migrate.c 77.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/mmu_notifier.h>
46
#include <linux/page_idle.h>
47
#include <linux/page_owner.h>
48
#include <linux/sched/mm.h>
49
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
50

51 52
#include <asm/tlbflush.h>

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
56 57 58
#include "internal.h"

/*
59
 * migrate_prep() needs to be called before we start compiling a list of pages
60 61
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

76 77 78 79 80 81 82 83
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

84
int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

135
	return 0;
136 137 138 139 140 141

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
142
	return -EBUSY;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

159 160 161 162
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
163 164 165
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
166 167 168 169 170 171
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
172
	list_for_each_entry_safe(page, page2, l, lru) {
173 174 175 176
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
177
		list_del(&page->lru);
178 179 180 181 182
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
183
		if (unlikely(__PageMovable(page))) {
184 185 186 187 188 189 190 191 192
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
193 194
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
195
			putback_lru_page(page);
196
		}
C
Christoph Lameter 已提交
197 198 199
	}
}

200 201 202
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
203
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204
				 unsigned long addr, void *old)
205
{
206 207 208 209 210 211 212 213
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
214 215
	swp_entry_t entry;

216 217
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
218 219 220 221 222
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
223

224 225 226 227 228 229 230 231 232
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

233 234 235 236
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
237

238 239 240 241 242 243
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
244

245 246 247 248 249 250 251 252
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			} else if (is_device_public_page(new)) {
				pte = pte_mkdevmap(pte);
				flush_dcache_page(new);
			}
253 254 255
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
256
#ifdef CONFIG_HUGETLB_PAGE
257 258 259
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
260
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 262 263 264
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
265 266 267 268
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269

270 271 272 273 274
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
275 276 277 278 279 280
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
281

M
Minchan Kim 已提交
282
	return true;
283 284
}

285 286 287 288
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
289
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290
{
291 292 293 294 295
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

296 297 298 299
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
300 301
}

302 303 304 305 306
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
307
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308
				spinlock_t *ptl)
309
{
310
	pte_t pte;
311 312 313
	swp_entry_t entry;
	struct page *page;

314
	spin_lock(ptl);
315 316 317 318 319 320 321 322 323 324
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
325 326 327 328 329 330 331 332 333
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
334 335 336 337 338 339 340 341
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

342 343 344 345 346 347 348 349
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

350 351
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
352
{
353
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 355 356
	__migration_entry_wait(mm, pte, ptl);
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

378 379
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
380 381
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
382 383 384 385
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
386
	if (mode != MIGRATE_ASYNC) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422
							enum migrate_mode mode)
423 424 425 426 427
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
428
/*
429
 * Replace the page in the mapping.
430 431 432 433
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
434
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
435
 */
436
int migrate_page_move_mapping(struct address_space *mapping,
437
		struct page *newpage, struct page *page,
438 439
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
440
{
441 442
	struct zone *oldzone, *newzone;
	int dirty;
443
	int expected_count = 1 + extra_count;
444
	void **pslot;
C
Christoph Lameter 已提交
445

446
	/*
447 448
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
449
	 */
450 451
	expected_count += is_device_private_page(page);
	expected_count += is_device_public_page(page);
452

453
	if (!mapping) {
454
		/* Anonymous page without mapping */
455
		if (page_count(page) != expected_count)
456
			return -EAGAIN;
457 458 459 460 461

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
462
			__SetPageSwapBacked(newpage);
463

464
		return MIGRATEPAGE_SUCCESS;
465 466
	}

467 468 469
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

M
Matthew Wilcox 已提交
470
	xa_lock_irq(&mapping->i_pages);
C
Christoph Lameter 已提交
471

M
Matthew Wilcox 已提交
472
	pslot = radix_tree_lookup_slot(&mapping->i_pages,
473
 					page_index(page));
C
Christoph Lameter 已提交
474

475
	expected_count += hpage_nr_pages(page) + page_has_private(page);
N
Nick Piggin 已提交
476
	if (page_count(page) != expected_count ||
M
Matthew Wilcox 已提交
477 478 479
		radix_tree_deref_slot_protected(pslot,
					&mapping->i_pages.xa_lock) != page) {
		xa_unlock_irq(&mapping->i_pages);
480
		return -EAGAIN;
C
Christoph Lameter 已提交
481 482
	}

