amba-pl08x.c 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87
#include <asm/hardware/pl080.h>

88 89
#include "dmaengine.h"

90 91
#define DRIVER_NAME	"pl08xdmac"

92 93
static struct amba_driver pl08x_amba_driver;

94
/**
95
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96
 * @channels: the number of channels available in this variant
97
 * @dualmaster: whether this version supports dual AHB masters or not.
98 99 100
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
101 102 103 104
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
105
	bool nomadik;
106 107 108 109
};

/*
 * PL08X private data structures
110
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
111 112
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
113
 */
114
struct pl08x_lli {
115 116
	u32 src;
	u32 dst;
117
	u32 lli;
118 119 120 121 122 123 124 125 126 127 128 129 130 131
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
132 133
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
134
 * @mem_buses: set to indicate memory transfers on AHB2.
135 136 137 138 139 140 141
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
142
	const struct vendor_data *vd;
143 144 145 146
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
147 148
	u8 lli_buses;
	u8 mem_buses;
149 150 151 152 153 154 155 156 157 158
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

159
/* Maximum times we call dma_pool_alloc on this pool without freeing */
160
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
161 162 163 164 165 166 167
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

168 169 170 171 172
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
188
 * The next LLI pointer and the configuration interrupt bit have
189 190
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
191
 */
192 193
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
194
{
195
	struct pl08x_driver_data *pl08x = plchan->host;
196
	struct pl08x_phy_chan *phychan = plchan->phychan;
197
	struct pl08x_lli *lli = &txd->llis_va[0];
198
	u32 val;
199 200

	plchan->at = txd;
201

202 203 204
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
205

206 207
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
208 209
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
210
		txd->ccfg);
211 212 213 214 215

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
216
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
217 218 219 220

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
221
		cpu_relax();
222

223 224
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
225
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
226
		val = readl(phychan->base + PL080_CH_CONFIG);
227

228
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
229 230 231
}

/*
232
 * Pause the channel by setting the HALT bit.
233
 *
234 235 236
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
237
 *
238 239
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
240 241 242 243
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
244
	int timeout;
245 246 247 248 249 250 251

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
252 253 254 255 256 257 258
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
259 260 261 262 263 264 265 266 267 268 269 270
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

271 272 273 274 275 276 277 278
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
279
{
280
	u32 val = readl(ch->base + PL080_CH_CONFIG);
281

282 283
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
284 285

	writel(val, ch->base + PL080_CH_CONFIG);
286 287 288

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
315
	size_t bytes = 0;
316 317 318 319 320 321

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
322 323
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
324 325
	 */
	if (ch && txd) {
326
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
327

328
		/* First get the remaining bytes in the active transfer */
329 330 331
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
332 333 334 335 336 337
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
338

339 340 341 342 343 344 345 346
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
347 348

				/*
349
				 * A LLI pointer of 0 terminates the LLI list
350
				 */
351 352
				if (!llis_va[index].lli)
					break;
353 354 355 356 357
			}
		}
	}

	/* Sum up all queued transactions */
358
	if (!list_empty(&plchan->pend_list)) {
359
		struct pl08x_txd *txdi;
360
		list_for_each_entry(txdi, &plchan->pend_list, node) {
361 362 363
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
364 365 366 367 368 369 370 371 372 373
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
374 375 376 377
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
378 379 380 381 382 383 384 385 386 387 388 389 390 391
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

392
		if (!ch->locked && !ch->serving) {
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

415 416
	spin_lock_irqsave(&ch->lock, flags);

417
	/* Stop the channel and clear its interrupts */
418
	pl08x_terminate_phy_chan(pl08x, ch);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
446
				  size_t tsize)
447 448 449
{
	u32 retbits = cctl;

450
	/* Remove all src, dst and transfer size bits */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

490 491 492 493 494
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
495
	u32 lli_bus;
496 497
};

498
/*
499 500 501 502 503 504
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
505
 * - prefers bus with fixed address (i.e. peripheral)
506
 */
507 508
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
509 510
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
511 512
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
513 514 515
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
516
	} else {
517
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
518 519
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
520
		} else {
521 522
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
523 524 525 526 527
		}
	}
}

