migrate.c 76.7 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/pfn_t.h>
40
#include <linux/memremap.h>
41
#include <linux/userfaultfd_k.h>
42
#include <linux/balloon_compaction.h>
43
#include <linux/mmu_notifier.h>
44
#include <linux/page_idle.h>
45
#include <linux/page_owner.h>
46
#include <linux/sched/mm.h>
47
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
48

49 50
#include <asm/tlbflush.h>

51 52 53
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
54 55 56
#include "internal.h"

/*
57
 * migrate_prep() needs to be called before we start compiling a list of pages
58 59
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

74 75 76 77 78 79 80 81
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

82
int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

133
	return 0;
134 135 136 137 138 139

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
140
	return -EBUSY;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

157 158 159 160
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
161 162 163
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
164 165 166 167 168 169
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
170
	list_for_each_entry_safe(page, page2, l, lru) {
171 172 173 174
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
175
		list_del(&page->lru);
176 177 178 179 180
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
181
		if (unlikely(__PageMovable(page))) {
182 183 184 185 186 187 188 189 190
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
191 192
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
193
			putback_lru_page(page);
194
		}
C
Christoph Lameter 已提交
195 196 197
	}
}

198 199 200
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
201
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202
				 unsigned long addr, void *old)
203
{
204 205 206 207 208 209 210 211
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
212 213
	swp_entry_t entry;

214 215
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
216 217 218 219 220
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
221

222 223 224 225 226 227 228 229 230
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

231 232 233 234
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
235

236 237 238 239 240 241
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
242

243 244 245 246 247 248 249 250
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			} else if (is_device_public_page(new)) {
				pte = pte_mkdevmap(pte);
				flush_dcache_page(new);
			}
251 252 253
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
254
#ifdef CONFIG_HUGETLB_PAGE
255 256 257
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
258
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 260 261 262
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
263 264 265 266
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267

268 269 270 271 272
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
273 274 275 276 277 278
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
279

M
Minchan Kim 已提交
280
	return true;
281 282
}

283 284 285 286
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
287
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
288
{
289 290 291 292 293
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

294 295 296 297
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
298 299
}

300 301 302 303 304
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
305
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
306
				spinlock_t *ptl)
307
{
308
	pte_t pte;
309 310 311
	swp_entry_t entry;
	struct page *page;

312
	spin_lock(ptl);
313 314 315 316 317 318 319 320 321 322
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
323 324 325 326 327 328 329 330 331
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
332 333 334 335 336 337 338 339
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

340 341 342 343 344 345 346 347
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

348 349
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
350
{
351
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 353 354
	__migration_entry_wait(mm, pte, ptl);
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

376 377
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
378 379
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
380 381 382 383
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
384
	if (mode != MIGRATE_ASYNC) {
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
420
							enum migrate_mode mode)
421 422 423 424 425
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
426
/*
427
 * Replace the page in the mapping.
428 429 430 431
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
432
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
433
 */
434
int migrate_page_move_mapping(struct address_space *mapping,
435
		struct page *newpage, struct page *page,
436 437
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
438
{
439 440
	struct zone *oldzone, *newzone;
	int dirty;
441
	int expected_count = 1 + extra_count;
442
	void **pslot;
C
Christoph Lameter 已提交
443

444
	/*
445 446
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
447
	 */
448 449
	expected_count += is_device_private_page(page);
	expected_count += is_device_public_page(page);
450

451
	if (!mapping) {
452
		/* Anonymous page without mapping */
453
		if (page_count(page) != expected_count)
454
			return -EAGAIN;
455 456 457 458 459

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
460
			__SetPageSwapBacked(newpage);
461

462
		return MIGRATEPAGE_SUCCESS;
463 464
	}

465 466 467
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
468
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
469

470 471
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
472

473
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
474
	if (page_count(page) != expected_count ||
475
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
476
		spin_unlock_irq(&mapping->tree_lock);
477
		return -EAGAIN;
C
Christoph Lameter 已提交
478 479
	}

480
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
481
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
482 483 484
		return -EAGAIN;
	}