483
	if (!page_ref_freeze(page, expected_count)) {
M
Matthew Wilcox 已提交
484
		xa_unlock_irq(&mapping->i_pages);
N
Nick Piggin 已提交
485 486 487
		return -EAGAIN;
	}

488 489 490 491 492 493 494
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
495 496
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
497
		page_ref_unfreeze(page, expected_count);
M
Matthew Wilcox 已提交
498
		xa_unlock_irq(&mapping->i_pages);
499 500 501
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
502
	/*
503 504
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
505
	 */
506 507
	newpage->index = page->index;
	newpage->mapping = page->mapping;
508
	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 510 511 512 513 514 515 516
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
517 518
	}

519 520 521 522 523 524 525
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

M
Matthew Wilcox 已提交
526
	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 528 529 530
	if (PageTransHuge(page)) {
		int i;
		int index = page_index(page);

531
		for (i = 1; i < HPAGE_PMD_NR; i++) {
532 533 534 535 536 537
			pslot = radix_tree_lookup_slot(&mapping->i_pages,
						       index + i);
			radix_tree_replace_slot(&mapping->i_pages, pslot,
						newpage + i);
		}
	}
538 539

	/*
540 541
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
542 543
	 * We know this isn't the last reference.
	 */
544
	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
545

M
Matthew Wilcox 已提交
546
	xa_unlock(&mapping->i_pages);
547 548
	/* Leave irq disabled to prevent preemption while updating stats */

549 550 551 552 553 554 555
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
556
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
557 558
	 * are mapped to swap space.
	 */
559
	if (newzone != oldzone) {
560 561
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
562
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
563 564
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
565 566
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
567
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
568
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
569
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
570
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
571
		}
572
	}
573
	local_irq_enable();
C
Christoph Lameter 已提交
574

575
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
576
}
577
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
578

N
Naoya Horiguchi 已提交
579 580 581 582 583 584 585 586 587 588
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

M
Matthew Wilcox 已提交
589
	xa_lock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
590

M
Matthew Wilcox 已提交
591
	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
592 593 594

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
M
Matthew Wilcox 已提交
595 596
		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
		xa_unlock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
597 598 599
		return -EAGAIN;
	}

600
	if (!page_ref_freeze(page, expected_count)) {
M
Matthew Wilcox 已提交
601
		xa_unlock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
602 603 604
		return -EAGAIN;
	}

605 606
	newpage->index = page->index;
	newpage->mapping = page->mapping;
607

N
Naoya Horiguchi 已提交
608 609
	get_page(newpage);

M
Matthew Wilcox 已提交
610
	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
N
Naoya Horiguchi 已提交
611

612
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
613

M
Matthew Wilcox 已提交
614
	xa_unlock_irq(&mapping->i_pages);
615

616
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
617 618
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
667 668 669
/*
 * Copy the page to its new location
 */
670
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
671
{
672 673
	int cpupid;

C
Christoph Lameter 已提交
674 675 676 677 678 679
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
680
	if (TestClearPageActive(page)) {
681
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
682
		SetPageActive(newpage);
683 684
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
685 686 687 688 689
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

690 691 692
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
693

694 695 696 697 698
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

699 700 701 702 703 704 705
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

706
	ksm_migrate_page(newpage, page);
707 708 709 710
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
711 712
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
713 714 715 716 717 718 719 720 721
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
722 723

	copy_page_owner(page, newpage);
724 725

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
726
}
727 728 729 730 731 732 733 734 735 736 737
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
738
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
739

740 741 742 743
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
744
/*
745
 * Common logic to directly migrate a single LRU page suitable for
746
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
747 748 749
 *
 * Pages are locked upon entry and exit.
 */
750
int migrate_page(struct address_space *mapping,
751 752
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
753 754 755 756 757
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

758
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
759

760
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
761 762
		return rc;

