vmscan.c 110.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

103 104 105 106 107 108 109 110 111 112
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
147 148 149 150 151
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
152 153 154 155

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
156
#ifdef CONFIG_MEMCG
157 158
static bool global_reclaim(struct scan_control *sc)
{
159
	return !sc->target_mem_cgroup;
160
}
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
182
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 184 185 186
		return true;
#endif
	return false;
}
187
#else
188 189 190 191
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
192 193 194 195 196

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
197 198
#endif

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
217 218 219 220 221 222 223
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224 225

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
226 227 228
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229 230 231 232

	return nr;
}

233 234 235 236 237 238 239
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
240
{
241 242 243
	unsigned long lru_size;
	int zid;

244
	if (!mem_cgroup_disabled())
245 246 247
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
248

249 250 251
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
252

253 254 255 256 257 258 259 260 261 262 263 264
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
265 266 267

}

L
Linus Torvalds 已提交
268
/*
G
Glauber Costa 已提交
269
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
270
 */
G
Glauber Costa 已提交
271
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
272
{
G
Glauber Costa 已提交
273 274 275 276 277 278 279 280 281
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

282 283 284
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
285
	return 0;
L
Linus Torvalds 已提交
286
}
287
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
288 289 290 291

/*
 * Remove one
 */
292
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
293 294 295 296
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
297
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
298
}
299
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
300 301

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
302

303 304 305 306
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
307 308 309 310
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
311
	long freeable;
G
Glauber Costa 已提交
312 313 314 315 316
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
317
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
318

319 320
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
321 322 323 324 325 326 327 328 329 330
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
331
	delta = (4 * nr_scanned) / shrinker->seeks;
332
	delta *= freeable;
333
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
334 335
	total_scan += delta;
	if (total_scan < 0) {
336
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
337
		       shrinker->scan_objects, total_scan);
338
		total_scan = freeable;
339 340 341
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
342 343 344 345 346 347 348

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
349
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
350 351 352 353 354
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
355 356
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
357 358 359 360 361 362

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
363 364
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
365 366

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
367 368
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
369

370 371 372 373 374 375 376 377 378 379 380
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
381
	 * than the total number of objects on slab (freeable), we must be
382 383 384 385
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
386
	       total_scan >= freeable) {
D
Dave Chinner 已提交
387
		unsigned long ret;
388
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
389

390
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
391 392 393 394
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
395

396 397
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
398
		scanned += nr_to_scan;
G
Glauber Costa 已提交
399 400 401 402

		cond_resched();
	}

403 404 405 406
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
407 408 409 410 411
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
412 413
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
414 415 416 417
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

418
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
419
	return freed;
420 421
}

422
/**
423
 * shrink_slab - shrink slab caches
424 425
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
426
 * @memcg: memory cgroup whose slab caches to target
427 428
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
429
 *
430
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
431
 *
432 433
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
434
 *
435 436
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
437 438
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
439
 *
440 441 442 443 444 445 446
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
447
 *
448
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
449
 */
450 451 452 453
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
454 455
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
456
	unsigned long freed = 0;
L
Linus Torvalds 已提交
457

458
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
459 460
		return 0;

461 462
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
463

464
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
465 466 467 468 469 470 471
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
472 473
		goto out;
	}
L
Linus Torvalds 已提交
474 475

	list_for_each_entry(shrinker, &shrinker_list, list) {
476 477 478
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
479
			.memcg = memcg,
480
		};
481

482 483 484 485 486 487 488
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
489 490
			continue;

491 492
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
493

494
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
495
	}
496

L
Linus Torvalds 已提交
497
	up_read(&shrinker_rwsem);
498 499
out:
	cond_resched();
D
Dave Chinner 已提交
500
	return freed;
L
Linus Torvalds 已提交
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
526 527
static inline int is_page_cache_freeable(struct page *page)
{
528 529 530 531 532
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
533
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
534 535
}

536
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
537
{
538
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
539
		return 1;
540
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
541
		return 1;
542
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
562
	lock_page(page);
563 564
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
565 566 567
	unlock_page(page);
}

568 569 570 571 572 573 574 575 576 577 578 579
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
580
/*
A
Andrew Morton 已提交
581 582
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
583
 */
584
static pageout_t pageout(struct page *page, struct address_space *mapping,
585
			 struct scan_control *sc)
L
Linus Torvalds 已提交
586 587 588 589 590 591 592 593
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
594
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
610
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
611 612
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
613
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
614 615 616 617 618 619 620
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
621
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
622 623 624 625 626 627 628
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
629 630
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
631 632 633 634 635 636 637
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
638
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
639 640 641
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
642

L
Linus Torvalds 已提交
643 644 645 646
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
647
		trace_mm_vmscan_writepage(page);
648
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
649 650 651 652 653 654
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

655
/*
N
Nick Piggin 已提交
656 657
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
658
 */
659 660
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
661
{
662 663
	unsigned long flags;

664 665
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
666

667
	spin_lock_irqsave(&mapping->tree_lock, flags);
668
	/*
N
Nick Piggin 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
688
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
689 690 691
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
692
	 */
693
	if (!page_ref_freeze(page, 2))
694
		goto cannot_free;
N
Nick Piggin 已提交
695 696
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
697
		page_ref_unfreeze(page, 2);
698
		goto cannot_free;
N
Nick Piggin 已提交
699
	}
700 701 702

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
703
		mem_cgroup_swapout(page, swap);
704
		__delete_from_swap_cache(page);
705
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
706
		swapcache_free(swap);
N
Nick Piggin 已提交
707
	} else {
708
		void (*freepage)(struct page *);
709
		void *shadow = NULL;
710 711

		freepage = mapping->a_ops->freepage;
712 713 714 715 716 717 718 719 720
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
721 722 723 724 725 726
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
727 728
		 */
		if (reclaimed && page_is_file_cache(page) &&
729
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
730
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
731
		__delete_from_page_cache(page, shadow);
732
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
733 734 735

		if (freepage != NULL)
			freepage(page);
736 737 738 739 740
	}

	return 1;

cannot_free:
741
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
742 743 744
	return 0;
}

N
Nick Piggin 已提交
745 746 747 748 749 750 751 752
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
753
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
754 755 756 757 758
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
759
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
760 761 762 763 764
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
765 766 767 768 769 770 771 772 773 774 775
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
776
	bool is_unevictable;
777
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
778

779
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
780 781 782 783

redo:
	ClearPageUnevictable(page);