485 486 487 488 489 490 491
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
492 493
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
494
		page_ref_unfreeze(page, expected_count);
495 496 497 498
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
499
	/*
500 501
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
502
	 */
503 504
	newpage->index = page->index;
	newpage->mapping = page->mapping;
505
	get_page(newpage);	/* add cache reference */
506 507 508 509 510 511 512 513
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
514 515
	}

516 517 518 519 520 521 522
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

523
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
524 525

	/*
526 527
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
528 529
	 * We know this isn't the last reference.
	 */
530
	page_ref_unfreeze(page, expected_count - 1);
531

532 533 534
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

535 536 537 538 539 540 541
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
542
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
543 544
	 * are mapped to swap space.
	 */
545
	if (newzone != oldzone) {
546 547
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
548
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
549 550
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
551 552
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
553
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
554
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
555
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
556
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
557
		}
558
	}
559
	local_irq_enable();
C
Christoph Lameter 已提交
560

561
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
562
}
563
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
564

N
Naoya Horiguchi 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
582
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
583 584 585 586
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

587
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
588 589 590 591
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

592 593
	newpage->index = page->index;
	newpage->mapping = page->mapping;
594

N
Naoya Horiguchi 已提交
595 596
	get_page(newpage);

597
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
N
Naoya Horiguchi 已提交
598

599
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
600 601

	spin_unlock_irq(&mapping->tree_lock);
602

603
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
604 605
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
654 655 656
/*
 * Copy the page to its new location
 */
657
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
658
{
659 660
	int cpupid;

C
Christoph Lameter 已提交
661 662 663 664 665 666
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
667
	if (TestClearPageActive(page)) {
668
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
669
		SetPageActive(newpage);
670 671
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
672 673 674 675 676
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

677 678 679
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
680

681 682 683 684 685
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

686 687 688 689 690 691 692
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

693
	ksm_migrate_page(newpage, page);
694 695 696 697
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
698 699
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
700 701 702 703 704 705 706 707 708
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
709 710

	copy_page_owner(page, newpage);
711 712

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
713
}
714 715 716 717 718 719 720 721 722 723 724
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
725
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
726

727 728 729 730
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
731
/*
732
 * Common logic to directly migrate a single LRU page suitable for
733
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
734 735 736
 *
 * Pages are locked upon entry and exit.
 */
737
int migrate_page(struct address_space *mapping,
738 739
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
740 741 742 743 744
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

745
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
746

747
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
748 749
		return rc;

750 751 752 753
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
754
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
755 756 757
}
EXPORT_SYMBOL(migrate_page);

758
#ifdef CONFIG_BLOCK
759 760 761 762 763
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
764
int buffer_migrate_page(struct address_space *mapping,
765
		struct page *newpage, struct page *page, enum migrate_mode mode)
766 767 768 769 770
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
771
		return migrate_page(mapping, newpage, page, mode);
772 773 774

	head = page_buffers(page);

775
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
776

777
	if (rc != MIGRATEPAGE_SUCCESS)
778 779
		return rc;

780 781 782 783 784
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
785 786
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

803 804 805 806
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
807 808 809 810

	bh = head;
	do {
		unlock_buffer(bh);
811
		put_bh(bh);
812 813 814 815
		bh = bh->b_this_page;

	} while (bh != head);

816
	return MIGRATEPAGE_SUCCESS;
817 818
}
EXPORT_SYMBOL(buffer_migrate_page);
819
#endif
820

821 822 823 824
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
825
{
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

843
	/*
844 845 846 847 848 849
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
850
	 */
851
	remove_migration_ptes(page, page, false);
852

853
	rc = mapping->a_ops->writepage(page, &wbc);
854

855 856 857 858
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
859
	return (rc < 0) ? -EIO : -EAGAIN;
860 861 862 863 864 865
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
866
	struct page *newpage, struct page *page, enum migrate_mode mode)
867
{
868
	if (PageDirty(page)) {
869
		/* Only writeback pages in full synchronous migration */
870 871 872 873 874
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
875
			return -EBUSY;
876
		}
877
		return writeout(mapping, page);
878
	}
879 880 881 882 883

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
884
	if (page_has_private(page) &&
885 886 887
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

