migrate.c 77.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/mmu_notifier.h>
46
#include <linux/page_idle.h>
47
#include <linux/page_owner.h>
48
#include <linux/sched/mm.h>
49
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
50

51 52
#include <asm/tlbflush.h>

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
56 57 58
#include "internal.h"

/*
59
 * migrate_prep() needs to be called before we start compiling a list of pages
60 61
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

76 77 78 79 80 81 82 83
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

84
int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

135
	return 0;
136 137 138 139 140 141

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
142
	return -EBUSY;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

159 160 161 162
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
163 164 165
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
166 167 168 169 170 171
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
172
	list_for_each_entry_safe(page, page2, l, lru) {
173 174 175 176
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
177
		list_del(&page->lru);
178 179 180 181 182
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
183
		if (unlikely(__PageMovable(page))) {
184 185 186 187 188 189 190 191 192
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
193 194
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
195
			putback_lru_page(page);
196
		}
C
Christoph Lameter 已提交
197 198 199
	}
}

200 201 202
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
203
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204
				 unsigned long addr, void *old)
205
{
206 207 208 209 210 211 212 213
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
214 215
	swp_entry_t entry;

216 217
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
218 219 220 221 222
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
223

224 225 226 227 228 229 230 231 232
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

233 234 235 236
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
237

238 239 240 241 242 243
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
244

245 246 247 248 249 250 251 252
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			} else if (is_device_public_page(new)) {
				pte = pte_mkdevmap(pte);
				flush_dcache_page(new);
			}
253 254 255
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
256
#ifdef CONFIG_HUGETLB_PAGE
257 258 259
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
260
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 262 263 264
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
265 266 267 268
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269

270 271 272 273 274
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
275 276 277 278 279 280
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
281

M
Minchan Kim 已提交
282
	return true;
283 284
}

285 286 287 288
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
289
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290
{
291 292 293 294 295
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

296 297 298 299
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
300 301
}

302 303 304 305 306
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
307
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308
				spinlock_t *ptl)
309
{
310
	pte_t pte;
311 312 313
	swp_entry_t entry;
	struct page *page;

314
	spin_lock(ptl);
315 316 317 318 319 320 321 322 323 324
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
325 326 327 328 329 330 331 332 333
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
334 335 336 337 338 339 340 341
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

342 343 344 345 346 347 348 349
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

350 351
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
352
{
353
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 355 356
	__migration_entry_wait(mm, pte, ptl);
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

378 379
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
380 381
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
382 383 384 385
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
386
	if (mode != MIGRATE_ASYNC) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422
							enum migrate_mode mode)
423 424 425 426 427
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
428
/*
429
 * Replace the page in the mapping.
430 431 432 433
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
434
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
435
 */
436
int migrate_page_move_mapping(struct address_space *mapping,
437
		struct page *newpage, struct page *page,
438 439
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
440
{
441 442
	struct zone *oldzone, *newzone;
	int dirty;
443
	int expected_count = 1 + extra_count;
444
	void **pslot;
C
Christoph Lameter 已提交
445

446
	/*
447 448
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
449
	 */
450 451
	expected_count += is_device_private_page(page);
	expected_count += is_device_public_page(page);
452

453
	if (!mapping) {
454
		/* Anonymous page without mapping */
455
		if (page_count(page) != expected_count)
456
			return -EAGAIN;
457 458 459 460 461

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
462
			__SetPageSwapBacked(newpage);
463

464
		return MIGRATEPAGE_SUCCESS;
465 466
	}

467 468 469
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

M
Matthew Wilcox 已提交
470
	xa_lock_irq(&mapping->i_pages);
C
Christoph Lameter 已提交
471

M
Matthew Wilcox 已提交
472
	pslot = radix_tree_lookup_slot(&mapping->i_pages,
473
 					page_index(page));
C
Christoph Lameter 已提交
474