763 764 765 766
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
767
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
768 769 770
}
EXPORT_SYMBOL(migrate_page);

771
#ifdef CONFIG_BLOCK
772 773 774 775 776
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
777
int buffer_migrate_page(struct address_space *mapping,
778
		struct page *newpage, struct page *page, enum migrate_mode mode)
779 780 781 782 783
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
784
		return migrate_page(mapping, newpage, page, mode);
785 786 787

	head = page_buffers(page);

788
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
789

790
	if (rc != MIGRATEPAGE_SUCCESS)
791 792
		return rc;

793 794 795 796 797
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
798 799
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

816 817 818 819
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
820 821 822 823

	bh = head;
	do {
		unlock_buffer(bh);
824
		put_bh(bh);
825 826 827 828
		bh = bh->b_this_page;

	} while (bh != head);

829
	return MIGRATEPAGE_SUCCESS;
830 831
}
EXPORT_SYMBOL(buffer_migrate_page);
832
#endif
833

834 835 836 837
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
838
{
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

856
	/*
857 858 859 860 861 862
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
863
	 */
864
	remove_migration_ptes(page, page, false);
865

866
	rc = mapping->a_ops->writepage(page, &wbc);
867

868 869 870 871
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
872
	return (rc < 0) ? -EIO : -EAGAIN;
873 874 875 876 877 878
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
879
	struct page *newpage, struct page *page, enum migrate_mode mode)
880
{
881
	if (PageDirty(page)) {
882
		/* Only writeback pages in full synchronous migration */
883 884 885 886 887
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
888
			return -EBUSY;
889
		}
890
		return writeout(mapping, page);
891
	}
892 893 894 895 896

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
897
	if (page_has_private(page) &&
898 899 900
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

901
	return migrate_page(mapping, newpage, page, mode);
902 903
}

904 905 906 907 908 909
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
910 911 912
 *
 * Return value:
 *   < 0 - error code
913
 *  MIGRATEPAGE_SUCCESS - success
914
 */
915
static int move_to_new_page(struct page *newpage, struct page *page,
916
				enum migrate_mode mode)
917 918
{
	struct address_space *mapping;
919 920
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
921

922 923
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
924 925

	mapping = page_mapping(page);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
944
		/*
945 946
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
947
		 */
948 949 950 951 952 953 954 955 956 957 958 959
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
960

961 962 963 964 965
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
982
			page->mapping = NULL;
983
	}
984
out:
985 986 987
	return rc;
}

988
static int __unmap_and_move(struct page *page, struct page *newpage,
989
				int force, enum migrate_mode mode)
990
{
991
	int rc = -EAGAIN;
992
	int page_was_mapped = 0;
993
	struct anon_vma *anon_vma = NULL;
994
	bool is_lru = !__PageMovable(page);
995

N
Nick Piggin 已提交
996
	if (!trylock_page(page)) {
997
		if (!force || mode == MIGRATE_ASYNC)
998
			goto out;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1014
			goto out;
1015

1016 1017 1018 1019
		lock_page(page);
	}

	if (PageWriteback(page)) {
1020
		/*
1021
		 * Only in the case of a full synchronous migration is it
1022 1023 1024
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1025
		 */
1026 1027 1028 1029 1030
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1031
			rc = -EBUSY;
1032
			goto out_unlock;
1033 1034
		}
		if (!force)
1035
			goto out_unlock;
1036 1037
		wait_on_page_writeback(page);
	}
1038

1039
	/*
1040 1041
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1042
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043
	 * of migration. File cache pages are no problem because of page_lock()
1044 1045
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1046 1047 1048 1049 1050 1051
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1052
	 */
1053
	if (PageAnon(page) && !PageKsm(page))
1054
		anon_vma = page_get_anon_vma(page);
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1067 1068 1069 1070 1071
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1072
	/*
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1083
	 */
1084
	if (!page->mapping) {
1085
		VM_BUG_ON_PAGE(PageAnon(page), page);
1086
		if (page_has_private(page)) {
1087
			try_to_free_buffers(page);
1088
			goto out_unlock_both;
1089
		}
1090 1091
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1092 1093
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1094
		try_to_unmap(page,
1095
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096 1097
		page_was_mapped = 1;
	}
1098