888
	return migrate_page(mapping, newpage, page, mode);
889 890
}

891 892 893 894 895 896
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
897 898 899
 *
 * Return value:
 *   < 0 - error code
900
 *  MIGRATEPAGE_SUCCESS - success
901
 */
902
static int move_to_new_page(struct page *newpage, struct page *page,
903
				enum migrate_mode mode)
904 905
{
	struct address_space *mapping;
906 907
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
908

909 910
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
911 912

	mapping = page_mapping(page);
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
931
		/*
932 933
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
934
		 */
935 936 937 938 939 940 941 942 943 944 945 946
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
947

948 949 950 951 952
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
969
			page->mapping = NULL;
970
	}
971
out:
972 973 974
	return rc;
}

975
static int __unmap_and_move(struct page *page, struct page *newpage,
976
				int force, enum migrate_mode mode)
977
{
978
	int rc = -EAGAIN;
979
	int page_was_mapped = 0;
980
	struct anon_vma *anon_vma = NULL;
981
	bool is_lru = !__PageMovable(page);
982

N
Nick Piggin 已提交
983
	if (!trylock_page(page)) {
984
		if (!force || mode == MIGRATE_ASYNC)
985
			goto out;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1001
			goto out;
1002

1003 1004 1005 1006
		lock_page(page);
	}

	if (PageWriteback(page)) {
1007
		/*
1008
		 * Only in the case of a full synchronous migration is it
1009 1010 1011
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1012
		 */
1013 1014 1015 1016 1017
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1018
			rc = -EBUSY;
1019
			goto out_unlock;
1020 1021
		}
		if (!force)
1022
			goto out_unlock;
1023 1024
		wait_on_page_writeback(page);
	}
1025

1026
	/*
1027 1028
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1029
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1030
	 * of migration. File cache pages are no problem because of page_lock()
1031 1032
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1033 1034 1035 1036 1037 1038
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1039
	 */
1040
	if (PageAnon(page) && !PageKsm(page))
1041
		anon_vma = page_get_anon_vma(page);
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1054 1055 1056 1057 1058
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1059
	/*
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1070
	 */
1071
	if (!page->mapping) {
1072
		VM_BUG_ON_PAGE(PageAnon(page), page);
1073
		if (page_has_private(page)) {
1074
			try_to_free_buffers(page);
1075
			goto out_unlock_both;
1076
		}
1077 1078
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1079 1080
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1081
		try_to_unmap(page,
1082
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1083 1084
		page_was_mapped = 1;
	}
1085

1086
	if (!page_mapped(page))
1087
		rc = move_to_new_page(newpage, page, mode);
1088

1089 1090
	if (page_was_mapped)
		remove_migration_ptes(page,
1091
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1092

1093 1094 1095
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1096
	/* Drop an anon_vma reference if we took one */
1097
	if (anon_vma)
1098
		put_anon_vma(anon_vma);
1099
	unlock_page(page);
1100
out:
1101 1102 1103 1104 1105 1106 1107
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1108
		if (unlikely(__PageMovable(newpage)))
1109 1110 1111 1112 1113
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1114 1115
	return rc;
}
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1127 1128 1129 1130
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1131 1132 1133
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1134 1135
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1136
{
1137
	int rc = MIGRATEPAGE_SUCCESS;
1138
	int *result = NULL;
1139
	struct page *newpage;
1140

1141
	newpage = get_new_page(page, private, &result);
1142 1143 1144 1145 1146
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1147 1148
		ClearPageActive(page);
		ClearPageUnevictable(page);
1149 1150 1151 1152 1153 1154
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1155 1156 1157 1158
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1159 1160 1161
		goto out;
	}

1162
	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1163 1164 1165 1166
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1167
			goto out;
1168
	}
1169

1170
	rc = __unmap_and_move(page, newpage, force, mode);
1171
	if (rc == MIGRATEPAGE_SUCCESS)
1172
		set_page_owner_migrate_reason(newpage, reason);
1173

1174
out:
1175
	if (rc != -EAGAIN) {
1176 1177 1178 1179 1180 1181 1182
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1183 1184 1185 1186 1187 1188 1189

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1190 1191
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1202
			/*
1203 1204 1205
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1206
			 */
1207 1208
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1209 1210
		}
	} else {
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1226 1227 1228 1229
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1230
	}
1231

1232 1233 1234 1235 1236 1237
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1238 1239 1240
	return rc;
}