475
	expected_count += hpage_nr_pages(page) + page_has_private(page);
N
Nick Piggin 已提交
476
	if (page_count(page) != expected_count ||
M
Matthew Wilcox 已提交
477 478 479
		radix_tree_deref_slot_protected(pslot,
					&mapping->i_pages.xa_lock) != page) {
		xa_unlock_irq(&mapping->i_pages);
480
		return -EAGAIN;
C
Christoph Lameter 已提交
481 482
	}

483
	if (!page_ref_freeze(page, expected_count)) {
M
Matthew Wilcox 已提交
484
		xa_unlock_irq(&mapping->i_pages);
N
Nick Piggin 已提交
485 486 487
		return -EAGAIN;
	}

488 489 490 491 492 493 494
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
495 496
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
497
		page_ref_unfreeze(page, expected_count);
M
Matthew Wilcox 已提交
498
		xa_unlock_irq(&mapping->i_pages);
499 500 501
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
502
	/*
503 504
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
505
	 */
506 507
	newpage->index = page->index;
	newpage->mapping = page->mapping;
508
	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 510 511 512 513 514 515 516
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
517 518
	}

519 520 521 522 523 524 525
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

M
Matthew Wilcox 已提交
526
	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 528 529 530 531 532 533 534 535 536 537 538 539
	if (PageTransHuge(page)) {
		int i;
		int index = page_index(page);

		for (i = 0; i < HPAGE_PMD_NR; i++) {
			pslot = radix_tree_lookup_slot(&mapping->i_pages,
						       index + i);
			radix_tree_replace_slot(&mapping->i_pages, pslot,
						newpage + i);
		}
	} else {
		radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
	}
540 541

	/*
542 543
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
544 545
	 * We know this isn't the last reference.
	 */
546
	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
547

M
Matthew Wilcox 已提交
548
	xa_unlock(&mapping->i_pages);
549 550
	/* Leave irq disabled to prevent preemption while updating stats */

551 552 553 554 555 556 557
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
558
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
559 560
	 * are mapped to swap space.
	 */
561
	if (newzone != oldzone) {
562 563
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
564
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
565 566
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
567 568
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
569
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
570
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
571
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
572
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
573
		}
574
	}
575
	local_irq_enable();
C
Christoph Lameter 已提交
576

577
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
578
}
579
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
580

N
Naoya Horiguchi 已提交
581 582 583 584 585 586 587 588 589 590
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

M
Matthew Wilcox 已提交
591
	xa_lock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
592

M
Matthew Wilcox 已提交
593
	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
594 595 596

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
M
Matthew Wilcox 已提交
597 598
		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
		xa_unlock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
599 600 601
		return -EAGAIN;
	}

602
	if (!page_ref_freeze(page, expected_count)) {
M
Matthew Wilcox 已提交
603
		xa_unlock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
604 605 606
		return -EAGAIN;
	}

607 608
	newpage->index = page->index;
	newpage->mapping = page->mapping;
609

N
Naoya Horiguchi 已提交
610 611
	get_page(newpage);

M
Matthew Wilcox 已提交
612
	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
N
Naoya Horiguchi 已提交
613

614
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
615

M
Matthew Wilcox 已提交
616
	xa_unlock_irq(&mapping->i_pages);
617

618
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
669 670 671
/*
 * Copy the page to its new location
 */
672
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
673
{
674 675
	int cpupid;

C
Christoph Lameter 已提交
676 677 678 679 680 681
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
682
	if (TestClearPageActive(page)) {
683
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
684
		SetPageActive(newpage);
685 686
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
687 688 689 690 691
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

692 693 694
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
695

696 697 698 699 700
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

701 702 703 704 705 706 707
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

708
	ksm_migrate_page(newpage, page);
709 710 711 712
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
713 714
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
715 716 717 718 719 720 721 722 723
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
724 725

	copy_page_owner(page, newpage);
726 727

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
728
}
729 730 731 732 733 734 735 736 737 738 739
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
740
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
741

742 743 744 745
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
746
/*
747
 * Common logic to directly migrate a single LRU page suitable for
748
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
749 750 751
 *
 * Pages are locked upon entry and exit.
 */
752
int migrate_page(struct address_space *mapping,
753 754
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
755 756 757 758 759
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

