migrate.c 69.1 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/balloon_compaction.h>
40
#include <linux/mmu_notifier.h>
41
#include <linux/page_idle.h>
42
#include <linux/page_owner.h>
43
#include <linux/sched/mm.h>
44
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
45

46 47
#include <asm/tlbflush.h>

48 49 50
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
51 52 53
#include "internal.h"

/*
54
 * migrate_prep() needs to be called before we start compiling a list of pages
55 56
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

71 72 73 74 75 76 77 78
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

79
int isolate_movable_page(struct page *page, isolate_mode_t mode)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

130
	return 0;
131 132 133 134 135 136

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
137
	return -EBUSY;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

154 155 156 157
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
158 159 160
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
161 162 163 164 165 166
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
167
	list_for_each_entry_safe(page, page2, l, lru) {
168 169 170 171
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
172
		list_del(&page->lru);
173 174 175 176 177
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
178
		if (unlikely(__PageMovable(page))) {
179 180 181 182 183 184 185 186 187
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
188 189
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
190
			putback_lru_page(page);
191
		}
C
Christoph Lameter 已提交
192 193 194
	}
}

195 196 197
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
198
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
199
				 unsigned long addr, void *old)
200
{
201 202 203 204 205 206 207 208
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
209 210
	swp_entry_t entry;

211 212
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
213 214 215 216 217
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
218

219 220 221 222 223 224 225 226 227
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

228 229 230 231
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
232

233 234 235 236 237 238
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
239

240
		flush_dcache_page(new);
A
Andi Kleen 已提交
241
#ifdef CONFIG_HUGETLB_PAGE
242 243 244
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
245
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
246 247 248 249
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
250 251 252 253
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
254

255 256 257 258 259
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
260 261 262 263 264 265
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
266

M
Minchan Kim 已提交
267
	return true;
268 269
}

270 271 272 273
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
274
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
275
{
276 277 278 279 280
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

281 282 283 284
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
285 286
}

287 288 289 290 291
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
292
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
293
				spinlock_t *ptl)
294
{
295
	pte_t pte;
296 297 298
	swp_entry_t entry;
	struct page *page;

299
	spin_lock(ptl);
300 301 302 303 304 305 306 307 308 309
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
310 311 312 313 314 315 316 317 318
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
319 320 321 322 323 324 325 326
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

327 328 329 330 331 332 333 334
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

335 336
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
337
{
338
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
339 340 341
	__migration_entry_wait(mm, pte, ptl);
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

363 364
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
365 366
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
367 368 369 370
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
371
	if (mode != MIGRATE_ASYNC) {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
407
							enum migrate_mode mode)
408 409 410 411 412
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
413
/*
414
 * Replace the page in the mapping.
415 416 417 418
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
419
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
420
 */
421
int migrate_page_move_mapping(struct address_space *mapping,
422
		struct page *newpage, struct page *page,
423 424
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
425
{
426 427
	struct zone *oldzone, *newzone;
	int dirty;
428
	int expected_count = 1 + extra_count;
429
	void **pslot;
C
Christoph Lameter 已提交
430

431 432 433 434 435 436 437 438
	/*
	 * ZONE_DEVICE pages have 1 refcount always held by their device
	 *
	 * Note that DAX memory will never reach that point as it does not have
	 * the MEMORY_DEVICE_ALLOW_MIGRATE flag set (see memory_hotplug.h).
	 */
	expected_count += is_zone_device_page(page);

439
	if (!mapping) {
440
		/* Anonymous page without mapping */
441
		if (page_count(page) != expected_count)
442
			return -EAGAIN;
443 444 445 446 447

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
448
			__SetPageSwapBacked(newpage);
449

450
		return MIGRATEPAGE_SUCCESS;
451 452
	}

453 454 455
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
456
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
457

458 459
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
460

461
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
462
	if (page_count(page) != expected_count ||
463
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
464
		spin_unlock_irq(&mapping->tree_lock);
465
		return -EAGAIN;
C
Christoph Lameter 已提交
466 467
	}