N
Naoya Horiguchi 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1260 1261
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1262
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1263
{
1264
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1265
	int *result = NULL;
1266
	int page_was_mapped = 0;
1267
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1268 1269
	struct anon_vma *anon_vma = NULL;

1270 1271 1272 1273 1274 1275 1276
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1277
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1278
		putback_active_hugepage(hpage);
1279
		return -ENOSYS;
1280
	}
1281

1282
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1283 1284 1285 1286
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1287
		if (!force)
N
Naoya Horiguchi 已提交
1288
			goto out;
1289 1290 1291 1292 1293 1294 1295
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1296 1297 1298
		lock_page(hpage);
	}

1299 1300
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1301

1302 1303 1304
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1305 1306 1307 1308 1309
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1310 1311

	if (!page_mapped(hpage))
1312
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1313

1314 1315
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1316
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1317

1318 1319 1320
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1321
	if (anon_vma)
1322
		put_anon_vma(anon_vma);
1323

1324
	if (rc == MIGRATEPAGE_SUCCESS) {
1325
		hugetlb_cgroup_migrate(hpage, new_hpage);
1326
		put_new_page = NULL;
1327
		set_page_owner_migrate_reason(new_hpage, reason);
1328
	}
1329

N
Naoya Horiguchi 已提交
1330
	unlock_page(hpage);
1331
out:
1332 1333
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1334 1335
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1336 1337 1338 1339 1340 1341

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1342
	if (put_new_page)
1343 1344
		put_new_page(new_hpage, private);
	else
1345
		putback_active_hugepage(new_hpage);
1346

N
Naoya Horiguchi 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1356
/*
1357 1358
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1359
 *
1360 1361 1362
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1363 1364
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1365 1366 1367 1368
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1369
 *
1370 1371
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1372
 * The caller should call putback_movable_pages() to return pages to the LRU
1373
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1374
 *
1375
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1376
 */
1377
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1378 1379
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1380
{
1381
	int retry = 1;
C
Christoph Lameter 已提交
1382
	int nr_failed = 0;
1383
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1393 1394
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1395

1396 1397
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1398

1399 1400
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1401
						put_new_page, private, page,
1402
						pass > 2, mode, reason);
1403
			else
1404
				rc = unmap_and_move(get_new_page, put_new_page,
1405 1406
						private, page, pass > 2, mode,
						reason);
1407

1408
			switch(rc) {
1409
			case -ENOMEM:
1410
				nr_failed++;
1411
				goto out;
1412
			case -EAGAIN:
1413
				retry++;
1414
				break;
1415
			case MIGRATEPAGE_SUCCESS:
1416
				nr_succeeded++;
1417 1418
				break;
			default:
1419 1420 1421 1422 1423 1424
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1425
				nr_failed++;
1426
				break;
1427
			}
C
Christoph Lameter 已提交
1428 1429
		}
	}
1430 1431
	nr_failed += retry;
	rc = nr_failed;
1432
out:
1433 1434 1435 1436
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1437 1438
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1439 1440 1441
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1442
	return rc;
C
Christoph Lameter 已提交
1443
}
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1469 1470 1471
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	else if (thp_migration_supported() && PageTransHuge(p)) {
		struct page *thp;

		thp = alloc_pages_node(pm->node,
			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
			HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	} else
1483
		return __alloc_pages_node(pm->node,
1484
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1485 1486 1487 1488 1489 1490
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1491
 * The pm array ends with node = MAX_NUMNODES.
1492
 */
1493 1494 1495
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;
1509 1510
		struct page *head;
		unsigned int follflags;
1511 1512 1513

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1514
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1515 1516
			goto set_status;

1517
		/* FOLL_DUMP to ignore special (like zero) pages */
1518 1519 1520 1521
		follflags = FOLL_GET | FOLL_DUMP;
		if (!thp_migration_supported())
			follflags |= FOLL_SPLIT;
		page = follow_page(vma, pp->addr, follflags);
1522 1523 1524 1525 1526

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		err = -ENOENT;
		if (!page)
			goto set_status;

		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1544
		if (PageHuge(page)) {
1545
			if (PageHead(page)) {
1546
				isolate_huge_page(page, &pagelist);
1547 1548 1549
				err = 0;
				pp->page = page;
			}
1550 1551 1552
			goto put_and_set;
		}