760
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
761

762
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
763 764
		return rc;

765 766 767 768
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
769
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
770 771 772
}
EXPORT_SYMBOL(migrate_page);

773
#ifdef CONFIG_BLOCK
774 775 776 777 778
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
779
int buffer_migrate_page(struct address_space *mapping,
780
		struct page *newpage, struct page *page, enum migrate_mode mode)
781 782 783 784 785
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
786
		return migrate_page(mapping, newpage, page, mode);
787 788 789

	head = page_buffers(page);

790
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
791

792
	if (rc != MIGRATEPAGE_SUCCESS)
793 794
		return rc;

795 796 797 798 799
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
800 801
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

818 819 820 821
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
822 823 824 825

	bh = head;
	do {
		unlock_buffer(bh);
826
		put_bh(bh);
827 828 829 830
		bh = bh->b_this_page;

	} while (bh != head);

831
	return MIGRATEPAGE_SUCCESS;
832 833
}
EXPORT_SYMBOL(buffer_migrate_page);
834
#endif
835

836 837 838 839
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
840
{
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

858
	/*
859 860 861 862 863 864
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
865
	 */
866
	remove_migration_ptes(page, page, false);
867

868
	rc = mapping->a_ops->writepage(page, &wbc);
869

870 871 872 873
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
874
	return (rc < 0) ? -EIO : -EAGAIN;
875 876 877 878 879 880
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
881
	struct page *newpage, struct page *page, enum migrate_mode mode)
882
{
883
	if (PageDirty(page)) {
884
		/* Only writeback pages in full synchronous migration */
885 886 887 888 889
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
890
			return -EBUSY;
891
		}
892
		return writeout(mapping, page);
893
	}
894 895 896 897 898

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
899
	if (page_has_private(page) &&
900 901 902
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

903
	return migrate_page(mapping, newpage, page, mode);
904 905
}

906 907 908 909 910 911
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
912 913 914
 *
 * Return value:
 *   < 0 - error code
915
 *  MIGRATEPAGE_SUCCESS - success
916
 */
917
static int move_to_new_page(struct page *newpage, struct page *page,
918
				enum migrate_mode mode)
919 920
{
	struct address_space *mapping;
921 922
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
923

924 925
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
926 927

	mapping = page_mapping(page);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
946
		/*
947 948
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
949
		 */
950 951 952 953 954 955 956 957 958 959 960 961
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
962

963 964 965 966 967
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
984
			page->mapping = NULL;
985
	}
986
out:
987 988 989
	return rc;
}

990
static int __unmap_and_move(struct page *page, struct page *newpage,
991
				int force, enum migrate_mode mode)
992
{
993
	int rc = -EAGAIN;
994
	int page_was_mapped = 0;
995
	struct anon_vma *anon_vma = NULL;
996
	bool is_lru = !__PageMovable(page);
997

N
Nick Piggin 已提交
998
	if (!trylock_page(page)) {
999
		if (!force || mode == MIGRATE_ASYNC)
1000
			goto out;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1016
			goto out;
1017

1018 1019 1020 1021
		lock_page(page);
	}

	if (PageWriteback(page)) {
1022
		/*
1023
		 * Only in the case of a full synchronous migration is it
1024 1025 1026
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1027
		 */
1028 1029 1030 1031 1032
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1033
			rc = -EBUSY;
1034
			goto out_unlock;
1035 1036
		}
		if (!force)
1037
			goto out_unlock;
1038 1039
		wait_on_page_writeback(page);
	}
1040

1041
	/*
1042 1043
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1044
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1045
	 * of migration. File cache pages are no problem because of page_lock()
1046 1047
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1048 1049 1050 1051 1052 1053
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1054
	 */
1055
	if (PageAnon(page) && !PageKsm(page))
1056
		anon_vma = page_get_anon_vma(page);
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1069 1070 1071 1072 1073
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1074
	/*
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1085
	 */
1086
	if (!page->mapping) {
1087
		VM_BUG_ON_PAGE(PageAnon(page), page);
1088
		if (page_has_private(page)) {
1089
			try_to_free_buffers(page);
1090
			goto out_unlock_both;
1091
		}
1092 1093
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1094 1095
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1096
		try_to_unmap(page,
1097
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1098 1099
		page_was_mapped = 1;
	}
1100