468
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
469
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
470 471 472
		return -EAGAIN;
	}

473 474 475 476 477 478 479
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
480 481
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
482
		page_ref_unfreeze(page, expected_count);
483 484 485 486
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
487
	/*
488 489
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
490
	 */
491 492
	newpage->index = page->index;
	newpage->mapping = page->mapping;
493
	get_page(newpage);	/* add cache reference */
494 495 496 497 498 499 500 501
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
502 503
	}

504 505 506 507 508 509 510
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

511
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
512 513

	/*
514 515
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
516 517
	 * We know this isn't the last reference.
	 */
518
	page_ref_unfreeze(page, expected_count - 1);
519

520 521 522
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

523 524 525 526 527 528 529
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
530
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
531 532
	 * are mapped to swap space.
	 */
533
	if (newzone != oldzone) {
534 535
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
536
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
537 538
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
539 540
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
541
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
542
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
543
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
544
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
545
		}
546
	}
547
	local_irq_enable();
C
Christoph Lameter 已提交
548

549
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
550
}
551
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
552

N
Naoya Horiguchi 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
570
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
571 572 573 574
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

575
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
576 577 578 579
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

580 581
	newpage->index = page->index;
	newpage->mapping = page->mapping;
582

N
Naoya Horiguchi 已提交
583 584
	get_page(newpage);

585
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
N
Naoya Horiguchi 已提交
586

587
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
588 589

	spin_unlock_irq(&mapping->tree_lock);
590

591
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
642 643 644
/*
 * Copy the page to its new location
 */
645
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
646
{
647 648
	int cpupid;

C
Christoph Lameter 已提交
649 650 651 652 653 654
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
655
	if (TestClearPageActive(page)) {
656
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
657
		SetPageActive(newpage);
658 659
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
660 661 662 663 664
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

665 666 667
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
668

669 670 671 672 673
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

674 675 676 677 678 679 680
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

681
	ksm_migrate_page(newpage, page);
682 683 684 685
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
686 687
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
688 689 690 691 692 693 694 695 696
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
697 698

	copy_page_owner(page, newpage);
699 700

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
701
}
702 703 704 705 706 707 708 709 710 711 712
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
713
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
714

715 716 717 718
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
719
/*
720
 * Common logic to directly migrate a single LRU page suitable for
721
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
722 723 724
 *
 * Pages are locked upon entry and exit.
 */
725
int migrate_page(struct address_space *mapping,
726 727
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
728 729 730 731 732
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

733
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
734

735
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
736 737
		return rc;

738 739 740 741
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
742
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
743 744 745
}
EXPORT_SYMBOL(migrate_page);

746
#ifdef CONFIG_BLOCK
747 748 749 750 751
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
752
int buffer_migrate_page(struct address_space *mapping,
753
		struct page *newpage, struct page *page, enum migrate_mode mode)
754 755 756 757 758
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
759
		return migrate_page(mapping, newpage, page, mode);
760 761 762

	head = page_buffers(page);

763
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
764

765
	if (rc != MIGRATEPAGE_SUCCESS)
766 767
		return rc;

768 769 770 771 772
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
773 774
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

791 792 793 794
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
795 796 797 798

	bh = head;
	do {
		unlock_buffer(bh);
799
		put_bh(bh);
800 801 802 803
		bh = bh->b_this_page;

	} while (bh != head);

804
	return MIGRATEPAGE_SUCCESS;
805 806
}
EXPORT_SYMBOL(buffer_migrate_page);
807
#endif
808

809 810 811 812
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
813
{
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

831
	/*
832 833 834 835 836 837
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
838
	 */
839
	remove_migration_ptes(page, page, false);
840