1099
	if (!page_mapped(page))
1100
		rc = move_to_new_page(newpage, page, mode);
1101

1102 1103
	if (page_was_mapped)
		remove_migration_ptes(page,
1104
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1105

1106 1107 1108
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1109
	/* Drop an anon_vma reference if we took one */
1110
	if (anon_vma)
1111
		put_anon_vma(anon_vma);
1112
	unlock_page(page);
1113
out:
1114 1115 1116 1117 1118 1119 1120
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1121
		if (unlikely(__PageMovable(newpage)))
1122 1123 1124 1125 1126
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1127 1128
	return rc;
}
1129

1130 1131 1132 1133
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
1134 1135
#if defined(CONFIG_ARM) && \
	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1136 1137 1138 1139 1140
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1141 1142 1143 1144
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1145 1146 1147
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1148 1149
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1150
{
1151 1152
	int rc = MIGRATEPAGE_SUCCESS;
	struct page *newpage;
1153

M
Michal Hocko 已提交
1154 1155 1156
	if (!thp_migration_supported() && PageTransHuge(page))
		return -ENOMEM;

1157
	newpage = get_new_page(page, private);
1158 1159 1160 1161 1162
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1163 1164
		ClearPageActive(page);
		ClearPageUnevictable(page);
1165 1166 1167 1168 1169 1170
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1171 1172 1173 1174
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1175 1176 1177
		goto out;
	}

1178
	rc = __unmap_and_move(page, newpage, force, mode);
1179
	if (rc == MIGRATEPAGE_SUCCESS)
1180
		set_page_owner_migrate_reason(newpage, reason);
1181

1182
out:
1183
	if (rc != -EAGAIN) {
1184 1185 1186 1187 1188 1189 1190
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1191 1192 1193 1194 1195 1196 1197

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1198 1199
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1210
			/*
1211 1212 1213
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1214
			 */
1215 1216
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1217 1218
		}
	} else {
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1234 1235 1236 1237
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1238
	}
1239

1240 1241 1242
	return rc;
}

N
Naoya Horiguchi 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 1263
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1264
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1265
{
1266
	int rc = -EAGAIN;
1267
	int page_was_mapped = 0;
1268
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1269 1270
	struct anon_vma *anon_vma = NULL;

1271 1272 1273 1274 1275 1276 1277
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1278
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1279
		putback_active_hugepage(hpage);
1280
		return -ENOSYS;
1281
	}
1282

1283
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1284 1285 1286 1287
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1288
		if (!force)
N
Naoya Horiguchi 已提交
1289
			goto out;
1290 1291 1292 1293 1294 1295 1296
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1297 1298 1299
		lock_page(hpage);
	}

1300 1301
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1302

1303 1304 1305
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1306 1307 1308 1309 1310
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1311 1312

	if (!page_mapped(hpage))
1313
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1314

1315 1316
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1317
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1318

1319 1320 1321
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1322
	if (anon_vma)
1323
		put_anon_vma(anon_vma);
1324

1325
	if (rc == MIGRATEPAGE_SUCCESS) {
1326
		move_hugetlb_state(hpage, new_hpage, reason);
1327 1328
		put_new_page = NULL;
	}
1329

N
Naoya Horiguchi 已提交
1330
	unlock_page(hpage);
1331
out:
1332 1333
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1334 1335
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1336 1337 1338 1339 1340 1341

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1342
	if (put_new_page)
1343 1344
		put_new_page(new_hpage, private);
	else
1345
		putback_active_hugepage(new_hpage);
1346

N
Naoya Horiguchi 已提交
1347 1348 1349
	return rc;
}

C
Christoph Lameter 已提交
1350
/*
1351 1352
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1353
 *
1354 1355 1356
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1357 1358
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1359 1360 1361 1362
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1363
 *
1364 1365
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1366
 * The caller should call putback_movable_pages() to return pages to the LRU
1367
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1368
 *
1369
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1370
 */
1371
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1372 1373
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1374
{
1375
	int retry = 1;
C
Christoph Lameter 已提交
1376
	int nr_failed = 0;
1377
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1387 1388
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1389