784
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
785 786 787 788 789 790
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
791
		is_unevictable = false;
792
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
793 794 795 796 797
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
798
		is_unevictable = true;
L
Lee Schermerhorn 已提交
799
		add_page_to_unevictable_list(page);
800
		/*
801 802 803
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
804
		 * isolation/check_move_unevictable_pages,
805
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
806 807
		 * the page back to the evictable list.
		 *
808
		 * The other side is TestClearPageMlocked() or shmem_lock().
809 810
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
811 812 813 814 815 816 817
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
818
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
819 820 821 822 823 824 825 826 827 828
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

829
	if (was_unevictable && !is_unevictable)
830
		count_vm_event(UNEVICTABLE_PGRESCUED);
831
	else if (!was_unevictable && is_unevictable)
832 833
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
834 835 836
	put_page(page);		/* drop ref from isolate */
}

837 838 839
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
840
	PAGEREF_KEEP,
841 842 843 844 845 846
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
847
	int referenced_ptes, referenced_page;
848 849
	unsigned long vm_flags;

850 851
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
852
	referenced_page = TestClearPageReferenced(page);
853 854 855 856 857 858 859 860

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

861
	if (referenced_ptes) {
862
		if (PageSwapBacked(page))
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

880
		if (referenced_page || referenced_ptes > 1)
881 882
			return PAGEREF_ACTIVATE;

883 884 885 886 887 888
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

889 890
		return PAGEREF_KEEP;
	}
891 892

	/* Reclaim if clean, defer dirty pages to writeback */
893
	if (referenced_page && !PageSwapBacked(page))
894 895 896
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
897 898
}

899 900 901 902
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
903 904
	struct address_space *mapping;

905 906 907 908
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
909 910
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
911 912 913 914 915 916 917 918
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
919 920 921 922 923 924 925 926

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
927 928
}

929 930 931 932 933 934
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
935 936 937
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
938 939
};

L
Linus Torvalds 已提交
940
/*
A
Andrew Morton 已提交
941
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
942
 */
A
Andrew Morton 已提交
943
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
944
				      struct pglist_data *pgdat,
945
				      struct scan_control *sc,
946
				      enum ttu_flags ttu_flags,
947
				      struct reclaim_stat *stat,
948
				      bool force_reclaim)
L
Linus Torvalds 已提交
949 950
{
	LIST_HEAD(ret_pages);
951
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
952
	int pgactivate = 0;
953 954 955 956 957 958
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
959 960
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
961 962 963 964 965 966 967

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
968
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
969
		bool dirty, writeback;
M
Minchan Kim 已提交
970
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
971 972 973 974 975 976

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
977
		if (!trylock_page(page))
L
Linus Torvalds 已提交
978 979
			goto keep;

980
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
981 982

		sc->nr_scanned++;
983

984
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
985
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
986

987
		if (!sc->may_unmap && page_mapped(page))
988 989
			goto keep_locked;

L
Linus Torvalds 已提交
990
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
991 992
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
993 994
			sc->nr_scanned++;

995 996 997
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1011 1012 1013 1014 1015 1016
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1017
		mapping = page_mapping(page);
1018
		if (((dirty || writeback) && mapping &&
1019
		     inode_write_congested(mapping->host)) ||
1020
		    (writeback && PageReclaim(page)))
1021 1022
			nr_congested++;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1034 1035
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1036
		 *
1037
		 * 2) Global or new memcg reclaim encounters a page that is
1038 1039 1040
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1041
		 *    reclaim and continue scanning.
1042
		 *
1043 1044
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1045 1046 1047 1048 1049
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1050
		 * 3) Legacy memcg encounters a page that is already marked
1051 1052 1053 1054
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1055 1056 1057 1058 1059 1060 1061 1062 1063
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1064
		 */
1065
		if (PageWriteback(page)) {
1066 1067 1068
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1069
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1070
				nr_immediate++;
1071
				goto activate_locked;
1072 1073

			/* Case 2 above */
1074
			} else if (sane_reclaim(sc) ||
1075
			    !PageReclaim(page) || !may_enter_fs) {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1088
				nr_writeback++;
1089
				goto activate_locked;
1090 1091 1092

			/* Case 3 above */
			} else {
1093
				unlock_page(page);
1094
				wait_on_page_writeback(page);
1095 1096 1097
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1098
			}
1099
		}
L
Linus Torvalds 已提交
1100

1101 1102 1103
		if (!force_reclaim)
			references = page_check_references(page, sc);

1104 1105
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1106
			goto activate_locked;
1107
		case PAGEREF_KEEP:
1108
			nr_ref_keep++;
1109
			goto keep_locked;
1110 1111 1112 1113
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1114 1115 1116 1117

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1118
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1119
		 */
S
Shaohua Li 已提交
1120 1121
		if (PageAnon(page) && PageSwapBacked(page) &&
		    !PageSwapCache(page)) {
1122 1123
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1124
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1125
				goto activate_locked;
1126
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1127

1128 1129
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1130 1131 1132 1133
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1134
		}
L
Linus Torvalds 已提交
1135

1136 1137
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1138 1139 1140 1141
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1142
		if (page_mapped(page)) {
S
Shaohua Li 已提交
1143 1144
			switch (ret = try_to_unmap(page,
				ttu_flags | TTU_BATCH_FLUSH)) {
S
Shaohua Li 已提交
1145 1146 1147
			case SWAP_DIRTY:
				SetPageSwapBacked(page);
				/* fall through */
L
Linus Torvalds 已提交
1148
			case SWAP_FAIL:
1149
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1150 1151 1152
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1153 1154
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1161
			/*
1162 1163 1164 1165 1166 1167 1168 1169
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1170
			 */
1171
			if (page_is_file_cache(page) &&
1172 1173
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1174 1175 1176 1177 1178 1179
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1180
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1181 1182
				SetPageReclaim(page);

1183
				goto activate_locked;
1184 1185
			}

1186
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1187
				goto keep_locked;
1188
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1189
				goto keep_locked;
1190
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1191 1192
				goto keep_locked;

1193 1194 1195 1196 1197 1198
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1199
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1200 1201 1202 1203 1204
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1205
				if (PageWriteback(page))
1206
					goto keep;
1207
				if (PageDirty(page))
L
Linus Torvalds 已提交
1208
					goto keep;
1209

L
Linus Torvalds 已提交
1210 1211 1212 1213
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1214
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1234
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1245
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1246 1247
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1264 1265
		}