841
	rc = mapping->a_ops->writepage(page, &wbc);
842

843 844 845 846
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
847
	return (rc < 0) ? -EIO : -EAGAIN;
848 849 850 851 852 853
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
854
	struct page *newpage, struct page *page, enum migrate_mode mode)
855
{
856
	if (PageDirty(page)) {
857
		/* Only writeback pages in full synchronous migration */
858 859 860 861 862
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
863
			return -EBUSY;
864
		}
865
		return writeout(mapping, page);
866
	}
867 868 869 870 871

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
872
	if (page_has_private(page) &&
873 874 875
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

876
	return migrate_page(mapping, newpage, page, mode);
877 878
}

879 880 881 882 883 884
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
885 886 887
 *
 * Return value:
 *   < 0 - error code
888
 *  MIGRATEPAGE_SUCCESS - success
889
 */
890
static int move_to_new_page(struct page *newpage, struct page *page,
891
				enum migrate_mode mode)
892 893
{
	struct address_space *mapping;
894 895
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
896

897 898
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
899 900

	mapping = page_mapping(page);
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
919
		/*
920 921
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
922
		 */
923 924 925 926 927 928 929 930 931 932 933 934
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
935

936 937 938 939 940
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
957
			page->mapping = NULL;
958
	}
959
out:
960 961 962
	return rc;
}

963
static int __unmap_and_move(struct page *page, struct page *newpage,
964
				int force, enum migrate_mode mode)
965
{
966
	int rc = -EAGAIN;
967
	int page_was_mapped = 0;
968
	struct anon_vma *anon_vma = NULL;
969
	bool is_lru = !__PageMovable(page);
970

N
Nick Piggin 已提交
971
	if (!trylock_page(page)) {
972
		if (!force || mode == MIGRATE_ASYNC)
973
			goto out;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
989
			goto out;
990

991 992 993 994
		lock_page(page);
	}

	if (PageWriteback(page)) {
995
		/*
996
		 * Only in the case of a full synchronous migration is it
997 998 999
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1000
		 */
1001 1002 1003 1004 1005
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1006
			rc = -EBUSY;
1007
			goto out_unlock;
1008 1009
		}
		if (!force)
1010
			goto out_unlock;
1011 1012
		wait_on_page_writeback(page);
	}
1013

1014
	/*
1015 1016
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1017
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1018
	 * of migration. File cache pages are no problem because of page_lock()
1019 1020
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1021 1022 1023 1024 1025 1026
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1027
	 */
1028
	if (PageAnon(page) && !PageKsm(page))
1029
		anon_vma = page_get_anon_vma(page);
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1042 1043 1044 1045 1046
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1047
	/*
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1058
	 */
1059
	if (!page->mapping) {
1060
		VM_BUG_ON_PAGE(PageAnon(page), page);
1061
		if (page_has_private(page)) {
1062
			try_to_free_buffers(page);
1063
			goto out_unlock_both;
1064
		}
1065 1066
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1067 1068
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1069
		try_to_unmap(page,
1070
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1071 1072
		page_was_mapped = 1;
	}
1073

1074
	if (!page_mapped(page))
1075
		rc = move_to_new_page(newpage, page, mode);
1076

1077 1078
	if (page_was_mapped)
		remove_migration_ptes(page,
1079
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1080

1081 1082 1083
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1084
	/* Drop an anon_vma reference if we took one */
1085
	if (anon_vma)
1086
		put_anon_vma(anon_vma);
1087
	unlock_page(page);
1088
out:
1089 1090 1091 1092 1093 1094 1095
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1096
		if (unlikely(__PageMovable(newpage)))
1097 1098 1099 1100 1101
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1102 1103
	return rc;
}
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1115 1116 1117 1118
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1119 1120 1121
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1122 1123
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1124
{
1125
	int rc = MIGRATEPAGE_SUCCESS;
1126
	int *result = NULL;
1127
	struct page *newpage;
1128

1129
	newpage = get_new_page(page, private, &result);
1130 1131 1132 1133 1134
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1135 1136
		ClearPageActive(page);
		ClearPageUnevictable(page);
1137 1138 1139 1140 1141 1142
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1143 1144 1145 1146
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1147 1148 1149
		goto out;
	}