/*
528
 * Fills in one LLI for a certain transfer descriptor and advance the counter
529
 */
530 531
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
532
{
533 534
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
535 536 537

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

538
	llis_va[num_llis].cctl = cctl;
539 540
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
541 542
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
543
	llis_va[num_llis].lli |= bd->lli_bus;
544 545

	if (cctl & PL080_CONTROL_SRC_INCR)
546
		bd->srcbus.addr += len;
547
	if (cctl & PL080_CONTROL_DST_INCR)
548
		bd->dstbus.addr += len;
549

550
	BUG_ON(bd->remainder < len);
551

552
	bd->remainder -= len;
553 554
}

555 556
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
557
{
558 559 560
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
561 562 563 564 565 566 567 568 569 570 571
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
572
	struct pl08x_lli_build_data bd;
573
	int num_llis = 0;
574
	u32 cctl, early_bytes = 0;
575
	size_t max_bytes_per_lli, total_bytes;
576
	struct pl08x_lli *llis_va;
577
	struct pl08x_sg *dsg;
578

579
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
580 581 582 583 584 585 586
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

587
	bd.txd = txd;
588
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
589
	cctl = txd->cctl;
590

591
	/* Find maximum width of the source bus */
592
	bd.srcbus.maxwidth =
593 594 595 596
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
597
	bd.dstbus.maxwidth =
598 599 600
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

601 602 603
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
604

605 606 607 608 609
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
610

611
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
612

613 614 615 616 617 618 619 620 621
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
648
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
649 650 651 652
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
653

654
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
655
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
656 657 658 659 660 661
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
662

663 664 665 666 667
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
			break;
		}
668 669

		/*
670 671 672
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
673
		 */
674 675 676 677 678 679 680 681
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
682

683 684 685 686 687 688
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
689 690
		}

691 692 693 694 695 696 697 698 699
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
700

701 702
				sbus->buswidth = 1;
			}
703 704

			/*
705 706
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
707
			 */
708 709 710 711 712
			max_bytes_per_lli = bd.srcbus.buswidth *
				PL080_CONTROL_TRANSFER_SIZE_MASK;
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
713 714

			/*
715 716
			 * Make largest possible LLIs until less than one bus
			 * width left
717
			 */
718 719
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
720

721 722 723 724 725
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
743
					bd.dstbus.buswidth, tsize);
744 745 746 747
				pl08x_fill_lli_for_desc(&bd, num_llis++,
						lli_len, cctl);
				total_bytes += lli_len;
			}
748

749 750 751 752 753 754 755 756 757 758
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
				prep_byte_width_lli(&bd, &cctl, bd.remainder,
						num_llis++, &total_bytes);
			}
759
		}
760

761 762 763 764 765 766
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
767

768 769 770 771 772 773
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
				__func__, (u32) MAX_NUM_TSFR_LLIS);
			return 0;
		}
774
	}
775 776

	llis_va = txd->llis_va;
777
	/* The final LLI terminates the LLI. */
778
	llis_va[num_llis - 1].lli = 0;
779
	/* The final LLI element shall also fire an interrupt. */
780
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
781 782 783 784 785

#ifdef VERBOSE_DEBUG
	{
		int i;

786 787 788
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
789 790
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
791 792 793
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
794 795 796 797 798 799 800 801 802 803 804 805
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
806 807
	struct pl08x_sg *dsg, *_dsg;

808
	/* Free the LLI */
809 810
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
811 812 813

	pl08x->pool_ctr--;

814 815 816 817 818
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

819 820 821 822 823 824 825 826 827
	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

828
	if (!list_empty(&plchan->pend_list)) {
829
		list_for_each_entry_safe(txdi,
830
					 next, &plchan->pend_list, node) {
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
860 861 862 863
	if (plchan->phychan) {
		ch = plchan->phychan;
		goto got_channel;
	}
864 865 866 867 868 869 870 871 872 873 874 875 876

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
877
	if (plchan->slave && pl08x->pd->get_signal) {
878 879 880 881 882 883 884 885 886 887 888 889
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
	}

890
	plchan->phychan = ch;
891 892 893 894 895
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