1390
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1391
retry:
1392
			cond_resched();
1393

1394 1395
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1396
						put_new_page, private, page,
1397
						pass > 2, mode, reason);
1398
			else
1399
				rc = unmap_and_move(get_new_page, put_new_page,
1400 1401
						private, page, pass > 2, mode,
						reason);
1402

1403
			switch(rc) {
1404
			case -ENOMEM:
M
Michal Hocko 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
				/*
				 * THP migration might be unsupported or the
				 * allocation could've failed so we should
				 * retry on the same page with the THP split
				 * to base pages.
				 *
				 * Head page is retried immediately and tail
				 * pages are added to the tail of the list so
				 * we encounter them after the rest of the list
				 * is processed.
				 */
				if (PageTransHuge(page)) {
					lock_page(page);
					rc = split_huge_page_to_list(page, from);
					unlock_page(page);
					if (!rc) {
						list_safe_reset_next(page, page2, lru);
						goto retry;
					}
				}
1425
				nr_failed++;
1426
				goto out;
1427
			case -EAGAIN:
1428
				retry++;
1429
				break;
1430
			case MIGRATEPAGE_SUCCESS:
1431
				nr_succeeded++;
1432 1433
				break;
			default:
1434 1435 1436 1437 1438 1439
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1440
				nr_failed++;
1441
				break;
1442
			}
C
Christoph Lameter 已提交
1443 1444
		}
	}
1445 1446
	nr_failed += retry;
	rc = nr_failed;
1447
out:
1448 1449 1450 1451
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1452 1453
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1454 1455 1456
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1457
	return rc;
C
Christoph Lameter 已提交
1458
}
1459

1460 1461
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1462
static int store_status(int __user *status, int start, int value, int nr)
1463
{
M
Michal Hocko 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;

	if (list_empty(pagelist))
		return 0;

	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
			MIGRATE_SYNC, MR_SYSCALL);
	if (err)
		putback_movable_pages(pagelist);
	return err;
1486 1487 1488
}

/*
M
Michal Hocko 已提交
1489 1490 1491 1492 1493
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
 * Returns -errno if the page cannot be found/isolated or 0 when it has been
 * queued or the page doesn't need to be migrated because it is already on
 * the target node
1494
 */
M
Michal Hocko 已提交
1495 1496
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1497
{
M
Michal Hocko 已提交
1498 1499 1500
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1501 1502 1503
	int err;

	down_read(&mm->mmap_sem);
M
Michal Hocko 已提交
1504 1505 1506 1507
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1508

M
Michal Hocko 已提交
1509 1510 1511
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1512

M
Michal Hocko 已提交
1513 1514 1515
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1516

M
Michal Hocko 已提交
1517 1518 1519
	err = -ENOENT;
	if (!page)
		goto out;
1520

M
Michal Hocko 已提交
1521 1522 1523
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1524

M
Michal Hocko 已提交
1525 1526 1527
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1528

M
Michal Hocko 已提交
1529 1530 1531 1532
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
			err = 0;
1533
		}
M
Michal Hocko 已提交
1534 1535
	} else {
		struct page *head;
1536

1537 1538
		head = compound_head(page);
		err = isolate_lru_page(head);
1539
		if (err)
M
Michal Hocko 已提交
1540
			goto out_putpage;
1541

M
Michal Hocko 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		err = 0;
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
			NR_ISOLATED_ANON + page_is_file_cache(head),
			hpage_nr_pages(head));
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1556 1557 1558 1559
	up_read(&mm->mmap_sem);
	return err;
}

1560 1561 1562 1563
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1564
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1565 1566 1567 1568 1569
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1570 1571 1572 1573
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1574 1575 1576

	migrate_prep();

M
Michal Hocko 已提交
1577 1578 1579 1580
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1581

M
Michal Hocko 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
		addr = (unsigned long)p;

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1594

M
Michal Hocko 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
			err = do_move_pages_to_node(mm, &pagelist, current_node);
			if (err)
				goto out;
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
			start = i;
			current_node = node;
1611 1612
		}