1101
	if (!page_mapped(page))
1102
		rc = move_to_new_page(newpage, page, mode);
1103

1104 1105
	if (page_was_mapped)
		remove_migration_ptes(page,
1106
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1107

1108 1109 1110
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1111
	/* Drop an anon_vma reference if we took one */
1112
	if (anon_vma)
1113
		put_anon_vma(anon_vma);
1114
	unlock_page(page);
1115
out:
1116 1117 1118 1119 1120 1121 1122
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1123
		if (unlikely(__PageMovable(newpage)))
1124 1125 1126 1127 1128
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1129 1130
	return rc;
}
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1142 1143 1144 1145
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1146 1147 1148
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1149 1150
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1151
{
1152 1153
	int rc = MIGRATEPAGE_SUCCESS;
	struct page *newpage;
1154

M
Michal Hocko 已提交
1155 1156 1157
	if (!thp_migration_supported() && PageTransHuge(page))
		return -ENOMEM;

1158
	newpage = get_new_page(page, private);
1159 1160 1161 1162 1163
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1164 1165
		ClearPageActive(page);
		ClearPageUnevictable(page);
1166 1167 1168 1169 1170 1171
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1172 1173 1174 1175
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1176 1177 1178
		goto out;
	}

1179
	rc = __unmap_and_move(page, newpage, force, mode);
1180
	if (rc == MIGRATEPAGE_SUCCESS)
1181
		set_page_owner_migrate_reason(newpage, reason);
1182

1183
out:
1184
	if (rc != -EAGAIN) {
1185 1186 1187 1188 1189 1190 1191
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1192 1193 1194 1195 1196 1197 1198

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1199 1200
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1211
			/*
1212 1213 1214
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1215
			 */
1216 1217
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1218 1219
		}
	} else {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1235 1236 1237 1238
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1239
	}
1240

1241 1242 1243
	return rc;
}

N
Naoya Horiguchi 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1263 1264
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1265
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1266
{
1267
	int rc = -EAGAIN;
1268
	int page_was_mapped = 0;
1269
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1270 1271
	struct anon_vma *anon_vma = NULL;

1272 1273 1274 1275 1276 1277 1278
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1279
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1280
		putback_active_hugepage(hpage);
1281
		return -ENOSYS;
1282
	}
1283

1284
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1285 1286 1287 1288
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1289
		if (!force)
N
Naoya Horiguchi 已提交
1290
			goto out;
1291 1292 1293 1294 1295 1296 1297
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1298 1299 1300
		lock_page(hpage);
	}

1301 1302
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1303

1304 1305 1306
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1307 1308 1309 1310 1311
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1312 1313

	if (!page_mapped(hpage))
1314
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1315

1316 1317
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1318
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1319

1320 1321 1322
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1323
	if (anon_vma)
1324
		put_anon_vma(anon_vma);
1325

1326
	if (rc == MIGRATEPAGE_SUCCESS) {
1327
		move_hugetlb_state(hpage, new_hpage, reason);
1328 1329
		put_new_page = NULL;
	}
1330

N
Naoya Horiguchi 已提交
1331
	unlock_page(hpage);
1332
out:
1333 1334
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1335 1336
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1337 1338 1339 1340 1341 1342

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1343
	if (put_new_page)
1344 1345
		put_new_page(new_hpage, private);
	else
1346
		putback_active_hugepage(new_hpage);
1347

N
Naoya Horiguchi 已提交
1348 1349 1350
	return rc;
}

C
Christoph Lameter 已提交
1351
/*
1352 1353
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1354
 *
1355 1356 1357
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1358 1359
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1360 1361 1362 1363
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1364
 *
1365 1366
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1367
 * The caller should call putback_movable_pages() to return pages to the LRU
1368
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1369
 *
1370
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1371
 */
1372
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 1374
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1375
{
1376
	int retry = 1;
C
Christoph Lameter 已提交
1377
	int nr_failed = 0;
1378
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1388 1389
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1390