1553 1554 1555
		pp->page = compound_head(page);
		head = compound_head(page);
		err = isolate_lru_page(head);
1556
		if (!err) {
1557 1558 1559 1560
			list_add_tail(&head->lru, &pagelist);
			mod_node_page_state(page_pgdat(head),
				NR_ISOLATED_ANON + page_is_file_cache(head),
				hpage_nr_pages(head));
1561
		}
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1573
	err = 0;
1574
	if (!list_empty(&pagelist)) {
1575
		err = migrate_pages(&pagelist, new_page_node, NULL,
1576
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1577
		if (err)
1578
			putback_movable_pages(&pagelist);
1579
	}
1580 1581 1582 1583 1584

	up_read(&mm->mmap_sem);
	return err;
}

1585 1586 1587 1588
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1589
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1590 1591 1592 1593 1594
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1595 1596 1597 1598
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1599

1600 1601 1602
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1603
		goto out;
1604 1605 1606

	migrate_prep();

1607
	/*
1608 1609
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1610
	 */
1611
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1612

1613 1614 1615 1616
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1617

1618 1619 1620 1621 1622 1623
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1624 1625
			int node;

1626 1627 1628 1629 1630 1631
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1632 1633 1634
				goto out_pm;

			err = -ENODEV;
1635 1636 1637
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1638
			if (!node_state(node, N_MEMORY))
1639 1640 1641 1642 1643 1644
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1656 1657

		/* Return status information */
1658 1659
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1660
				err = -EFAULT;
1661 1662 1663 1664
				goto out_pm;
			}
	}
	err = 0;
1665 1666

out_pm:
1667
	free_page((unsigned long)pm);
1668 1669 1670 1671
out:
	return err;
}

1672
/*
1673
 * Determine the nodes of an array of pages and store it in an array of status.
1674
 */
1675 1676
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1677
{
1678 1679
	unsigned long i;

1680 1681
	down_read(&mm->mmap_sem);

1682
	for (i = 0; i < nr_pages; i++) {
1683
		unsigned long addr = (unsigned long)(*pages);
1684 1685
		struct vm_area_struct *vma;
		struct page *page;
1686
		int err = -EFAULT;
1687 1688

		vma = find_vma(mm, addr);
1689
		if (!vma || addr < vma->vm_start)
1690 1691
			goto set_status;

1692 1693
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1694 1695 1696 1697 1698

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1699
		err = page ? page_to_nid(page) : -ENOENT;
1700
set_status:
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1722 1723
	while (nr_pages) {
		unsigned long chunk_nr;
1724

1725 1726 1727 1728 1729 1730
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1731 1732 1733

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1734 1735
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1736

1737 1738 1739 1740 1741
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1742 1743 1744 1745 1746 1747
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1748 1749 1750 1751
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1752 1753 1754
{
	struct task_struct *task;
	struct mm_struct *mm;
1755
	int err;
1756
	nodemask_t task_nodes;
1757 1758 1759 1760 1761 1762 1763 1764 1765

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1766
	rcu_read_lock();
1767
	task = pid ? find_task_by_vpid(pid) : current;
1768
	if (!task) {
1769
		rcu_read_unlock();
1770 1771
		return -ESRCH;
	}
1772
	get_task_struct(task);
1773 1774 1775

	/*
	 * Check if this process has the right to modify the specified
1776
	 * process. Use the regular "ptrace_may_access()" checks.
1777
	 */
1778
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1779
		rcu_read_unlock();
1780
		err = -EPERM;
1781
		goto out;
1782
	}
1783
	rcu_read_unlock();
1784

1785 1786
 	err = security_task_movememory(task);
 	if (err)
1787
		goto out;
1788

1789 1790 1791 1792
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1793 1794 1795 1796 1797 1798 1799 1800
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1801 1802 1803

	mmput(mm);
	return err;
1804 1805 1806 1807

out:
	put_task_struct(task);
	return err;
1808 1809
}

1810 1811 1812 1813 1814 1815
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1816
				   unsigned long nr_migrate_pages)
1817 1818
{
	int z;
M
Mel Gorman 已提交
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1844
	newpage = __alloc_pages_node(nid,
1845 1846 1847
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1848
					 ~__GFP_RECLAIM, 0);
1849