1150
	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1151 1152 1153 1154
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1155
			goto out;
1156
	}
1157

1158
	rc = __unmap_and_move(page, newpage, force, mode);
1159
	if (rc == MIGRATEPAGE_SUCCESS)
1160
		set_page_owner_migrate_reason(newpage, reason);
1161

1162
out:
1163
	if (rc != -EAGAIN) {
1164 1165 1166 1167 1168 1169 1170
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1171 1172 1173 1174 1175 1176 1177

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1178 1179
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1190
			/*
1191 1192 1193
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1194
			 */
1195 1196
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1197 1198
		}
	} else {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1214 1215 1216 1217
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1218
	}
1219

1220 1221 1222 1223 1224 1225
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1226 1227 1228
	return rc;
}

N
Naoya Horiguchi 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1248 1249
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1250
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1251
{
1252
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1253
	int *result = NULL;
1254
	int page_was_mapped = 0;
1255
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1256 1257
	struct anon_vma *anon_vma = NULL;

1258 1259 1260 1261 1262 1263 1264
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1265
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1266
		putback_active_hugepage(hpage);
1267
		return -ENOSYS;
1268
	}
1269

1270
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1271 1272 1273 1274
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1275
		if (!force)
N
Naoya Horiguchi 已提交
1276
			goto out;
1277 1278 1279 1280 1281 1282 1283
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1284 1285 1286
		lock_page(hpage);
	}

1287 1288
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1289

1290 1291 1292
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1293 1294 1295 1296 1297
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1298 1299

	if (!page_mapped(hpage))
1300
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1301

1302 1303
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1304
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1305

1306 1307 1308
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1309
	if (anon_vma)
1310
		put_anon_vma(anon_vma);
1311

1312
	if (rc == MIGRATEPAGE_SUCCESS) {
1313
		hugetlb_cgroup_migrate(hpage, new_hpage);
1314
		put_new_page = NULL;
1315
		set_page_owner_migrate_reason(new_hpage, reason);
1316
	}
1317

N
Naoya Horiguchi 已提交
1318
	unlock_page(hpage);
1319
out:
1320 1321
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1322 1323
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1324 1325 1326 1327 1328 1329

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1330
	if (put_new_page)
1331 1332
		put_new_page(new_hpage, private);
	else
1333
		putback_active_hugepage(new_hpage);
1334

N
Naoya Horiguchi 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1344
/*
1345 1346
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1347
 *
1348 1349 1350
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1351 1352
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1353 1354 1355 1356
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1357
 *
1358 1359
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1360
 * The caller should call putback_movable_pages() to return pages to the LRU
1361
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1362
 *
1363
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1364
 */
1365
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366 1367
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1368
{
1369
	int retry = 1;
C
Christoph Lameter 已提交
1370
	int nr_failed = 0;
1371
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1381 1382
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1383

1384 1385
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1386

1387 1388
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1389
						put_new_page, private, page,
1390
						pass > 2, mode, reason);
1391
			else
1392
				rc = unmap_and_move(get_new_page, put_new_page,
1393 1394
						private, page, pass > 2, mode,
						reason);
1395

1396
			switch(rc) {
1397
			case -ENOMEM:
1398
				nr_failed++;
1399
				goto out;
1400
			case -EAGAIN:
1401
				retry++;
1402
				break;
1403
			case MIGRATEPAGE_SUCCESS:
1404
				nr_succeeded++;
1405 1406
				break;
			default:
1407 1408 1409 1410 1411 1412
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1413
				nr_failed++;
1414
				break;
1415
			}
C
Christoph Lameter 已提交
1416 1417
		}
	}
1418 1419
	nr_failed += retry;
	rc = nr_failed;
1420
out:
1421 1422 1423 1424
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1425 1426
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1427 1428 1429
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1430
	return rc;
C
Christoph Lameter 已提交
1431
}
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1457 1458 1459
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	else if (thp_migration_supported() && PageTransHuge(p)) {
		struct page *thp;

		thp = alloc_pages_node(pm->node,
			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
			HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	} else
1471
		return __alloc_pages_node(pm->node,
1472
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1473 1474 1475 1476 1477 1478
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1479
 * The pm array ends with node = MAX_NUMNODES.
1480
 */
1481 1482 1483
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;
1497 1498
		struct page *head;
		unsigned int follflags;
1499 1500 1501