M
Michal Hocko 已提交
1613 1614 1615 1616 1617 1618 1619 1620
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
		if (!err)
			continue;
1621

M
Michal Hocko 已提交
1622 1623 1624
		err = store_status(status, i, err, 1);
		if (err)
			goto out_flush;
1625

M
Michal Hocko 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634
		err = do_move_pages_to_node(mm, &pagelist, current_node);
		if (err)
			goto out;
		if (i > start) {
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
		}
		current_node = NUMA_NO_NODE;
1635
	}
M
Michal Hocko 已提交
1636
out_flush:
1637 1638 1639
	if (list_empty(&pagelist))
		return err;

M
Michal Hocko 已提交
1640 1641 1642 1643 1644 1645
	/* Make sure we do not overwrite the existing error */
	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
	if (!err1)
		err1 = store_status(status, start, current_node, i - start);
	if (!err)
		err = err1;
1646 1647 1648 1649
out:
	return err;
}

1650
/*
1651
 * Determine the nodes of an array of pages and store it in an array of status.
1652
 */
1653 1654
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1655
{
1656 1657
	unsigned long i;

1658 1659
	down_read(&mm->mmap_sem);

1660
	for (i = 0; i < nr_pages; i++) {
1661
		unsigned long addr = (unsigned long)(*pages);
1662 1663
		struct vm_area_struct *vma;
		struct page *page;
1664
		int err = -EFAULT;
1665 1666

		vma = find_vma(mm, addr);
1667
		if (!vma || addr < vma->vm_start)
1668 1669
			goto set_status;

1670 1671
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1672 1673 1674 1675 1676

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1677
		err = page ? page_to_nid(page) : -ENOENT;
1678
set_status:
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1700 1701
	while (nr_pages) {
		unsigned long chunk_nr;
1702

1703 1704 1705 1706 1707 1708
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1709 1710 1711

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1712 1713
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1714

1715 1716 1717 1718 1719
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1720 1721 1722 1723 1724 1725
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1726 1727 1728 1729
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
1730 1731 1732
{
	struct task_struct *task;
	struct mm_struct *mm;
1733
	int err;
1734
	nodemask_t task_nodes;
1735 1736 1737 1738 1739 1740 1741 1742 1743

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1744
	rcu_read_lock();
1745
	task = pid ? find_task_by_vpid(pid) : current;
1746
	if (!task) {
1747
		rcu_read_unlock();
1748 1749
		return -ESRCH;
	}
1750
	get_task_struct(task);
1751 1752 1753

	/*
	 * Check if this process has the right to modify the specified
1754
	 * process. Use the regular "ptrace_may_access()" checks.
1755
	 */
1756
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1757
		rcu_read_unlock();
1758
		err = -EPERM;
1759
		goto out;
1760
	}
1761
	rcu_read_unlock();
1762

1763 1764
 	err = security_task_movememory(task);
 	if (err)
1765
		goto out;
1766

1767 1768 1769 1770
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1771 1772 1773 1774 1775 1776 1777 1778
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1779 1780 1781

	mmput(mm);
	return err;
1782 1783 1784 1785

out:
	put_task_struct(task);
	return err;
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

1818 1819 1820 1821 1822 1823
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1824
				   unsigned long nr_migrate_pages)
1825 1826
{
	int z;
M
Mel Gorman 已提交
1827

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1846
					   unsigned long data)
1847 1848 1849 1850
{
	int nid = (int) data;
	struct page *newpage;

1851
	newpage = __alloc_pages_node(nid,
1852 1853 1854
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1855
					 ~__GFP_RECLAIM, 0);
1856

1857 1858 1859
	return newpage;
}

1860 1861 1862 1863 1864 1865 1866 1867
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1868
/* Returns true if the node is migrate rate-limited after the update */
1869 1870
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1871
{
1872 1873 1874 1875 1876 1877
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1878
		spin_lock(&pgdat->numabalancing_migrate_lock);
1879 1880 1881
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1882
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1883
	}
1884 1885 1886
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1887
		return true;
1888
	}
1889 1890 1891 1892 1893 1894 1895 1896 1897