1391
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1392
retry:
1393
			cond_resched();
1394

1395 1396
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1397
						put_new_page, private, page,
1398
						pass > 2, mode, reason);
1399
			else
1400
				rc = unmap_and_move(get_new_page, put_new_page,
1401 1402
						private, page, pass > 2, mode,
						reason);
1403

1404
			switch(rc) {
1405
			case -ENOMEM:
M
Michal Hocko 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
				/*
				 * THP migration might be unsupported or the
				 * allocation could've failed so we should
				 * retry on the same page with the THP split
				 * to base pages.
				 *
				 * Head page is retried immediately and tail
				 * pages are added to the tail of the list so
				 * we encounter them after the rest of the list
				 * is processed.
				 */
				if (PageTransHuge(page)) {
					lock_page(page);
					rc = split_huge_page_to_list(page, from);
					unlock_page(page);
					if (!rc) {
						list_safe_reset_next(page, page2, lru);
						goto retry;
					}
				}
1426
				nr_failed++;
1427
				goto out;
1428
			case -EAGAIN:
1429
				retry++;
1430
				break;
1431
			case MIGRATEPAGE_SUCCESS:
1432
				nr_succeeded++;
1433 1434
				break;
			default:
1435 1436 1437 1438 1439 1440
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1441
				nr_failed++;
1442
				break;
1443
			}
C
Christoph Lameter 已提交
1444 1445
		}
	}
1446 1447
	nr_failed += retry;
	rc = nr_failed;
1448
out:
1449 1450 1451 1452
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453 1454
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1455 1456 1457
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1458
	return rc;
C
Christoph Lameter 已提交
1459
}
1460

1461 1462
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1463
static int store_status(int __user *status, int start, int value, int nr)
1464
{
M
Michal Hocko 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;

	if (list_empty(pagelist))
		return 0;

	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
			MIGRATE_SYNC, MR_SYSCALL);
	if (err)
		putback_movable_pages(pagelist);
	return err;
1487 1488 1489
}

/*
M
Michal Hocko 已提交
1490 1491 1492 1493 1494
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
 * Returns -errno if the page cannot be found/isolated or 0 when it has been
 * queued or the page doesn't need to be migrated because it is already on
 * the target node
1495
 */
M
Michal Hocko 已提交
1496 1497
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1498
{
M
Michal Hocko 已提交
1499 1500 1501
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1502 1503 1504
	int err;

	down_read(&mm->mmap_sem);
M
Michal Hocko 已提交
1505 1506 1507 1508
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1509

M
Michal Hocko 已提交
1510 1511 1512
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1513

M
Michal Hocko 已提交
1514 1515 1516
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1517

M
Michal Hocko 已提交
1518 1519 1520
	err = -ENOENT;
	if (!page)
		goto out;
1521

M
Michal Hocko 已提交
1522 1523 1524
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1525

M
Michal Hocko 已提交
1526 1527 1528
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1529

M
Michal Hocko 已提交
1530 1531 1532 1533
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
			err = 0;
1534
		}
M
Michal Hocko 已提交
1535 1536
	} else {
		struct page *head;
1537

1538 1539
		head = compound_head(page);
		err = isolate_lru_page(head);
1540
		if (err)
M
Michal Hocko 已提交
1541
			goto out_putpage;
1542

M
Michal Hocko 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		err = 0;
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
			NR_ISOLATED_ANON + page_is_file_cache(head),
			hpage_nr_pages(head));
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1557 1558 1559 1560
	up_read(&mm->mmap_sem);
	return err;
}

1561 1562 1563 1564
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1565
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566 1567 1568 1569 1570
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1571 1572 1573 1574
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1575 1576 1577

	migrate_prep();

M
Michal Hocko 已提交
1578 1579 1580 1581
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1582

M
Michal Hocko 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
		addr = (unsigned long)p;

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1595

M
Michal Hocko 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
			err = do_move_pages_to_node(mm, &pagelist, current_node);
			if (err)
				goto out;
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
			start = i;
			current_node = node;
1612 1613
		}