S
Shaohua Li 已提交
1266 1267 1268 1269 1270 1271 1272 1273
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1274

S
Shaohua Li 已提交
1275 1276 1277
			count_vm_event(PGLAZYFREED);
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1278 1279 1280 1281 1282 1283 1284
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1285
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1286
free_it:
1287
		nr_reclaimed++;
1288 1289 1290 1291 1292 1293

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1294 1295
		continue;

N
Nick Piggin 已提交
1296
cull_mlocked:
1297 1298
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1299
		unlock_page(page);
1300
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1301 1302
		continue;

L
Linus Torvalds 已提交
1303
activate_locked:
1304
		/* Not a candidate for swapping, so reclaim swap space. */
1305
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1306
			try_to_free_swap(page);
1307
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1308 1309 1310 1311 1312 1313
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1314
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1315
	}
1316

1317
	mem_cgroup_uncharge_list(&free_pages);
1318
	try_to_unmap_flush();
1319
	free_hot_cold_page_list(&free_pages, true);
1320

L
Linus Torvalds 已提交
1321
	list_splice(&ret_pages, page_list);
1322
	count_vm_events(PGACTIVATE, pgactivate);
1323

1324 1325 1326 1327 1328 1329
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1330 1331 1332
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1333
	}
1334
	return nr_reclaimed;
L
Linus Torvalds 已提交
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1345
	unsigned long ret;
1346 1347 1348 1349
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1350
		if (page_is_file_cache(page) && !PageDirty(page) &&
1351
		    !__PageMovable(page)) {
1352 1353 1354 1355 1356
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1357
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1358
			TTU_IGNORE_ACCESS, NULL, true);
1359
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1360
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1361 1362 1363
	return ret;
}

A
Andy Whitcroft 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1374
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1375 1376 1377 1378 1379 1380 1381
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1382 1383
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1384 1385
		return ret;

A
Andy Whitcroft 已提交
1386
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1387

1388 1389 1390 1391 1392 1393 1394 1395
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1396
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1414

1415 1416 1417
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1431 1432 1433 1434 1435 1436

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1437
			enum lru_list lru, unsigned long *nr_zone_taken)
1438 1439 1440 1441 1442 1443 1444 1445 1446
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1447
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1448
#endif
1449 1450
	}

1451 1452
}

L
Linus Torvalds 已提交
1453
/*
1454
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1464
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1465
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1466
 * @nr_scanned:	The number of pages that were scanned.
1467
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1468
 * @mode:	One of the LRU isolation modes
1469
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1470 1471 1472
 *
 * returns how many pages were moved onto *@dst.
 */
1473
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1474
		struct lruvec *lruvec, struct list_head *dst,
1475
		unsigned long *nr_scanned, struct scan_control *sc,
1476
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1477
{
H
Hugh Dickins 已提交
1478
	struct list_head *src = &lruvec->lists[lru];
1479
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1480
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1481
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1482
	unsigned long skipped = 0;
M
Mel Gorman 已提交
1483
	unsigned long scan, nr_pages;
1484
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1485

1486
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1487
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1488 1489
		struct page *page;

L
Linus Torvalds 已提交
1490 1491 1492
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1493
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1494

1495 1496
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1497
			nr_skipped[page_zonenum(page)]++;
1498 1499 1500
			continue;
		}

1501
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1502
		case 0:
M
Mel Gorman 已提交
1503 1504 1505
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1506 1507 1508 1509 1510 1511 1512
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1513

A
Andy Whitcroft 已提交
1514 1515 1516
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1517 1518
	}

1519 1520 1521 1522 1523 1524 1525
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1526 1527 1528
	if (!list_empty(&pages_skipped)) {
		int zid;

1529
		list_splice(&pages_skipped, src);
1530 1531 1532 1533 1534
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1535
			skipped += nr_skipped[zid];
1536 1537
		}
	}
1538
	*nr_scanned = scan;
1539
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1540
				    scan, skipped, nr_taken, mode, lru);
1541
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1542 1543 1544
	return nr_taken;
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1556 1557 1558
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1574
	VM_BUG_ON_PAGE(!page_count(page), page);
1575
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1576

1577 1578
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1579
		struct lruvec *lruvec;
1580

1581
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1582
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1583
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1584
			int lru = page_lru(page);
1585
			get_page(page);
1586
			ClearPageLRU(page);
1587 1588
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1589
		}
1590
		spin_unlock_irq(zone_lru_lock(zone));
1591 1592 1593 1594
	}
	return ret;
}

1595
/*
F
Fengguang Wu 已提交
1596 1597 1598 1599 1600
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1601
 */
M
Mel Gorman 已提交
1602
static int too_many_isolated(struct pglist_data *pgdat, int file,
1603 1604 1605 1606 1607 1608 1609
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1610
	if (!sane_reclaim(sc))
1611 1612 1613
		return 0;

	if (file) {
M
Mel Gorman 已提交
1614 1615
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1616
	} else {
M
Mel Gorman 已提交
1617 1618
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1619 1620
	}

1621 1622 1623 1624 1625
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1626
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1627 1628
		inactive >>= 3;

1629 1630 1631
	return isolated > inactive;
}

1632
static noinline_for_stack void
H
Hugh Dickins 已提交
1633
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1634
{
1635
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1636
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1637
	LIST_HEAD(pages_to_free);
1638 1639 1640 1641 1642

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1643
		struct page *page = lru_to_page(page_list);
1644
		int lru;
1645

1646
		VM_BUG_ON_PAGE(PageLRU(page), page);
1647
		list_del(&page->lru);
1648
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1649
			spin_unlock_irq(&pgdat->lru_lock);
1650
			putback_lru_page(page);
M
Mel Gorman 已提交
1651
			spin_lock_irq(&pgdat->lru_lock);
1652 1653
			continue;
		}
1654

M
Mel Gorman 已提交
1655
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1656

1657
		SetPageLRU(page);
1658
		lru = page_lru(page);
1659 1660
		add_page_to_lru_list(page, lruvec, lru);

1661 1662
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1663 1664
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1665
		}
1666 1667 1668
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1669
			del_page_from_lru_list(page, lruvec, lru);
1670 1671

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1672
				spin_unlock_irq(&pgdat->lru_lock);
1673
				mem_cgroup_uncharge(page);
1674
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1675
				spin_lock_irq(&pgdat->lru_lock);
1676 1677
			} else
				list_add(&page->lru, &pages_to_free);
1678 1679 1680
		}
	}