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1898 1899
}

1900
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1901
{
1902
	int page_lru;
1903

1904
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1905

1906
	/* Avoid migrating to a node that is nearly full */
1907 1908
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1909

1910 1911
	if (isolate_lru_page(page))
		return 0;
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1923 1924
	}

1925
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1926
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1927 1928
				hpage_nr_pages(page));

1929
	/*
1930 1931 1932
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1933 1934
	 */
	put_page(page);
1935
	return 1;
1936 1937
}

1938 1939 1940 1941 1942 1943
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1944 1945 1946 1947 1948
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1949 1950
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1951 1952
{
	pg_data_t *pgdat = NODE_DATA(node);
1953
	int isolated;
1954 1955 1956 1957
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1958 1959
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1960
	 */
1961 1962
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1963 1964
		goto out;

1965 1966 1967 1968 1969 1970 1971
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
	if (page_is_file_cache(page) && PageDirty(page))
		goto out;

1972 1973 1974 1975 1976
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1977
	if (numamigrate_update_ratelimit(pgdat, 1))
1978 1979 1980 1981 1982 1983 1984
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1985
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1986 1987
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1988
	if (nr_remaining) {
1989 1990
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1991
			dec_node_page_state(page, NR_ISOLATED_ANON +
1992 1993 1994
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1995 1996 1997
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1998 1999
	BUG_ON(!list_empty(&migratepages));
	return isolated;
2000 2001 2002 2003

out:
	put_page(page);
	return 0;
2004
}
2005
#endif /* CONFIG_NUMA_BALANCING */
2006

2007
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2008 2009 2010 2011
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
2012 2013 2014 2015 2016 2017
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
2018
	spinlock_t *ptl;
2019 2020 2021 2022
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2023 2024
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2025 2026 2027 2028 2029 2030

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
2031
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2032 2033 2034
		goto out_dropref;

	new_page = alloc_pages_node(node,
2035
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2036
		HPAGE_PMD_ORDER);
2037 2038
	if (!new_page)
		goto out_fail;
2039
	prep_transhuge_page(new_page);
2040

2041
	isolated = numamigrate_isolate_page(pgdat, page);
2042
	if (!isolated) {
2043
		put_page(new_page);
2044
		goto out_fail;
2045
	}
2046

2047
	/* Prepare a page as a migration target */
2048
	__SetPageLocked(new_page);
2049 2050
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2051 2052 2053 2054 2055 2056 2057 2058

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2059
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2060
	ptl = pmd_lock(mm, pmd);
2061
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2062
		spin_unlock(ptl);
2063
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2074 2075
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2076
		putback_lru_page(page);
M
Mel Gorman 已提交
2077
		mod_node_page_state(page_pgdat(page),
2078
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2079 2080

		goto out_unlock;
2081 2082
	}

K
Kirill A. Shutemov 已提交
2083
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2084
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2085

2086 2087 2088 2089 2090 2091 2092
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2093
	flush_cache_range(vma, mmun_start, mmun_end);
2094
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2095
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2096
	set_pmd_at(mm, mmun_start, pmd, entry);
2097
	update_mmu_cache_pmd(vma, address, &entry);
2098

2099
	page_ref_unfreeze(page, 2);
2100
	mlock_migrate_page(new_page, page);
2101
	page_remove_rmap(page, true);
2102
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2103

2104
	spin_unlock(ptl);
2105 2106 2107 2108 2109
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2110

2111 2112 2113 2114
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2115 2116 2117 2118 2119 2120 2121 2122
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2123
	mod_node_page_state(page_pgdat(page),
2124 2125 2126 2127
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2128 2129
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2130
out_dropref:
2131 2132
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2133
		entry = pmd_modify(entry, vma->vm_page_prot);
2134
		set_pmd_at(mm, mmun_start, pmd, entry);
2135 2136 2137
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2138

2139
out_unlock:
2140
	unlock_page(page);
2141 2142 2143
	put_page(page);
	return 0;
}
2144 2145 2146
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2147