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1502
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1503 1504
			goto set_status;

1505
		/* FOLL_DUMP to ignore special (like zero) pages */
1506 1507 1508 1509
		follflags = FOLL_GET | FOLL_DUMP;
		if (!thp_migration_supported())
			follflags |= FOLL_SPLIT;
		page = follow_page(vma, pp->addr, follflags);
1510 1511 1512 1513 1514

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		err = -ENOENT;
		if (!page)
			goto set_status;

		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1532
		if (PageHuge(page)) {
1533
			if (PageHead(page)) {
1534
				isolate_huge_page(page, &pagelist);
1535 1536 1537
				err = 0;
				pp->page = page;
			}
1538 1539 1540
			goto put_and_set;
		}

1541 1542 1543
		pp->page = compound_head(page);
		head = compound_head(page);
		err = isolate_lru_page(head);
1544
		if (!err) {
1545 1546 1547 1548
			list_add_tail(&head->lru, &pagelist);
			mod_node_page_state(page_pgdat(head),
				NR_ISOLATED_ANON + page_is_file_cache(head),
				hpage_nr_pages(head));
1549
		}
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1561
	err = 0;
1562
	if (!list_empty(&pagelist)) {
1563
		err = migrate_pages(&pagelist, new_page_node, NULL,
1564
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1565
		if (err)
1566
			putback_movable_pages(&pagelist);
1567
	}
1568 1569 1570 1571 1572

	up_read(&mm->mmap_sem);
	return err;
}

1573 1574 1575 1576
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1577
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1578 1579 1580 1581 1582
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1583 1584 1585 1586
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1587

1588 1589 1590
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1591
		goto out;
1592 1593 1594

	migrate_prep();

1595
	/*
1596 1597
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1598
	 */
1599
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1600

1601 1602 1603 1604
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1605

1606 1607 1608 1609 1610 1611
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1612 1613
			int node;

1614 1615 1616 1617 1618 1619
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1620 1621 1622
				goto out_pm;

			err = -ENODEV;
1623 1624 1625
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1626
			if (!node_state(node, N_MEMORY))
1627 1628 1629 1630 1631 1632
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1644 1645

		/* Return status information */
1646 1647
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1648
				err = -EFAULT;
1649 1650 1651 1652
				goto out_pm;
			}
	}
	err = 0;
1653 1654

out_pm:
1655
	free_page((unsigned long)pm);
1656 1657 1658 1659
out:
	return err;
}

1660
/*
1661
 * Determine the nodes of an array of pages and store it in an array of status.
1662
 */
1663 1664
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1665
{
1666 1667
	unsigned long i;

1668 1669
	down_read(&mm->mmap_sem);

1670
	for (i = 0; i < nr_pages; i++) {
1671
		unsigned long addr = (unsigned long)(*pages);
1672 1673
		struct vm_area_struct *vma;
		struct page *page;
1674
		int err = -EFAULT;
1675 1676

		vma = find_vma(mm, addr);
1677
		if (!vma || addr < vma->vm_start)
1678 1679
			goto set_status;

1680 1681
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1682 1683 1684 1685 1686

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1687
		err = page ? page_to_nid(page) : -ENOENT;
1688
set_status:
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1710 1711
	while (nr_pages) {
		unsigned long chunk_nr;
1712

1713 1714 1715 1716 1717 1718
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1719 1720 1721

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1722 1723
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1724