1681 1682 1683 1684
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1685 1686
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1700
/*
1701
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1702
 * of reclaimed pages
L
Linus Torvalds 已提交
1703
 */
1704
static noinline_for_stack unsigned long
1705
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1706
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1707 1708
{
	LIST_HEAD(page_list);
1709
	unsigned long nr_scanned;
1710
	unsigned long nr_reclaimed = 0;
1711
	unsigned long nr_taken;
1712
	struct reclaim_stat stat = {};
1713
	isolate_mode_t isolate_mode = 0;
1714
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1715
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1716
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1717

M
Mel Gorman 已提交
1718
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1719
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1720 1721 1722 1723 1724 1725

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1726
	lru_add_drain();
1727 1728

	if (!sc->may_unmap)
1729
		isolate_mode |= ISOLATE_UNMAPPED;
1730

M
Mel Gorman 已提交
1731
	spin_lock_irq(&pgdat->lru_lock);
1732

1733 1734
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1735

M
Mel Gorman 已提交
1736
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1737
	reclaim_stat->recent_scanned[file] += nr_taken;
1738

1739
	if (global_reclaim(sc)) {
1740
		if (current_is_kswapd())
M
Mel Gorman 已提交
1741
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1742
		else
M
Mel Gorman 已提交
1743
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1744
	}
M
Mel Gorman 已提交
1745
	spin_unlock_irq(&pgdat->lru_lock);
1746

1747
	if (nr_taken == 0)
1748
		return 0;
A
Andy Whitcroft 已提交
1749

S
Shaohua Li 已提交
1750
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1751
				&stat, false);
1752

M
Mel Gorman 已提交
1753
	spin_lock_irq(&pgdat->lru_lock);
1754

Y
Ying Han 已提交
1755 1756
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1757
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1758
		else
M
Mel Gorman 已提交
1759
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1760
	}
N
Nick Piggin 已提交
1761

1762
	putback_inactive_pages(lruvec, &page_list);
1763

M
Mel Gorman 已提交
1764
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1765

M
Mel Gorman 已提交
1766
	spin_unlock_irq(&pgdat->lru_lock);
1767

1768
	mem_cgroup_uncharge_list(&page_list);
1769
	free_hot_cold_page_list(&page_list, true);
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1781 1782 1783
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1784
	 */
1785
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1786
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1787

1788
	/*
1789 1790
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1791
	 */
1792
	if (sane_reclaim(sc)) {
1793 1794 1795 1796
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1797
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1798
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1799

1800 1801
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1802 1803 1804 1805 1806 1807 1808 1809 1810
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1811
		 */
1812 1813
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1814
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1815
		}
1816 1817

		/*
1818 1819 1820
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1821 1822
		 * they are written so also forcibly stall.
		 */
1823
		if (stat.nr_immediate && current_may_throttle())
1824
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1825
	}
1826

1827 1828 1829 1830 1831
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1832 1833
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1834
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1835

M
Mel Gorman 已提交
1836 1837
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1838 1839 1840 1841
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1842
			sc->priority, file);
1843
	return nr_reclaimed;
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1853
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1854
 * the pages are mapped, the processing is slow (page_referenced()) so we
1855
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1856 1857 1858 1859
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1860
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1861
 * But we had to alter page->flags anyway.
1862 1863
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1864
 */
1865

1866
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1867
				     struct list_head *list,
1868
				     struct list_head *pages_to_free,
1869 1870
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1871
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1872
	struct page *page;
1873
	int nr_pages;
1874
	int nr_moved = 0;
1875 1876 1877

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1878
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1879

1880
		VM_BUG_ON_PAGE(PageLRU(page), page);
1881 1882
		SetPageLRU(page);

1883
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1884
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1885
		list_move(&page->lru, &lruvec->lists[lru]);
1886

1887 1888 1889
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1890
			del_page_from_lru_list(page, lruvec, lru);
1891 1892

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1893
				spin_unlock_irq(&pgdat->lru_lock);
1894
				mem_cgroup_uncharge(page);
1895
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1896
				spin_lock_irq(&pgdat->lru_lock);
1897 1898
			} else
				list_add(&page->lru, pages_to_free);
1899 1900
		} else {
			nr_moved += nr_pages;
1901 1902
		}
	}
1903

1904
	if (!is_active_lru(lru))
1905
		__count_vm_events(PGDEACTIVATE, nr_moved);
1906 1907

	return nr_moved;
1908
}
1909

H
Hugh Dickins 已提交
1910
static void shrink_active_list(unsigned long nr_to_scan,
1911
			       struct lruvec *lruvec,
1912
			       struct scan_control *sc,
1913
			       enum lru_list lru)
L
Linus Torvalds 已提交
1914
{
1915
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1916
	unsigned long nr_scanned;
1917
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1918
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1919
	LIST_HEAD(l_active);
1920
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1921
	struct page *page;
1922
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1923 1924
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1925
	isolate_mode_t isolate_mode = 0;
1926
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1927
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1928 1929

	lru_add_drain();
1930 1931

	if (!sc->may_unmap)
1932
		isolate_mode |= ISOLATE_UNMAPPED;
1933

M
Mel Gorman 已提交
1934
	spin_lock_irq(&pgdat->lru_lock);
1935

1936 1937
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1938

M
Mel Gorman 已提交
1939
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1940
	reclaim_stat->recent_scanned[file] += nr_taken;
1941

M
Mel Gorman 已提交
1942
	__count_vm_events(PGREFILL, nr_scanned);
1943

M
Mel Gorman 已提交
1944
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1950

1951
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1952 1953 1954 1955
			putback_lru_page(page);
			continue;
		}

1956 1957 1958 1959 1960 1961 1962 1963
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1964 1965
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1966
			nr_rotated += hpage_nr_pages(page);
1967 1968 1969 1970 1971 1972 1973 1974 1975
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1976
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1977 1978 1979 1980
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1981

1982
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1983 1984 1985
		list_add(&page->lru, &l_inactive);
	}

1986
	/*
1987
	 * Move pages back to the lru list.
1988
	 */
M
Mel Gorman 已提交
1989
	spin_lock_irq(&pgdat->lru_lock);
1990
	/*
1991 1992 1993
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1994
	 * get_scan_count.
1995
	 */
1996
	reclaim_stat->recent_rotated[file] += nr_rotated;
1997

1998 1999
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2000 2001
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2002