2148
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2166
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2167
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2168
		migrate->dst[migrate->npages] = 0;
2169
		migrate->npages++;
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2199
	unsigned long addr = start, unmapped = 0;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2221
				return migrate_vma_collect_skip(start, end,
2222 2223 2224 2225 2226 2227 2228
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2229
				return migrate_vma_collect_skip(start, end,
2230 2231 2232 2233
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2234 2235 2236 2237
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2238 2239 2240 2241 2242 2243
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2244
		return migrate_vma_collect_skip(start, end, walk);
2245 2246

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2247 2248
	arch_enter_lazy_mmu_mode();

2249 2250 2251
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2252
		swp_entry_t entry;
2253 2254 2255 2256 2257
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2258
		if (pte_none(pte)) {
2259 2260 2261
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2262 2263 2264
			goto next;
		}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2283 2284 2285 2286 2287 2288
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2289
			page = _vm_normal_page(migrate->vma, addr, pte, true);
2290 2291 2292 2293
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2294 2295 2296 2297 2298
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2299
		pfn = page_to_pfn(page);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2325 2326
			entry = make_migration_entry(page, mpfn &
						     MIGRATE_PFN_WRITE);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2339 2340 2341

			if (pte_present(pte))
				unmapped++;
2342 2343
		}

2344
next:
2345
		migrate->dst[migrate->npages] = 0;
2346 2347
		migrate->src[migrate->npages++] = mpfn;
	}
2348
	arch_leave_lazy_mmu_mode();
2349 2350
	pte_unmap_unlock(ptep - 1, ptl);

2351 2352 2353 2354
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2379 2380 2381
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2382
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2383 2384 2385
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

2433 2434 2435 2436 2437 2438 2439
		/*
		 * Only allow device public page to be migrated and account for
		 * the extra reference count imply by ZONE_DEVICE pages.
		 */
		if (!is_device_public_page(page))
			return false;
		extra++;
2440 2441
	}

2442 2443 2444 2445
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2464 2465
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2466 2467 2468 2469 2470 2471
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2472
		bool remap = true;
2473 2474 2475 2476

		if (!page)
			continue;

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2494 2495
		}

2496 2497 2498 2499 2500 2501 2502
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2516
			}
2517 2518 2519

			/* Drop the reference we took in collect */
			put_page(page);
2520 2521 2522
		}

		if (!migrate_vma_check_page(page)) {
2523 2524 2525 2526
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2527

2528 2529 2530 2531
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2532 2533 2534 2535 2536
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2537 2538 2539 2540
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2541
			}
2542 2543
		}
	}
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2584 2585 2586 2587
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2588
		}
2589 2590 2591 2592 2593 2594 2595 2596

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2611 2612 2613 2614
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2615 2616 2617
	}
}

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
	if (pte_alloc(mm, pmdp, addr))
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		} else if (is_device_public_page(page)) {
			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
			if (vma->vm_flags & VM_WRITE)
				entry = pte_mkwrite(pte_mkdirty(entry));
			entry = pte_mkdevmap(entry);
		}
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2766 2767 2768 2769
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr, i, mmu_start;
	bool notified = false;
2770 2771 2772 2773 2774 2775 2776

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2777 2778
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2779
			continue;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				mmu_start = addr;
				notified = true;
				mmu_notifier_invalidate_range_start(mm,
								mmu_start,
								migrate->end);
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2796
			continue;
2797
		}
2798 2799 2800

		mapping = page_mapping(page);

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2811
			} else if (!is_device_public_page(newpage)) {
2812 2813 2814 2815 2816 2817 2818 2819 2820
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2821 2822 2823 2824
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2825

2826 2827 2828 2829 2830
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
2831
	if (notified)
2832 2833
		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
						       migrate->end);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2856 2857 2858 2859 2860
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2861
			continue;
2862 2863
		}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2876 2877 2878 2879
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2880 2881 2882

		if (newpage != page) {
			unlock_page(newpage);
2883 2884 2885 2886
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
2955 2956
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
			vma_is_dax(vma))
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);
3010
#endif /* defined(MIGRATE_VMA_HELPER) */