1725 1726 1727 1728 1729
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1730 1731 1732 1733 1734 1735
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1736 1737 1738 1739
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1740 1741 1742
{
	struct task_struct *task;
	struct mm_struct *mm;
1743
	int err;
1744
	nodemask_t task_nodes;
1745 1746 1747 1748 1749 1750 1751 1752 1753

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1754
	rcu_read_lock();
1755
	task = pid ? find_task_by_vpid(pid) : current;
1756
	if (!task) {
1757
		rcu_read_unlock();
1758 1759
		return -ESRCH;
	}
1760
	get_task_struct(task);
1761 1762 1763

	/*
	 * Check if this process has the right to modify the specified
1764
	 * process. Use the regular "ptrace_may_access()" checks.
1765
	 */
1766
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1767
		rcu_read_unlock();
1768
		err = -EPERM;
1769
		goto out;
1770
	}
1771
	rcu_read_unlock();
1772

1773 1774
 	err = security_task_movememory(task);
 	if (err)
1775
		goto out;
1776

1777 1778 1779 1780
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1781 1782 1783 1784 1785 1786 1787 1788
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1789 1790 1791

	mmput(mm);
	return err;
1792 1793 1794 1795

out:
	put_task_struct(task);
	return err;
1796 1797
}

1798 1799 1800 1801 1802 1803
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1804
				   unsigned long nr_migrate_pages)
1805 1806
{
	int z;
M
Mel Gorman 已提交
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1832
	newpage = __alloc_pages_node(nid,
1833 1834 1835
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1836
					 ~__GFP_RECLAIM, 0);
1837

1838 1839 1840
	return newpage;
}

1841 1842 1843 1844 1845 1846 1847 1848
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1849
/* Returns true if the node is migrate rate-limited after the update */
1850 1851
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1852
{
1853 1854 1855 1856 1857 1858
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1859
		spin_lock(&pgdat->numabalancing_migrate_lock);
1860 1861 1862
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1863
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1864
	}
1865 1866 1867
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1868
		return true;
1869
	}
1870 1871 1872 1873 1874 1875 1876 1877 1878

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1879 1880
}

1881
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1882
{
1883
	int page_lru;
1884

1885
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1886

1887
	/* Avoid migrating to a node that is nearly full */
1888 1889
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1890

1891 1892
	if (isolate_lru_page(page))
		return 0;
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1904 1905
	}

1906
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1907
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1908 1909
				hpage_nr_pages(page));

1910
	/*
1911 1912 1913
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1914 1915
	 */
	put_page(page);
1916
	return 1;
1917 1918
}

1919 1920 1921 1922 1923 1924
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1925 1926 1927 1928 1929
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1930 1931
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1932 1933
{
	pg_data_t *pgdat = NODE_DATA(node);
1934
	int isolated;
1935 1936 1937 1938
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1939 1940
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1941
	 */
1942 1943
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1944 1945 1946 1947 1948 1949 1950
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1951
	if (numamigrate_update_ratelimit(pgdat, 1))
1952 1953 1954 1955 1956 1957 1958
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1959
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1960 1961
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1962
	if (nr_remaining) {
1963 1964
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1965
			dec_node_page_state(page, NR_ISOLATED_ANON +
1966 1967 1968
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1969 1970 1971
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1972 1973
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1974 1975 1976 1977

out:
	put_page(page);
	return 0;
1978
}
1979
#endif /* CONFIG_NUMA_BALANCING */
1980

1981
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1982 1983 1984 1985
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1986 1987 1988 1989 1990 1991
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1992
	spinlock_t *ptl;
1993 1994 1995 1996
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1997 1998
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1999 2000 2001 2002 2003 2004

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
2005
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2006 2007 2008
		goto out_dropref;

	new_page = alloc_pages_node(node,
2009
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2010
		HPAGE_PMD_ORDER);
2011 2012
	if (!new_page)
		goto out_fail;
2013
	prep_transhuge_page(new_page);
2014

2015
	isolated = numamigrate_isolate_page(pgdat, page);
2016
	if (!isolated) {
2017
		put_page(new_page);
2018
		goto out_fail;
2019
	}
2020