2003
	mem_cgroup_uncharge_list(&l_hold);
2004
	free_hot_cold_page_list(&l_hold, true);
2005 2006
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2007 2008
}

2009 2010 2011
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2012
 *
2013 2014 2015
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2016
 *
2017 2018
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2019
 *
2020 2021 2022
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2023
 *
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2034
 */
2035
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036
						struct scan_control *sc, bool trace)
2037
{
2038
	unsigned long inactive_ratio;
2039 2040 2041
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2042
	unsigned long gb;
2043

2044 2045 2046 2047 2048 2049
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2050

2051 2052
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2053

2054 2055 2056
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2057
	else
2058 2059
		inactive_ratio = 1;

2060
	if (trace)
2061
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2062
				sc->reclaim_idx,
2063 2064 2065 2066
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2067
	return inactive * inactive_ratio < active;
2068 2069
}

2070
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2071
				 struct lruvec *lruvec, struct scan_control *sc)
2072
{
2073
	if (is_active_lru(lru)) {
2074
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2075
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2076 2077 2078
		return 0;
	}

2079
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2080 2081
}

2082 2083 2084 2085 2086 2087 2088
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2089 2090 2091 2092 2093 2094
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2095 2096
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2097
 */
2098
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2099 2100
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2101
{
2102
	int swappiness = mem_cgroup_swappiness(memcg);
2103 2104 2105
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2106
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2107
	unsigned long anon_prio, file_prio;
2108
	enum scan_balance scan_balance;
2109
	unsigned long anon, file;
2110
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2111
	enum lru_list lru;
2112 2113

	/* If we have no swap space, do not bother scanning anon pages. */
2114
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2115
		scan_balance = SCAN_FILE;
2116 2117
		goto out;
	}
2118

2119 2120 2121 2122 2123 2124 2125
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2126
	if (!global_reclaim(sc) && !swappiness) {
2127
		scan_balance = SCAN_FILE;
2128 2129 2130 2131 2132 2133 2134 2135
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2136
	if (!sc->priority && swappiness) {
2137
		scan_balance = SCAN_EQUAL;
2138 2139 2140
		goto out;
	}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2151 2152 2153 2154
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2155

M
Mel Gorman 已提交
2156 2157 2158 2159 2160 2161
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2162
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2163 2164 2165 2166
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2167

M
Mel Gorman 已提交
2168
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2169 2170 2171 2172 2173
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2174
	/*
2175 2176 2177 2178 2179 2180 2181
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2182
	 */
2183
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2184
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2185
		scan_balance = SCAN_FILE;
2186 2187 2188
		goto out;
	}

2189 2190
	scan_balance = SCAN_FRACT;

2191 2192 2193 2194
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2195
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2196
	file_prio = 200 - anon_prio;
2197

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2209

2210 2211 2212 2213
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2214

M
Mel Gorman 已提交
2215
	spin_lock_irq(&pgdat->lru_lock);
2216 2217 2218
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2219 2220
	}

2221 2222 2223
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2224 2225 2226
	}

	/*
2227 2228 2229
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2230
	 */
2231
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2232
	ap /= reclaim_stat->recent_rotated[0] + 1;
2233

2234
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2235
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2236
	spin_unlock_irq(&pgdat->lru_lock);
2237

2238 2239 2240 2241
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2242 2243 2244 2245 2246
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2247

2248 2249 2250 2251 2252 2253 2254 2255
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2256

2257 2258 2259 2260 2261
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2262
			/*
2263 2264
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2265
			 */
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2280
		}
2281 2282 2283

		*lru_pages += size;
		nr[lru] = scan;
2284
	}
2285
}
2286

2287
/*
2288
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2289
 */
2290
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2291
			      struct scan_control *sc, unsigned long *lru_pages)
2292
{
2293
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2294
	unsigned long nr[NR_LRU_LISTS];
2295
	unsigned long targets[NR_LRU_LISTS];
2296 2297 2298 2299 2300
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2301
	bool scan_adjusted;
2302

2303
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2304

2305 2306 2307
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2322 2323 2324
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2325 2326 2327
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2328 2329 2330 2331 2332 2333 2334 2335 2336
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2337

2338 2339
		cond_resched();

2340 2341 2342 2343 2344
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2345
		 * requested. Ensure that the anon and file LRUs are scanned
2346 2347 2348 2349 2350 2351 2352
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2353 2354 2355 2356 2357 2358 2359 2360 2361
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2393 2394 2395 2396 2397 2398 2399 2400
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2401
	if (inactive_list_is_low(lruvec, false, sc, true))
2402 2403 2404 2405
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2406
/* Use reclaim/compaction for costly allocs or under memory pressure */
2407
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2408
{
2409
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2410
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2411
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2412 2413 2414 2415 2416
		return true;

	return false;
}

2417
/*
M
Mel Gorman 已提交
2418 2419 2420 2421 2422
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2423
 */
2424
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2425 2426 2427 2428 2429 2430
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2431
	int z;
2432 2433

	/* If not in reclaim/compaction mode, stop */
2434
	if (!in_reclaim_compaction(sc))
2435 2436
		return false;

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2459 2460 2461 2462 2463

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2464
	pages_for_compaction = compact_gap(sc->order);
2465
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2466
	if (get_nr_swap_pages() > 0)
2467
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2468 2469 2470 2471 2472
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2473 2474
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2475
		if (!managed_zone(zone))
2476 2477 2478
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2479
		case COMPACT_SUCCESS:
2480 2481 2482 2483 2484 2485
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2486
	}
2487
	return true;
2488 2489
}

2490
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2491
{
2492
	struct reclaim_state *reclaim_state = current->reclaim_state;
2493
	unsigned long nr_reclaimed, nr_scanned;
2494
	bool reclaimable = false;
L
Linus Torvalds 已提交
2495

2496 2497 2498
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2499
			.pgdat = pgdat,
2500 2501
			.priority = sc->priority,
		};
2502
		unsigned long node_lru_pages = 0;
2503
		struct mem_cgroup *memcg;
2504

2505 2506
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2507

2508 2509
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2510
			unsigned long lru_pages;
2511
			unsigned long reclaimed;
2512
			unsigned long scanned;
2513

2514 2515 2516 2517 2518 2519
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2520
			reclaimed = sc->nr_reclaimed;
2521
			scanned = sc->nr_scanned;
2522