M
Michal Hocko 已提交
1614 1615 1616 1617 1618 1619 1620 1621
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
		if (!err)
			continue;
1622

M
Michal Hocko 已提交
1623 1624 1625
		err = store_status(status, i, err, 1);
		if (err)
			goto out_flush;
1626

M
Michal Hocko 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635
		err = do_move_pages_to_node(mm, &pagelist, current_node);
		if (err)
			goto out;
		if (i > start) {
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
		}
		current_node = NUMA_NO_NODE;
1636
	}
M
Michal Hocko 已提交
1637
out_flush:
1638 1639 1640
	if (list_empty(&pagelist))
		return err;

M
Michal Hocko 已提交
1641 1642 1643 1644 1645 1646
	/* Make sure we do not overwrite the existing error */
	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
	if (!err1)
		err1 = store_status(status, start, current_node, i - start);
	if (!err)
		err = err1;
1647 1648 1649 1650
out:
	return err;
}

1651
/*
1652
 * Determine the nodes of an array of pages and store it in an array of status.
1653
 */
1654 1655
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1656
{
1657 1658
	unsigned long i;

1659 1660
	down_read(&mm->mmap_sem);

1661
	for (i = 0; i < nr_pages; i++) {
1662
		unsigned long addr = (unsigned long)(*pages);
1663 1664
		struct vm_area_struct *vma;
		struct page *page;
1665
		int err = -EFAULT;
1666 1667

		vma = find_vma(mm, addr);
1668
		if (!vma || addr < vma->vm_start)
1669 1670
			goto set_status;

1671 1672
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1673 1674 1675 1676 1677

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1678
		err = page ? page_to_nid(page) : -ENOENT;
1679
set_status:
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1701 1702
	while (nr_pages) {
		unsigned long chunk_nr;
1703

1704 1705 1706 1707 1708 1709
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1710 1711 1712

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1713 1714
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1715

1716 1717 1718 1719 1720
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1721 1722 1723 1724 1725 1726
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1727 1728 1729 1730
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
1731 1732 1733
{
	struct task_struct *task;
	struct mm_struct *mm;
1734
	int err;
1735
	nodemask_t task_nodes;
1736 1737 1738 1739 1740 1741 1742 1743 1744

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1745
	rcu_read_lock();
1746
	task = pid ? find_task_by_vpid(pid) : current;
1747
	if (!task) {
1748
		rcu_read_unlock();
1749 1750
		return -ESRCH;
	}
1751
	get_task_struct(task);
1752 1753 1754

	/*
	 * Check if this process has the right to modify the specified
1755
	 * process. Use the regular "ptrace_may_access()" checks.
1756
	 */
1757
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758
		rcu_read_unlock();
1759
		err = -EPERM;
1760
		goto out;
1761
	}
1762
	rcu_read_unlock();
1763

1764 1765
 	err = security_task_movememory(task);
 	if (err)
1766
		goto out;
1767

1768 1769 1770 1771
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1772 1773 1774 1775 1776 1777 1778 1779
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1780 1781 1782

	mmput(mm);
	return err;
1783 1784 1785 1786

out:
	put_task_struct(task);
	return err;
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

1819 1820 1821 1822 1823 1824
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825
				   unsigned long nr_migrate_pages)
1826 1827
{
	int z;
M
Mel Gorman 已提交
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1847
					   unsigned long data)
1848 1849 1850 1851
{
	int nid = (int) data;
	struct page *newpage;

1852
	newpage = __alloc_pages_node(nid,
1853 1854 1855
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1856
					 ~__GFP_RECLAIM, 0);
1857

1858 1859 1860
	return newpage;
}

1861 1862 1863 1864 1865 1866 1867 1868
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1869
/* Returns true if the node is migrate rate-limited after the update */
1870 1871
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1872
{
1873 1874 1875 1876 1877 1878
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1879
		spin_lock(&pgdat->numabalancing_migrate_lock);
1880 1881 1882
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1883
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1884
	}
1885 1886 1887
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1888
		return true;
1889
	}
1890 1891 1892 1893 1894 1895 1896 1897 1898

