry
816 817


818 819 820
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
821

822
	movq	%rsp, %rdi			/* pt_regs pointer */
823 824

	.if \has_error_code
825 826
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
827
	.else
828
	xorl	%esi, %esi			/* no error code */
829 830
	.endif

831
	call	\do_sym
832

833
	jmp	error_exit			/* %ebx: no swapgs flag */
834
	.endif
835
END(\sym)
836
.endm
837

838
#ifdef CONFIG_TRACING
839 840 841
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
842 843
.endm
#else
844 845
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
846 847 848
.endm
#endif

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
868
ENTRY(native_load_gs_index)
869
	pushfq
870
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
871
	SWAPGS
872
.Lgs_change:
873
	movl	%edi, %gs
874
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
875
	SWAPGS
876
	popfq
877
	ret
878
END(native_load_gs_index)
879
EXPORT_SYMBOL(native_load_gs_index)
880

881
	_ASM_EXTABLE(.Lgs_change, bad_gs)
882
	.section .fixup, "ax"
L
Linus Torvalds 已提交
883
	/* running with kernelgs */
884
bad_gs:
885
	SWAPGS					/* switch back to user gs */
886 887 888 889 890 891
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
892 893 894
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
895
	.previous
896

897
/* Call softirq on interrupt stack. Interrupts are off. */
898
ENTRY(do_softirq_own_stack)
899 900 901 902 903 904
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
905
	leaveq
906
	decl	PER_CPU_VAR(irq_count)
907
	ret
908
END(do_softirq_own_stack)
909

910
#ifdef CONFIG_XEN
911
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
912 913

/*
914 915 916 917 918 919 920 921 922 923 924 925
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
926 927
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

928 929 930 931
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
932 933 934 935 936 937 938 939
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
940
#ifndef CONFIG_PREEMPT
941
	call	xen_maybe_preempt_hcall
942
#endif
943
	jmp	error_exit
944
END(xen_do_hypervisor_callback)
945 946

/*
947 948 949 950 951 952 953 954 955 956 957 958
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
959
ENTRY(xen_failsafe_callback)
960 961 962 963 964 965 966 967 968 969 970 971
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
972
	/* All segments match their saved values => Category 2 (Bad IRET). */
973 974 975 976 977 978 979
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
980
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
981 982 983 984
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
985 986 987
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
988
	jmp	error_exit
989 990
END(xen_failsafe_callback)

991
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
992 993
	xen_hvm_callback_vector xen_evtchn_do_upcall

994
#endif /* CONFIG_XEN */
995

996
#if IS_ENABLED(CONFIG_HYPERV)
997
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
998 999 1000
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1001 1002 1003 1004
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1005
#ifdef CONFIG_XEN
1006 1007 1008
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1009
#endif
1010 1011 1012 1013

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1014
#ifdef CONFIG_KVM_GUEST
1015
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1016
#endif
1017

1018
#ifdef CONFIG_X86_MCE
1019
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1020 1021
#endif

1022 1023 1024 1025 1026 1027
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1028 1029 1030
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1031 1032
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1033
	rdmsr
1034 1035
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1036
	SWAPGS
1037
	xorl	%ebx, %ebx
1038
1:	ret
1039
END(paranoid_entry)
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1050 1051
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1052
 */
1053 1054
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
1055
	TRACE_IRQS_OFF_DEBUG
1056 1057
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1058
	TRACE_IRQS_IRETQ
1059
	SWAPGS_UNSAFE_STACK
1060
	jmp	paranoid_exit_restore
1061
paranoid_exit_no_swapgs:
1062
	TRACE_IRQS_IRETQ_DEBUG
1063
paranoid_exit_restore:
1064 1065 1066
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1067
	INTERRUPT_RETURN
1068 1069 1070
END(paranoid_exit)

/*
1071
 * Save all registers in pt_regs, and switch gs if needed.
1072
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1073 1074 1075
 */
ENTRY(error_entry)
	cld
1076 1077
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1078
	xorl	%ebx, %ebx
1079
	testb	$3, CS+8(%rsp)
1080
	jz	.Lerror_kernelspace
1081

1082 1083 1084 1085
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1086
	SWAPGS
1087

1088
.Lerror_entry_from_usermode_after_swapgs:
1089 1090 1091 1092 1093 1094
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1095
	CALL_enter_from_user_mode
1096
	ret
1097

1098
.Lerror_entry_done:
1099 1100 1101
	TRACE_IRQS_OFF
	ret

1102 1103 1104 1105 1106 1107
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1108
.Lerror_kernelspace:
1109 1110 1111
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1112
	je	.Lerror_bad_iret
1113 1114
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1115
	je	.Lbstep_iret
1116
	cmpq	$.Lgs_change, RIP+8(%rsp)
1117
	jne	.Lerror_entry_done
1118 1119