2523 2524
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2525

2526
			if (memcg)
2527
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2528 2529 2530
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2531 2532 2533 2534 2535
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2536
			/*
2537 2538
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2539
			 * node.
2540 2541 2542 2543 2544
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2545
			 */
2546 2547
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2548 2549 2550
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2551
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2552

2553 2554 2555 2556
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2557
		if (global_reclaim(sc))
2558
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2559
				    sc->nr_scanned - nr_scanned,
2560
				    node_lru_pages);
2561 2562 2563 2564

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2565 2566
		}

2567 2568
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2569 2570 2571
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2572 2573 2574
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2575
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2576
					 sc->nr_scanned - nr_scanned, sc));
2577

2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2587
	return reclaimable;
2588 2589
}

2590
/*
2591 2592 2593
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2594
 */
2595
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2596
{
M
Mel Gorman 已提交
2597
	unsigned long watermark;
2598
	enum compact_result suitable;
2599

2600 2601 2602 2603 2604 2605 2606
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2607

2608
	/*
2609 2610 2611 2612 2613 2614 2615
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2616
	 */
2617
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2618

2619
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2620 2621
}

L
Linus Torvalds 已提交
2622 2623 2624 2625 2626 2627 2628 2629
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2630
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2631
{
2632
	struct zoneref *z;
2633
	struct zone *zone;
2634 2635
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2636
	gfp_t orig_mask;
2637
	pg_data_t *last_pgdat = NULL;
2638

2639 2640 2641 2642 2643
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2644
	orig_mask = sc->gfp_mask;
2645
	if (buffer_heads_over_limit) {
2646
		sc->gfp_mask |= __GFP_HIGHMEM;
2647
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2648
	}
2649

2650
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2651
					sc->reclaim_idx, sc->nodemask) {
2652 2653 2654 2655
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2656
		if (global_reclaim(sc)) {
2657 2658
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2659
				continue;
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2672
			    compaction_ready(zone, sc)) {
2673 2674
				sc->compaction_ready = true;
				continue;
2675
			}
2676

2677 2678 2679 2680 2681 2682 2683 2684 2685
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2686 2687 2688 2689 2690 2691 2692
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2693
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2694 2695 2696 2697
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2698
			/* need some check for avoid more shrink_zone() */
2699
		}
2700

2701 2702 2703 2704
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2705
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2706
	}
2707

2708 2709 2710 2711 2712
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2713
}
2714

L
Linus Torvalds 已提交
2715 2716 2717 2718 2719 2720 2721 2722
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2723 2724 2725 2726
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2727 2728 2729
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2730
 */
2731
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2732
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2733
{
2734 2735
	int initial_priority = sc->priority;
retry:
2736 2737
	delayacct_freepages_start();

2738
	if (global_reclaim(sc))
2739
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2740

2741
	do {
2742 2743
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2744
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2745
		shrink_zones(zonelist, sc);
2746

2747
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2748 2749 2750 2751
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2752

2753 2754 2755 2756 2757 2758
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2759
	} while (--sc->priority >= 0);
2760

2761 2762
	delayacct_freepages_end();

2763 2764 2765
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2766
	/* Aborted reclaim to try compaction? don't OOM, then */
2767
	if (sc->compaction_ready)
2768 2769
		return 1;

2770 2771 2772 2773 2774 2775 2776
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2777
	return 0;
L
Linus Torvalds 已提交
2778 2779
}

2780
static bool allow_direct_reclaim(pg_data_t *pgdat)
2781 2782 2783 2784 2785 2786 2787
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2788 2789 2790
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2791 2792
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2793 2794 2795 2796
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2797 2798
			continue;

2799 2800 2801 2802
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2803 2804 2805 2806
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2807 2808 2809 2810
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2811
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2823 2824 2825 2826
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2827
 */
2828
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2829 2830
					nodemask_t *nodemask)
{
2831
	struct zoneref *z;
2832
	struct zone *zone;
2833
	pg_data_t *pgdat = NULL;
2834 2835 2836 2837 2838 2839 2840 2841 2842

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2843 2844 2845 2846 2847 2848 2849 2850
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2867
					gfp_zone(gfp_mask), nodemask) {
2868 2869 2870 2871 2872
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2873
		if (allow_direct_reclaim(pgdat))
2874 2875 2876 2877 2878 2879
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2880
		goto out;
2881

2882 2883 2884
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2895
			allow_direct_reclaim(pgdat), HZ);
2896 2897

		goto check_pending;
2898 2899 2900 2901
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2902
		allow_direct_reclaim(pgdat));
2903 2904 2905 2906 2907 2908 2909

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2910 2911
}

2912
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2913
				gfp_t gfp_mask, nodemask_t *nodemask)
2914
{
2915
	unsigned long nr_reclaimed;
2916
	struct scan_control sc = {
2917
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2918
		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2919
		.reclaim_idx = gfp_zone(gfp_mask),
2920 2921 2922
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2923
		.may_writepage = !laptop_mode,
2924
		.may_unmap = 1,
2925
		.may_swap = 1,
2926 2927
	};

2928
	/*
2929 2930 2931
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2932
	 */
2933
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2934 2935
		return 1;

2936 2937
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2938 2939
				gfp_mask,
				sc.reclaim_idx);
2940

2941
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2942 2943 2944 2945

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2946 2947
}

A
Andrew Morton 已提交
2948
#ifdef CONFIG_MEMCG
2949

2950
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2951
						gfp_t gfp_mask, bool noswap,
2952
						pg_data_t *pgdat,
2953
						unsigned long *nr_scanned)
2954 2955
{
	struct scan_control sc = {
2956
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2957
		.target_mem_cgroup = memcg,
2958 2959
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2960
		.reclaim_idx = MAX_NR_ZONES - 1,
2961 2962
		.may_swap = !noswap,
	};
2963
	unsigned long lru_pages;
2964

2965 2966
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2967

2968
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2969
						      sc.may_writepage,
2970 2971
						      sc.gfp_mask,
						      sc.reclaim_idx);
2972

2973 2974 2975
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
2976
	 * if we don't reclaim here, the shrink_node from balance_pgdat
2977 2978 2979
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2980
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2981 2982 2983

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2984
	*nr_scanned = sc.nr_scanned;
2985 2986 2987
	return sc.nr_reclaimed;
}