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1899 1900
}

1901
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1902
{
1903
	int page_lru;
1904

1905
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1906

1907
	/* Avoid migrating to a node that is nearly full */
1908 1909
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1910

1911 1912
	if (isolate_lru_page(page))
		return 0;
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1924 1925
	}

1926
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1927
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1928 1929
				hpage_nr_pages(page));

1930
	/*
1931 1932 1933
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1934 1935
	 */
	put_page(page);
1936
	return 1;
1937 1938
}

1939 1940 1941 1942 1943 1944
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1945 1946 1947 1948 1949
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1950 1951
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1952 1953
{
	pg_data_t *pgdat = NODE_DATA(node);
1954
	int isolated;
1955 1956 1957 1958
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1959 1960
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1961
	 */
1962 1963
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1964 1965
		goto out;

1966 1967 1968 1969 1970 1971 1972
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
	if (page_is_file_cache(page) && PageDirty(page))
		goto out;

1973 1974 1975 1976 1977
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1978
	if (numamigrate_update_ratelimit(pgdat, 1))
1979 1980 1981 1982 1983 1984 1985
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1986
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1987 1988
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1989
	if (nr_remaining) {
1990 1991
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1992
			dec_node_page_state(page, NR_ISOLATED_ANON +
1993 1994 1995
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1996 1997 1998
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1999 2000
	BUG_ON(!list_empty(&migratepages));
	return isolated;
2001 2002 2003 2004

out:
	put_page(page);
	return 0;
2005
}
2006
#endif /* CONFIG_NUMA_BALANCING */
2007

2008
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2009 2010 2011 2012
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
2013 2014 2015 2016 2017 2018
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
2019
	spinlock_t *ptl;
2020 2021 2022 2023
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2024 2025
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2026 2027 2028 2029 2030 2031

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
2032
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2033 2034 2035
		goto out_dropref;

	new_page = alloc_pages_node(node,
2036
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2037
		HPAGE_PMD_ORDER);
2038 2039
	if (!new_page)
		goto out_fail;
2040
	prep_transhuge_page(new_page);
2041

2042
	isolated = numamigrate_isolate_page(pgdat, page);
2043
	if (!isolated) {
2044
		put_page(new_page);
2045
		goto out_fail;
2046
	}
2047

2048
	/* Prepare a page as a migration target */
2049
	__SetPageLocked(new_page);
2050 2051
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2052 2053 2054 2055 2056 2057 2058 2059

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2060
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2061
	ptl = pmd_lock(mm, pmd);
2062
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2063
		spin_unlock(ptl);
2064
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2075 2076
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2077
		putback_lru_page(page);
M
Mel Gorman 已提交
2078
		mod_node_page_state(page_pgdat(page),
2079
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2080 2081

		goto out_unlock;
2082 2083
	}

K
Kirill A. Shutemov 已提交
2084
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2085
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2086

2087 2088 2089 2090 2091 2092 2093
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2094
	flush_cache_range(vma, mmun_start, mmun_end);
2095
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2096
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2097
	set_pmd_at(mm, mmun_start, pmd, entry);
2098
	update_mmu_cache_pmd(vma, address, &entry);
2099

2100
	page_ref_unfreeze(page, 2);
2101
	mlock_migrate_page(new_page, page);
2102
	page_remove_rmap(page, true);
2103
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2104

2105
	spin_unlock(ptl);
2106 2107 2108 2109 2110
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2111

2112 2113 2114 2115
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2116 2117 2118 2119 2120 2121 2122 2123
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2124
	mod_node_page_state(page_pgdat(page),
2125 2126 2127 2128
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2129 2130
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2131
out_dropref:
2132 2133
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2134
		entry = pmd_modify(entry, vma->vm_page_prot);
2135
		set_pmd_at(mm, mmun_start, pmd, entry);
2136 2137 2138
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2139

2140
out_unlock:
2141
	unlock_page(page);
2142 2143 2144
	put_page(page);
	return 0;
}
2145 2146 2147
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2148