896 897 898 899 900 901 902
got_channel:
	/* Assign the flow control signal to this channel */
	if (txd->direction == DMA_MEM_TO_DEV)
		txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else if (txd->direction == DMA_DEV_TO_MEM)
		txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;

903
	plchan->phychan_hold++;
904 905 906 907

	return 0;
}

908 909 910 911 912 913 914 915 916 917 918 919
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

920 921 922
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
923
	struct pl08x_txd *txd = to_pl08x_txd(tx);
924
	unsigned long flags;
925
	dma_cookie_t cookie;
926 927

	spin_lock_irqsave(&plchan->lock, flags);
928
	cookie = dma_cookie_assign(tx);
929 930 931 932 933 934 935 936 937 938 939 940 941

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
942 943
	} else {
		plchan->phychan_hold--;
944 945
	}

946
	spin_unlock_irqrestore(&plchan->lock, flags);
947

948
	return cookie;
949 950 951 952 953 954 955 956 957 958 959
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
960 961 962
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
963
 */
964 965
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
966 967 968 969
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	enum dma_status ret;

970 971
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_SUCCESS)
972 973 974 975
		return ret;

	/*
	 * This cookie not complete yet
976
	 * Get number of bytes left in the active transactions and queue
977
	 */
978
	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
979 980 981 982 983 984 985 986 987 988

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
989
	u32 burstwords;
990 991 992 993 994 995
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
996
		.reg = PL080_BSIZE_256,
997 998 999
	},
	{
		.burstwords = 128,
1000
		.reg = PL080_BSIZE_128,
1001 1002 1003
	},
	{
		.burstwords = 64,
1004
		.reg = PL080_BSIZE_64,
1005 1006 1007
	},
	{
		.burstwords = 32,
1008
		.reg = PL080_BSIZE_32,
1009 1010 1011
	},
	{
		.burstwords = 16,
1012
		.reg = PL080_BSIZE_16,
1013 1014 1015
	},
	{
		.burstwords = 8,
1016
		.reg = PL080_BSIZE_8,
1017 1018 1019
	},
	{
		.burstwords = 4,
1020
		.reg = PL080_BSIZE_4,
1021 1022
	},
	{
1023 1024
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1025 1026 1027
	},
};

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1064 1065
	default:
		return ~0;
1066 1067 1068
	}
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1080 1081
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1082 1083 1084 1085
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	enum dma_slave_buswidth addr_width;
1086
	u32 width, burst, maxburst;
1087
	u32 cctl = 0;
1088 1089 1090

	if (!plchan->slave)
		return -EINVAL;
1091 1092 1093

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
1094
	if (config->direction == DMA_MEM_TO_DEV) {
1095 1096
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
1097
	} else if (config->direction == DMA_DEV_TO_MEM) {
1098 1099 1100 1101 1102
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1103
		return -EINVAL;
1104 1105
	}

1106 1107
	width = pl08x_width(addr_width);
	if (width == ~0) {
1108 1109
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1110
		return -EINVAL;
1111 1112
	}

1113 1114 1115
	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

1116
	/*
1117 1118 1119
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1120
	 */
1121 1122 1123 1124 1125 1126
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1127

1128 1129
	plchan->device_fc = config->device_fc;

1130
	if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1131
		plchan->src_addr = config->src_addr;
1132 1133 1134
		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
			pl08x_select_bus(plchan->cd->periph_buses,
					 pl08x->mem_buses);
1135 1136
	} else {
		plchan->dst_addr = config->dst_addr;
1137 1138 1139
		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
			pl08x_select_bus(pl08x->mem_buses,
					 plchan->cd->periph_buses);
1140
	}
1141

1142 1143
	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1144
		"maxburst %d words, LE, CCTL=0x%08x\n",
1145
		dma_chan_name(chan), plchan->name,
1146
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1147 1148
		addr_width,
		maxburst,
1149
		cctl);
1150 1151

	return 0;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1164 1165 1166
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1167
		return;
1168
	}
1169 1170

	/* Take the first element in the queue and execute it */
1171
	if (!list_empty(&plchan->pend_list)) {
1172 1173
		struct pl08x_txd *next;