2988
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2989
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2990
					   gfp_t gfp_mask,
2991
					   bool may_swap)
2992
{
2993
	struct zonelist *zonelist;
2994
	unsigned long nr_reclaimed;
2995
	int nid;
2996
	struct scan_control sc = {
2997
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2998
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
2999
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3000
		.reclaim_idx = MAX_NR_ZONES - 1,
3001 3002 3003 3004
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3005
		.may_swap = may_swap,
3006
	};
3007

3008 3009 3010 3011 3012
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3013
	nid = mem_cgroup_select_victim_node(memcg);
3014

3015
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3016 3017 3018

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3019 3020
					    sc.gfp_mask,
					    sc.reclaim_idx);
3021

3022
	current->flags |= PF_MEMALLOC;
3023
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3024
	current->flags &= ~PF_MEMALLOC;
3025 3026 3027 3028

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3029 3030 3031
}
#endif

3032
static void age_active_anon(struct pglist_data *pgdat,
3033
				struct scan_control *sc)
3034
{
3035
	struct mem_cgroup *memcg;
3036

3037 3038 3039 3040 3041
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3042
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3043

3044
		if (inactive_list_is_low(lruvec, false, sc, true))
3045
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3046
					   sc, LRU_ACTIVE_ANON);
3047 3048 3049

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3050 3051
}

M
Mel Gorman 已提交
3052
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3053
{
M
Mel Gorman 已提交
3054
	unsigned long mark = high_wmark_pages(zone);
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3065
	clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3066 3067

	return true;
3068 3069
}

3070 3071 3072 3073 3074 3075
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3076
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3077
{
3078 3079
	int i;

3080
	/*
3081
	 * The throttled processes are normally woken up in balance_pgdat() as
3082
	 * soon as allow_direct_reclaim() is true. But there is a potential
3083 3084 3085 3086 3087 3088 3089 3090 3091
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3092
	 */
3093 3094
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3095

3096 3097 3098 3099
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3100 3101 3102
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3103
		if (!managed_zone(zone))
3104 3105
			continue;

3106 3107
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3108 3109
	}

3110
	return true;
3111 3112
}

3113
/*
3114 3115
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3116 3117
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3118 3119
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3120
 */
3121
static bool kswapd_shrink_node(pg_data_t *pgdat,
3122
			       struct scan_control *sc)
3123
{
3124 3125
	struct zone *zone;
	int z;
3126

3127 3128
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3129
	for (z = 0; z <= sc->reclaim_idx; z++) {
3130
		zone = pgdat->node_zones + z;
3131
		if (!managed_zone(zone))
3132
			continue;
3133

3134 3135
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3136 3137

	/*
3138 3139
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3140
	 */
3141
	shrink_node(pgdat, sc);
3142

3143
	/*
3144 3145 3146 3147 3148
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3149
	 */
3150
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3151
		sc->order = 0;
3152

3153
	return sc->nr_scanned >= sc->nr_to_reclaim;
3154 3155
}

L
Linus Torvalds 已提交
3156
/*
3157 3158 3159
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3160
 *
3161
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3162 3163
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3164
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3165 3166 3167
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3168
 */
3169
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3170 3171
{
	int i;
3172 3173
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3174
	struct zone *zone;
3175 3176
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3177
		.order = order,
3178
		.priority = DEF_PRIORITY,
3179
		.may_writepage = !laptop_mode,
3180
		.may_unmap = 1,
3181
		.may_swap = 1,
3182
	};
3183
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3184

3185
	do {
3186
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3187 3188
		bool raise_priority = true;

3189
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3190

3191
		/*
3192 3193 3194 3195 3196 3197 3198 3199
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3200 3201 3202 3203
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3204
				if (!managed_zone(zone))
3205
					continue;
3206

3207
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3208
				break;
L
Linus Torvalds 已提交
3209 3210
			}
		}
3211

3212 3213 3214 3215 3216 3217
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3218 3219 3220
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3221
		 */
3222
		for (i = classzone_idx; i >= 0; i--) {
3223
			zone = pgdat->node_zones + i;
3224
			if (!managed_zone(zone))
3225 3226
				continue;

3227
			if (zone_balanced(zone, sc.order, classzone_idx))
3228 3229
				goto out;
		}
A
Andrew Morton 已提交
3230

3231 3232 3233 3234 3235 3236
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3237
		age_active_anon(pgdat, &sc);
3238

3239 3240 3241 3242
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3243
		if (sc.priority < DEF_PRIORITY - 2)
3244 3245
			sc.may_writepage = 1;

3246 3247 3248
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3249
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3250 3251 3252
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3253
		/*
3254 3255 3256
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3257
		 */
3258
		if (kswapd_shrink_node(pgdat, &sc))
3259
			raise_priority = false;
3260 3261 3262 3263 3264 3265 3266

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3267
				allow_direct_reclaim(pgdat))
3268
			wake_up_all(&pgdat->pfmemalloc_wait);
3269

3270 3271 3272
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3273

3274
		/*
3275 3276
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3277
		 */
3278 3279
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3280
			sc.priority--;
3281
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3282

3283 3284 3285
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3286
out:
3287
	/*
3288 3289 3290 3291
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3292
	 */
3293
	return sc.order;
L
Linus Torvalds 已提交
3294 3295
}

3296 3297
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3308
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3321
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3322

3323
		remaining = schedule_timeout(HZ/10);
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3335 3336 3337 3338 3339 3340 3341 3342
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3343 3344
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3356 3357 3358 3359

		if (!kthread_should_stop())
			schedule();

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3370 3371
/*
 * The background pageout daemon, started as a kernel thread
3372
 * from the init process.
L
Linus Torvalds 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3385
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3386 3387
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3388

L
Linus Torvalds 已提交
3389 3390 3391
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3392
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3393

3394 3395
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3396
	if (!cpumask_empty(cpumask))
3397
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3412
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3413
	set_freezable();
L
Linus Torvalds 已提交
3414

3415 3416
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3417
	for ( ; ; ) {
3418
		bool ret;
3419

3420 3421 3422
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3423

3424 3425 3426 3427 3428
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3429

3430 3431 3432 3433 3434 3435 3436 3437
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3449 3450
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3451 3452 3453
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3454

3455 3456
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3457
	}
3458

3459
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3460
	current->reclaim_state = NULL;
3461 3462
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3469
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3470 3471
{
	pg_data_t *pgdat;
3472
	int z;
L
Linus Torvalds 已提交
3473

3474
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3475 3476
		return;

3477
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3478
		return;
3479
	pgdat = zone->zone_pgdat;
3480 3481
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3482
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3483
		return;
3484