2149
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2167
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2168
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2169
		migrate->dst[migrate->npages] = 0;
2170
		migrate->npages++;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2200
	unsigned long addr = start, unmapped = 0;
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2222
				return migrate_vma_collect_skip(start, end,
2223 2224 2225 2226 2227 2228 2229
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2230
				return migrate_vma_collect_skip(start, end,
2231 2232 2233 2234
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2235 2236 2237 2238
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2239 2240 2241 2242 2243 2244
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2245
		return migrate_vma_collect_skip(start, end, walk);
2246 2247

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2248 2249
	arch_enter_lazy_mmu_mode();

2250 2251 2252
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2253
		swp_entry_t entry;
2254 2255 2256 2257 2258
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2259
		if (pte_none(pte)) {
2260 2261 2262
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2263 2264 2265
			goto next;
		}

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2284 2285 2286 2287 2288 2289
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2290
			page = _vm_normal_page(migrate->vma, addr, pte, true);
2291 2292 2293 2294
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2295 2296 2297 2298 2299
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2300
		pfn = page_to_pfn(page);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2326 2327
			entry = make_migration_entry(page, mpfn &
						     MIGRATE_PFN_WRITE);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2340 2341 2342

			if (pte_present(pte))
				unmapped++;
2343 2344
		}

2345
next:
2346
		migrate->dst[migrate->npages] = 0;
2347 2348
		migrate->src[migrate->npages++] = mpfn;
	}
2349
	arch_leave_lazy_mmu_mode();
2350 2351
	pte_unmap_unlock(ptep - 1, ptl);

2352 2353 2354 2355
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2380 2381 2382
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2383
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2384 2385 2386
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

2434 2435 2436 2437 2438 2439 2440
		/*
		 * Only allow device public page to be migrated and account for
		 * the extra reference count imply by ZONE_DEVICE pages.
		 */
		if (!is_device_public_page(page))
			return false;
		extra++;
2441 2442
	}

2443 2444 2445 2446
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2465 2466
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2467 2468 2469 2470 2471 2472
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2473
		bool remap = true;
2474 2475 2476 2477

		if (!page)
			continue;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2495 2496
		}

2497 2498 2499 2500 2501 2502 2503
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2517
			}
2518 2519 2520

			/* Drop the reference we took in collect */
			put_page(page);
2521 2522 2523
		}

		if (!migrate_vma_check_page(page)) {
2524 2525 2526 2527
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2528

2529 2530 2531 2532
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2533 2534 2535 2536 2537
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2538 2539 2540 2541
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2542
			}
2543 2544
		}
	}
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2585 2586 2587 2588
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2589
		}
2590 2591 2592 2593 2594 2595 2596 2597

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2612 2613 2614 2615
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2616 2617 2618
	}
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
	if (pte_alloc(mm, pmdp, addr))
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		} else if (is_device_public_page(page)) {
			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
			if (vma->vm_flags & VM_WRITE)
				entry = pte_mkwrite(pte_mkdirty(entry));
			entry = pte_mkdevmap(entry);
		}
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2767 2768 2769 2770
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr, i, mmu_start;
	bool notified = false;
2771 2772 2773 2774 2775 2776 2777

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2778 2779
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2780
			continue;
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				mmu_start = addr;
				notified = true;
				mmu_notifier_invalidate_range_start(mm,
								mmu_start,
								migrate->end);
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2797
			continue;
2798
		}
2799 2800 2801

		mapping = page_mapping(page);

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2812
			} else if (!is_device_public_page(newpage)) {
2813 2814 2815 2816 2817 2818 2819 2820 2821
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2822 2823 2824 2825
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2826

2827 2828 2829 2830 2831
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
2832
	if (notified)
2833 2834
		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
						       migrate->end);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2857 2858 2859 2860 2861
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2862
			continue;
2863 2864
		}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2877 2878 2879 2880
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2881 2882 2883

		if (newpage != page) {
			unlock_page(newpage);
2884 2885 2886 2887
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);
3010
#endif /* defined(MIGRATE_VMA_HELPER) */