	/*
1120
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1121
	 * gsbase and proceed.  We'll fix up the exception and land in
1122
	 * .Lgs_change's error handler with kernel gsbase.
1123
	 */
1124 1125
	SWAPGS
	jmp .Lerror_entry_done
1126

1127
.Lbstep_iret:
1128
	/* Fix truncated RIP */
1129
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1130 1131
	/* fall through */

1132
.Lerror_bad_iret:
1133 1134 1135 1136
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1137
	SWAPGS
1138 1139 1140 1141 1142 1143

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1144 1145 1146
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1147
	decl	%ebx
1148
	jmp	.Lerror_entry_from_usermode_after_swapgs
1149 1150 1151
END(error_entry)


1152
/*
1153
 * On entry, EBX is a "return to kernel mode" flag:
1154 1155 1156
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1157
ENTRY(error_exit)
1158
	movl	%ebx, %eax
1159 1160
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1161 1162 1163
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1164 1165
END(error_exit)

1166
/* Runs on exception stack */
1167
ENTRY(nmi)
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1178
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1197 1198 1199
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1200 1201
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1202
	 *    o Modify the "iret" location to jump to the repeat_nmi
1203 1204 1205 1206 1207 1208 1209 1210
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1211 1212 1213 1214 1215
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1216 1217
	 */

1218
	/* Use %rdx as our temp variable throughout */
1219
	pushq	%rdx
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1230 1231 1232
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1233 1234
	 */

1235
	SWAPGS_UNSAFE_STACK
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1271
	/*
1272 1273 1274
	 * Return back to user mode.  We must *not* do the normal exit
	 * work, because we don't want to enable interrupts.  Fortunately,
	 * do_nmi doesn't modify pt_regs.
1275
	 */
1276 1277
	SWAPGS
	jmp	restore_c_regs_and_iret
1278

1279
.Lnmi_from_kernel:
1280
	/*
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1321
	/*
1322 1323
	 * Determine whether we're a nested NMI.
	 *
1324 1325 1326 1327 1328 1329
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1330
	 */
1331 1332 1333 1334 1335 1336 1337 1338

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1339

1340
	/*
1341
	 * Now check "NMI executing".  If it's set, then we're nested.
1342 1343
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1344
	 */
1345 1346
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1347 1348

	/*
1349 1350
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1351 1352 1353 1354 1355 1356 1357 1358
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1359
	 */
1360 1361 1362 1363 1364
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1365

1366 1367 1368 1369
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1370 1371 1372 1373 1374 1375 1376

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1377

1378 1379
nested_nmi:
	/*
1380 1381
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1382
	 */
1383
	subq	$8, %rsp
1384 1385 1386
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1387
	pushfq
1388 1389
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1390 1391

	/* Put stack back */
1392
	addq	$(6*8), %rsp
1393 1394

nested_nmi_out:
1395
	popq	%rdx
1396

1397
	/* We are returning to kernel mode, so this cannot result in a fault. */
1398 1399 1400
	INTERRUPT_RETURN

first_nmi:
1401
	/* Restore rdx. */
1402
	movq	(%rsp), %rdx
1403

1404 1405
	/* Make room for "NMI executing". */
	pushq	$0
1406

1407
	/* Leave room for the "iret" frame */
1408
	subq	$(5*8), %rsp
1409

1410
	/* Copy the "original" frame to the "outermost" frame */
1411
	.rept 5
1412
	pushq	11*8(%rsp)
1413
	.endr
1414

1415 1416
	/* Everything up to here is safe from nested NMIs */

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1432
repeat_nmi:
1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1441 1442 1443 1444
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1445 1446
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1447
	 */
1448
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1449

1450
	/*
1451 1452 1453
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1454
	 */
1455
	addq	$(10*8), %rsp
1456
	.rept 5
1457
	pushq	-6*8(%rsp)
1458
	.endr
1459
	subq	$(5*8), %rsp
1460
end_repeat_nmi:
1461 1462

	/*
1463 1464 1465
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1466
	 */
1467
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1468 1469
	ALLOC_PT_GPREGS_ON_STACK

1470
	/*
1471
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1472 1473 1474 1475 1476
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1477
	call	paranoid_entry
1478

1479
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1480 1481 1482
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1483

1484 1485
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1486 1487 1488
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1489 1490
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1491 1492

	/* Point RSP at the "iret" frame. */
1493
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1505 1506 1507 1508 1509 1510

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1511
	INTERRUPT_RETURN
1512 1513 1514
END(nmi)

ENTRY(ignore_sysret)
1515
	mov	$-ENOSYS, %eax
1516 1517
	sysret
END(ignore_sysret)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)