1174
		next = list_first_entry(&plchan->pend_list,
1175 1176 1177 1178 1179
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1180
		pl08x_start_txd(plchan, next);
1181 1182 1183 1184 1185 1186 1187 1188 1189
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1190 1191
	unsigned long flags;
	int num_llis, ret;
1192 1193

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1194
	if (!num_llis) {
1195 1196 1197
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1198
		return -EINVAL;
1199
	}
1200

1201
	spin_lock_irqsave(&plchan->lock, flags);
1202 1203 1204 1205 1206 1207 1208 1209

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1220 1221 1222
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1223
			pl08x_free_txd(pl08x, txd);
1224
			spin_unlock_irqrestore(&plchan->lock, flags);
1225 1226 1227 1228
			return -EBUSY;
		}
	} else
		/*
1229 1230 1231 1232
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1233 1234 1235 1236
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1237
	spin_unlock_irqrestore(&plchan->lock, flags);
1238 1239 1240 1241

	return 0;
}

1242 1243
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1244
{
1245
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1246 1247 1248

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1249
		txd->tx.flags = flags;
1250 1251
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1252
		INIT_LIST_HEAD(&txd->dsg_list);
1253 1254 1255 1256

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1257 1258 1259 1260
	}
	return txd;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1271
	struct pl08x_sg *dsg;
1272 1273
	int ret;

1274
	txd = pl08x_get_txd(plchan, flags);
1275 1276 1277 1278 1279 1280
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1281 1282 1283 1284 1285 1286 1287 1288 1289
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

1290
	txd->direction = DMA_NONE;
1291 1292 1293
	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1294 1295

	/* Set platform data for m2m */
1296
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1297 1298
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1299

1300
	/* Both to be incremented or the code will break */
1301
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1302 1303

	if (pl08x->vd->dualmaster)
1304 1305
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1306 1307 1308 1309 1310 1311 1312 1313

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1314
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1315
		struct dma_chan *chan, struct scatterlist *sgl,
1316
		unsigned int sg_len, enum dma_transfer_direction direction,
1317
		unsigned long flags, void *context)
1318 1319 1320 1321
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1322 1323 1324
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
	dma_addr_t slave_addr;
1325
	int ret, tmp;
1326 1327

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1328
			__func__, sg_dma_len(sgl), plchan->name);
1329

1330
	txd = pl08x_get_txd(plchan, flags);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1347

1348
	if (direction == DMA_MEM_TO_DEV) {
1349
		txd->cctl = plchan->dst_cctl;
1350
		slave_addr = plchan->dst_addr;
1351
	} else if (direction == DMA_DEV_TO_MEM) {
1352
		txd->cctl = plchan->src_cctl;
1353
		slave_addr = plchan->src_addr;
1354
	} else {
1355
		pl08x_free_txd(pl08x, txd);
1356 1357 1358 1359 1360
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1361
	if (plchan->device_fc)
1362
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1363 1364
			PL080_FLOW_PER2MEM_PER;
	else
1365
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1366 1367 1368 1369
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1381
		if (direction == DMA_MEM_TO_DEV) {
1382
			dsg->src_addr = sg_dma_address(sg);
1383 1384 1385
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
1386
			dsg->dst_addr = sg_dma_address(sg);
1387 1388 1389
		}
	}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1407 1408
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1426
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1427 1428 1429 1430 1431

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1432
			release_phy_channel(plchan);
1433
			plchan->phychan_hold = 0;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1464
	struct pl08x_dma_chan *plchan;
1465 1466
	char *name = chan_id;

1467 1468 1469 1470 1471 1472
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1473 1474 1475 1476 1477 1478 1479 1480 1481
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1482 1483 1484
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1485 1486 1487
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1488 1489 1490
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1491
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1492 1493
}

1494 1495 1496
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;
1497
	struct pl08x_sg *dsg;
1498 1499 1500

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1501 1502 1503 1504 1505 1506 1507 1508
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
1509 1510 1511
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1512 1513 1514
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1515
		else
1516 1517 1518
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1519 1520 1521
	}
}

1522 1523 1524 1525
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1526
	struct pl08x_txd *txd;
1527
	unsigned long flags;
1528