1850 1851 1852
	return newpage;
}

1853 1854 1855 1856 1857 1858 1859 1860
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1861
/* Returns true if the node is migrate rate-limited after the update */
1862 1863
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1864
{
1865 1866 1867 1868 1869 1870
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1871
		spin_lock(&pgdat->numabalancing_migrate_lock);
1872 1873 1874
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1875
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1876
	}
1877 1878 1879
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1880
		return true;
1881
	}
1882 1883 1884 1885 1886 1887 1888 1889 1890

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1891 1892
}

1893
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1894
{
1895
	int page_lru;
1896

1897
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1898

1899
	/* Avoid migrating to a node that is nearly full */
1900 1901
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1902

1903 1904
	if (isolate_lru_page(page))
		return 0;
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1916 1917
	}

1918
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1919
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1920 1921
				hpage_nr_pages(page));

1922
	/*
1923 1924 1925
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1926 1927
	 */
	put_page(page);
1928
	return 1;
1929 1930
}

1931 1932 1933 1934 1935 1936
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1937 1938 1939 1940 1941
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1942 1943
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1944 1945
{
	pg_data_t *pgdat = NODE_DATA(node);
1946
	int isolated;
1947 1948 1949 1950
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1951 1952
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1953
	 */
1954 1955
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1956 1957 1958 1959 1960 1961 1962
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1963
	if (numamigrate_update_ratelimit(pgdat, 1))
1964 1965 1966 1967 1968 1969 1970
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1971
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1972 1973
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1974
	if (nr_remaining) {
1975 1976
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1977
			dec_node_page_state(page, NR_ISOLATED_ANON +
1978 1979 1980
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1981 1982 1983
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1984 1985
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1986 1987 1988 1989

out:
	put_page(page);
	return 0;
1990
}
1991
#endif /* CONFIG_NUMA_BALANCING */
1992

1993
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1994 1995 1996 1997
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1998 1999 2000 2001 2002 2003
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
2004
	spinlock_t *ptl;
2005 2006 2007 2008
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2009 2010
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2011 2012 2013 2014 2015 2016

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
2017
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2018 2019 2020
		goto out_dropref;

	new_page = alloc_pages_node(node,
2021
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2022
		HPAGE_PMD_ORDER);
2023 2024
	if (!new_page)
		goto out_fail;
2025
	prep_transhuge_page(new_page);
2026

2027
	isolated = numamigrate_isolate_page(pgdat, page);
2028
	if (!isolated) {
2029
		put_page(new_page);
2030
		goto out_fail;
2031
	}
2032

2033
	/* Prepare a page as a migration target */
2034
	__SetPageLocked(new_page);
2035 2036
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2037 2038 2039 2040 2041 2042 2043 2044

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2045
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2046
	ptl = pmd_lock(mm, pmd);
2047
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2048
		spin_unlock(ptl);
2049
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2060 2061
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2062
		putback_lru_page(page);
M
Mel Gorman 已提交
2063
		mod_node_page_state(page_pgdat(page),
2064
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2065 2066

		goto out_unlock;
2067 2068
	}

K
Kirill A. Shutemov 已提交
2069
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2070
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2071

2072 2073 2074 2075 2076 2077 2078
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2079
	flush_cache_range(vma, mmun_start, mmun_end);
2080
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2081
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2082
	set_pmd_at(mm, mmun_start, pmd, entry);
2083
	update_mmu_cache_pmd(vma, address, &entry);
2084

2085
	page_ref_unfreeze(page, 2);
2086
	mlock_migrate_page(new_page, page);
2087
	page_remove_rmap(page, true);
2088
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2089

2090
	spin_unlock(ptl);
2091
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2092

2093 2094 2095 2096
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2097 2098 2099 2100 2101 2102 2103 2104
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2105
	mod_node_page_state(page_pgdat(page),
2106 2107 2108 2109
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2110 2111
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2112
out_dropref:
2113 2114
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2115
		entry = pmd_modify(entry, vma->vm_page_prot);
2116
		set_pmd_at(mm, mmun_start, pmd, entry);
2117 2118 2119
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2120