2021
	/* Prepare a page as a migration target */
2022
	__SetPageLocked(new_page);
2023 2024
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2025 2026 2027 2028 2029 2030 2031 2032

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2033
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2034
	ptl = pmd_lock(mm, pmd);
2035
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2036
		spin_unlock(ptl);
2037
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2048 2049
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2050
		putback_lru_page(page);
M
Mel Gorman 已提交
2051
		mod_node_page_state(page_pgdat(page),
2052
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2053 2054

		goto out_unlock;
2055 2056
	}

K
Kirill A. Shutemov 已提交
2057
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2058
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2059

2060 2061 2062 2063 2064 2065 2066
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2067
	flush_cache_range(vma, mmun_start, mmun_end);
2068
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2069
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2070
	set_pmd_at(mm, mmun_start, pmd, entry);
2071
	update_mmu_cache_pmd(vma, address, &entry);
2072

2073
	page_ref_unfreeze(page, 2);
2074
	mlock_migrate_page(new_page, page);
2075
	page_remove_rmap(page, true);
2076
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2077

2078
	spin_unlock(ptl);
2079
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2080

2081 2082 2083 2084
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2085 2086 2087 2088 2089 2090 2091 2092
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2093
	mod_node_page_state(page_pgdat(page),
2094 2095 2096 2097
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2098 2099
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2100
out_dropref:
2101 2102
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2103
		entry = pmd_modify(entry, vma->vm_page_prot);
2104
		set_pmd_at(mm, mmun_start, pmd, entry);
2105 2106 2107
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2108

2109
out_unlock:
2110
	unlock_page(page);
2111 2112 2113
	put_page(page);
	return 0;
}
2114 2115 2116
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151


struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2152
	unsigned long addr = start, unmapped = 0;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
				return migrate_vma_collect_hole(start, end,
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
				return migrate_vma_collect_hole(start, end,
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
			if (ret || pmd_none(*pmdp))
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
		return migrate_vma_collect_hole(start, end, walk);

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2197 2198
	arch_enter_lazy_mmu_mode();

2199 2200 2201
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2202
		swp_entry_t entry;
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

		if (!pte_present(pte)) {
			mpfn = pfn = 0;
			goto next;
		}

		/* FIXME support THP */
		page = vm_normal_page(migrate->vma, addr, pte);
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;
		mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
		mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
			entry = make_migration_entry(page, pte_write(pte));
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
			unmapped++;
		}

2262 2263 2264
next:
		migrate->src[migrate->npages++] = mpfn;
	}
2265
	arch_leave_lazy_mmu_mode();
2266 2267
	pte_unmap_unlock(ptep - 1, ptl);

2268 2269 2270 2271
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2296 2297 2298
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2299
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2300 2301 2302
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2350 2351
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2352 2353 2354 2355 2356 2357
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2358
		bool remap = true;
2359 2360 2361 2362

		if (!page)
			continue;

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2380 2381 2382 2383 2384 2385 2386 2387 2388
		}

		if (!PageLRU(page) && allow_drain) {
			/* Drain CPU's pagevec */
			lru_add_drain_all();
			allow_drain = false;
		}

		if (isolate_lru_page(page)) {
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;
				put_page(page);
			}
2399 2400 2401 2402
			continue;
		}

		if (!migrate_vma_check_page(page)) {
2403 2404 2405 2406
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416
				get_page(page);
				putback_lru_page(page);
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

				putback_lru_page(page);
			}
2417 2418
		}
	}
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2459 2460 2461 2462
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2463
		}
2464 2465 2466 2467 2468 2469 2470 2471

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

		putback_lru_page(page);
	}
}

/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i;

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

		if (!page || !newpage)
			continue;
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		mapping = page_mapping(page);

		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page)
			continue;
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

		putback_lru_page(page);

		if (newpage != page) {
			unlock_page(newpage);
			putback_lru_page(newpage);
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);