1529
	spin_lock_irqsave(&plchan->lock, flags);
1530

1531 1532
	txd = plchan->at;
	plchan->at = NULL;
1533

1534
	if (txd) {
1535
		/* Update last completed */
1536
		dma_cookie_complete(&txd->tx);
1537
	}
1538

1539
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1540
	if (!list_empty(&plchan->pend_list)) {
1541 1542
		struct pl08x_txd *next;

1543
		next = list_first_entry(&plchan->pend_list,
1544 1545 1546
					struct pl08x_txd,
					node);
		list_del(&next->node);
1547 1548

		pl08x_start_txd(plchan, next);
1549 1550 1551 1552 1553 1554
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1555 1556 1557 1558 1559 1560 1561
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1562
		release_phy_channel(plchan);
1563 1564 1565
		plchan->state = PL08X_CHAN_IDLE;

		/*
1566 1567 1568 1569
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1570 1571 1572
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1573 1574
			if (waiting->state == PL08X_CHAN_WAITING &&
				waiting->waiting != NULL) {
1575 1576 1577 1578 1579 1580
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1581
				waiting->phychan_hold--;
1582 1583 1584 1585 1586 1587 1588 1589
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1590
	spin_unlock_irqrestore(&plchan->lock, flags);
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1609 1610 1611 1612 1613
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1614 1615 1616 1617 1618 1619 1620 1621
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1622
	}
1623
	tc = readl(pl08x->base + PL080_TC_STATUS);
1624 1625 1626 1627 1628 1629
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1630
	for (i = 0; i < pl08x->vd->channels; i++) {
1631
		if (((1 << i) & err) || ((1 << i) & tc)) {
1632 1633 1634 1635
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

1636 1637 1638 1639 1640 1641 1642
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1643 1644 1645 1646 1647 1648 1649 1650 1651
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
	chan->src_addr = chan->cd->addr;
	chan->dst_addr = chan->cd->addr;
	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
}

1666 1667 1668 1669 1670
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1671
		struct dma_device *dmadev, unsigned int channels, bool slave)
1672 1673 1674 1675 1676
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1677

1678 1679 1680 1681 1682 1683
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1684
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1696
			pl08x_dma_slave_init(chan);
1697 1698 1699 1700 1701 1702 1703 1704
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1705 1706 1707 1708 1709 1710 1711
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1712
		dev_dbg(&pl08x->adev->dev,
1713 1714 1715 1716
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1717
		dma_cookie_init(&chan->chan);
1718 1719

		spin_lock_init(&chan->lock);
1720
		INIT_LIST_HEAD(&chan->pend_list);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1780 1781 1782 1783
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1784 1785 1786 1787 1788 1789 1790 1791

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1792
		seq_printf(s, "%s\t\t%s\n", chan->name,
1793 1794 1795 1796 1797 1798 1799
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1800
		seq_printf(s, "%s\t\t%s\n", chan->name,
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1822 1823 1824
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1825 1826 1827 1828 1829 1830 1831 1832
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1833
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1834 1835
{
	struct pl08x_driver_data *pl08x;
1836
	const struct vendor_data *vd = id->data;
1837 1838 1839 1840 1841 1842 1843 1844
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1845
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1884 1885 1886 1887 1888 1889 1890 1891
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1911
	/* Attach the interrupt handler */
1912 1913 1914 1915
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1916
			  DRIVER_NAME, pl08x);
1917 1918 1919 1920 1921 1922 1923
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
1924
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->signal = -1;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

			val = readl(ch->base + PL080_CH_CONFIG);
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

1956 1957
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1973
			pl08x->pd->num_slave_channels, true);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2000 2001 2002
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

2034 2035 2036 2037 2038 2039
static struct vendor_data vendor_nomadik = {
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
};

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2060
		.id	= 0x00280080,
2061
		.mask	= 0x00ffffff,
2062
		.data	= &vendor_nomadik,
2063 2064 2065 2066
	},
	{ 0, 0 },
};

2067 2068
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2081
		       "failed to register as an AMBA device (%d)\n",
2082 2083 2084 2085
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);