2121
out_unlock:
2122
	unlock_page(page);
2123 2124 2125
	put_page(page);
	return 0;
}
2126 2127 2128
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2129

2130
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2148
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2150
		migrate->dst[migrate->npages] = 0;
2151
		migrate->npages++;
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2181
	unsigned long addr = start, unmapped = 0;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2203
				return migrate_vma_collect_skip(start, end,
2204 2205 2206 2207 2208 2209 2210
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2211
				return migrate_vma_collect_skip(start, end,
2212 2213 2214 2215
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2216 2217 2218 2219
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2220 2221 2222 2223 2224 2225
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2226
		return migrate_vma_collect_skip(start, end, walk);
2227 2228

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2229 2230
	arch_enter_lazy_mmu_mode();

2231 2232 2233
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2234
		swp_entry_t entry;
2235 2236 2237 2238 2239
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2240
		if (pte_none(pte)) {
2241 2242 2243
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2244 2245 2246
			goto next;
		}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2265 2266 2267 2268 2269 2270
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2271
			page = _vm_normal_page(migrate->vma, addr, pte, true);
2272 2273 2274 2275
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2276 2277 2278 2279 2280
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2281
		pfn = page_to_pfn(page);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
			entry = make_migration_entry(page, pte_write(pte));
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2320 2321 2322

			if (pte_present(pte))
				unmapped++;
2323 2324
		}

2325
next:
2326
		migrate->dst[migrate->npages] = 0;
2327 2328
		migrate->src[migrate->npages++] = mpfn;
	}
2329
	arch_leave_lazy_mmu_mode();
2330 2331
	pte_unmap_unlock(ptep - 1, ptl);

2332 2333 2334 2335
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2360 2361 2362
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2363
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2364 2365 2366
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

2414 2415 2416 2417 2418 2419 2420
		/*
		 * Only allow device public page to be migrated and account for
		 * the extra reference count imply by ZONE_DEVICE pages.
		 */
		if (!is_device_public_page(page))
			return false;
		extra++;
2421 2422
	}

2423 2424 2425 2426
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2445 2446
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2447 2448 2449 2450 2451 2452
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2453
		bool remap = true;
2454 2455 2456 2457

		if (!page)
			continue;

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2475 2476
		}

2477 2478 2479 2480 2481 2482 2483
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2484

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2497
			}
2498 2499 2500

			/* Drop the reference we took in collect */
			put_page(page);
2501 2502 2503
		}

		if (!migrate_vma_check_page(page)) {
2504 2505 2506 2507
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2508

2509 2510 2511 2512
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2513 2514 2515 2516 2517
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2518 2519 2520 2521
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2522
			}
2523 2524
		}
	}
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2565 2566 2567 2568
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2569
		}
2570 2571 2572 2573 2574 2575 2576 2577

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2592 2593 2594 2595
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2596 2597 2598
	}
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
	if (pte_alloc(mm, pmdp, addr))
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		} else if (is_device_public_page(page)) {
			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
			if (vma->vm_flags & VM_WRITE)
				entry = pte_mkwrite(pte_mkdirty(entry));
			entry = pte_mkdevmap(entry);
		}
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2747 2748 2749 2750
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr, i, mmu_start;
	bool notified = false;
2751 2752 2753 2754 2755 2756 2757

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2758 2759
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2760
			continue;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				mmu_start = addr;
				notified = true;
				mmu_notifier_invalidate_range_start(mm,
								mmu_start,
								migrate->end);
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2777
			continue;
2778
		}
2779 2780 2781

		mapping = page_mapping(page);

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2792
			} else if (!is_device_public_page(newpage)) {
2793 2794 2795 2796 2797 2798 2799 2800 2801
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2802 2803 2804 2805
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2806 2807 2808 2809

	if (notified)
		mmu_notifier_invalidate_range_end(mm, mmu_start,
						  migrate->end);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2832 2833 2834 2835 2836
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2837
			continue;
2838 2839
		}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2852 2853 2854 2855
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2856 2857 2858

		if (newpage != page) {
			unlock_page(newpage);
2859 2860 2861 2862
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);
2985
#endif /* defined(MIGRATE_VMA_HELPER) */