3485 3486 3487 3488
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3489 3490 3491
	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3492
		if (!managed_zone(zone))
3493 3494 3495 3496 3497
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3498 3499

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3500
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3501 3502
}

3503
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3504
/*
3505
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3506 3507 3508 3509 3510
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3511
 */
3512
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3513
{
3514 3515
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3516
		.nr_to_reclaim = nr_to_reclaim,
3517
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3518
		.reclaim_idx = MAX_NR_ZONES - 1,
3519
		.priority = DEF_PRIORITY,
3520
		.may_writepage = 1,
3521 3522
		.may_unmap = 1,
		.may_swap = 1,
3523
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3524
	};
3525
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3526 3527
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3528

3529 3530 3531 3532
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3533

3534
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3535

3536 3537 3538
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3539

3540
	return nr_reclaimed;
L
Linus Torvalds 已提交
3541
}
3542
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3548
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3549
{
3550
	int nid;
L
Linus Torvalds 已提交
3551

3552 3553 3554
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3555

3556
		mask = cpumask_of_node(pgdat->node_id);
3557

3558 3559 3560
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3561
	}
3562
	return 0;
L
Linus Torvalds 已提交
3563 3564
}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3581 3582
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3583
		pgdat->kswapd = NULL;
3584 3585 3586 3587
	}
	return ret;
}

3588
/*
3589
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3590
 * hold mem_hotplug_begin/end().
3591 3592 3593 3594 3595
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3596
	if (kswapd) {
3597
		kthread_stop(kswapd);
3598 3599
		NODE_DATA(nid)->kswapd = NULL;
	}
3600 3601
}

L
Linus Torvalds 已提交
3602 3603
static int __init kswapd_init(void)
{
3604
	int nid, ret;
3605

L
Linus Torvalds 已提交
3606
	swap_setup();
3607
	for_each_node_state(nid, N_MEMORY)
3608
 		kswapd_run(nid);
3609 3610 3611 3612
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3613 3614 3615 3616
	return 0;
}

module_init(kswapd_init)
3617 3618 3619

#ifdef CONFIG_NUMA
/*
3620
 * Node reclaim mode
3621
 *
3622
 * If non-zero call node_reclaim when the number of free pages falls below
3623 3624
 * the watermarks.
 */
3625
int node_reclaim_mode __read_mostly;
3626

3627
#define RECLAIM_OFF 0
3628
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3629
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3630
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3631

3632
/*
3633
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3634 3635 3636
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3637
#define NODE_RECLAIM_PRIORITY 4
3638

3639
/*
3640
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3641 3642 3643 3644
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3645 3646 3647 3648 3649 3650
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3651
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3652
{
3653 3654 3655
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3666
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3667
{
3668 3669
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3670 3671

	/*
3672
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3673
	 * potentially reclaimable. Otherwise, we have to worry about
3674
	 * pages like swapcache and node_unmapped_file_pages() provides
3675 3676
	 * a better estimate
	 */
3677 3678
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3679
	else
3680
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3681 3682

	/* If we can't clean pages, remove dirty pages from consideration */
3683 3684
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3685 3686 3687 3688 3689 3690 3691 3692

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3693
/*
3694
 * Try to free up some pages from this node through reclaim.
3695
 */
3696
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3697
{
3698
	/* Minimum pages needed in order to stay on node */
3699
	const unsigned long nr_pages = 1 << order;
3700 3701
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3702
	int classzone_idx = gfp_zone(gfp_mask);
3703
	struct scan_control sc = {
3704
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3705
		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3706
		.order = order,
3707 3708 3709
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3710
		.may_swap = 1,
3711
		.reclaim_idx = classzone_idx,
3712
	};
3713 3714

	cond_resched();
3715
	/*
3716
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3717
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3718
	 * and RECLAIM_UNMAP.
3719 3720
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3721
	lockdep_set_current_reclaim_state(gfp_mask);
3722 3723
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3724

3725
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3726 3727 3728 3729 3730
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3731
			shrink_node(pgdat, &sc);
3732
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3733
	}
3734

3735
	p->reclaim_state = NULL;
3736
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3737
	lockdep_clear_current_reclaim_state();
3738
	return sc.nr_reclaimed >= nr_pages;
3739
}
3740

3741
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3742
{
3743
	int ret;
3744 3745

	/*
3746
	 * Node reclaim reclaims unmapped file backed pages and
3747
	 * slab pages if we are over the defined limits.
3748
	 *
3749 3750
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3751 3752
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3753
	 * unmapped file backed pages.
3754
	 */
3755 3756 3757
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3758 3759

	/*
3760
	 * Do not scan if the allocation should not be delayed.
3761
	 */
3762
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3763
		return NODE_RECLAIM_NOSCAN;
3764 3765

	/*
3766
	 * Only run node reclaim on the local node or on nodes that do not
3767 3768 3769 3770
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3771 3772
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3773

3774 3775
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3776

3777 3778
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3779

3780 3781 3782
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3783
	return ret;
3784
}
3785
#endif
L
Lee Schermerhorn 已提交
3786 3787 3788 3789 3790 3791

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3792
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3793 3794
 *
 * Reasons page might not be evictable:
3795
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3796
 * (2) page is part of an mlocked VMA
3797
 *
L
Lee Schermerhorn 已提交
3798
 */
3799
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3800
{
3801
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3802
}
3803

3804
#ifdef CONFIG_SHMEM
3805
/**
3806 3807 3808
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3809
 *
3810
 * Checks pages for evictability and moves them to the appropriate lru list.
3811 3812
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3813
 */
3814
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3815
{
3816
	struct lruvec *lruvec;
3817
	struct pglist_data *pgdat = NULL;
3818 3819 3820
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3821

3822 3823
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3824
		struct pglist_data *pagepgdat = page_pgdat(page);
3825

3826
		pgscanned++;
3827 3828 3829 3830 3831
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3832
		}
3833
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3834

3835 3836
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3837

3838
		if (page_evictable(page)) {
3839 3840
			enum lru_list lru = page_lru_base_type(page);

3841
			VM_BUG_ON_PAGE(PageActive(page), page);
3842
			ClearPageUnevictable(page);
3843 3844
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3845
			pgrescued++;
3846
		}
3847
	}
3848

3849
	if (pgdat) {
3850 3851
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3852
		spin_unlock_irq(&pgdat->lru_lock);
3853 3854
	}
}
3855
#endif /* CONFIG_SHMEM */