x509_public_key.c 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Instantiate a public key crypto key from an X.509 Certificate
 *
 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/mpi.h>
#include <linux/asn1_decoder.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
21
#include <keys/system_keyring.h>
22 23 24 25 26
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "public_key.h"
#include "x509_parser.h"

27
static bool use_builtin_keys;
28 29 30 31 32 33 34 35 36 37
static char *ca_keyid;

#ifndef MODULE
static int __init ca_keys_setup(char *str)
{
	if (!str)		/* default system keyring */
		return 1;

	if (strncmp(str, "id:", 3) == 0)
		ca_keyid = str;	/* owner key 'id:xxxxxx' */
38 39
	else if (strcmp(str, "builtin") == 0)
		use_builtin_keys = true;
40 41 42 43 44 45

	return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif

46 47 48 49 50 51 52 53 54
/**
 * x509_request_asymmetric_key - Request a key by X.509 certificate params.
 * @keyring: The keys to search.
 * @subject: The name of the subject to whom the key belongs.
 * @key_id: The subject key ID as a hex string.
 *
 * Find a key in the given keyring by subject name and key ID.  These might,
 * for instance, be the issuer name and the authority key ID of an X.509
 * certificate that needs to be verified.
55
 */
56 57 58
struct key *x509_request_asymmetric_key(struct key *keyring,
					const char *subject,
					const char *key_id)
59 60
{
	key_ref_t key;
61
	size_t subject_len = strlen(subject), key_id_len = strlen(key_id);
62 63
	char *id;

64 65
	/* Construct an identifier "<subjname>:<keyid>". */
	id = kmalloc(subject_len + 2 + key_id_len + 1, GFP_KERNEL);
66 67 68
	if (!id)
		return ERR_PTR(-ENOMEM);

69 70 71 72 73
	memcpy(id, subject, subject_len);
	id[subject_len + 0] = ':';
	id[subject_len + 1] = ' ';
	memcpy(id + subject_len + 2, key_id, key_id_len);
	id[subject_len + 2 + key_id_len] = 0;
74 75 76 77 78 79

	pr_debug("Look up: \"%s\"\n", id);

	key = keyring_search(make_key_ref(keyring, 1),
			     &key_type_asymmetric, id);
	if (IS_ERR(key))
80
		pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	kfree(id);

	if (IS_ERR(key)) {
		switch (PTR_ERR(key)) {
			/* Hide some search errors */
		case -EACCES:
		case -ENOTDIR:
		case -EAGAIN:
			return ERR_PTR(-ENOKEY);
		default:
			return ERR_CAST(key);
		}
	}

	pr_devel("<==%s() = 0 [%x]\n", __func__,
		 key_serial(key_ref_to_ptr(key)));
	return key_ref_to_ptr(key);
}
99
EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
100

101
/*
102 103
 * Set up the signature parameters in an X.509 certificate.  This involves
 * digesting the signed data and extracting the signature.
104
 */
105
int x509_get_sig_params(struct x509_certificate *cert)
106 107 108 109
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
110
	void *digest;
111 112 113
	int ret;

	pr_devel("==>%s()\n", __func__);
114 115 116 117 118 119 120 121 122

	if (cert->sig.rsa.s)
		return 0;

	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
	if (!cert->sig.rsa.s)
		return -ENOMEM;
	cert->sig.nr_mpi = 1;

123 124 125
	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
126
	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
127 128 129 130 131 132
	if (IS_ERR(tfm))
		return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

133 134
	/* We allocate the hash operational data storage on the end of the
	 * digest storage space.
135 136
	 */
	ret = -ENOMEM;
137 138 139
	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
	if (!digest)
		goto error;
140

141 142
	cert->sig.digest = digest;
	cert->sig.digest_size = digest_size;
143

144 145 146
	desc = digest + digest_size;
	desc->tfm = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
147 148 149 150

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;
151 152 153 154 155 156 157 158
	might_sleep();
	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(x509_get_sig_params);
159

160 161 162 163 164 165 166
/*
 * Check the signature on a certificate using the provided public key
 */
int x509_check_signature(const struct public_key *pub,
			 struct x509_certificate *cert)
{
	int ret;
167

168
	pr_devel("==>%s()\n", __func__);
169

170 171 172
	ret = x509_get_sig_params(cert);
	if (ret < 0)
		return ret;
173

174
	ret = public_key_verify_signature(pub, &cert->sig);
175 176 177
	pr_debug("Cert Verification: %d\n", ret);
	return ret;
}
178
EXPORT_SYMBOL_GPL(x509_check_signature);
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
 * find a matching parent certificate in the trusted list and an error if there
 * is a matching certificate but the signature check fails.
 */
static int x509_validate_trust(struct x509_certificate *cert,
			       struct key *trust_keyring)
{
	struct key *key;
	int ret = 1;

	if (!trust_keyring)
		return -EOPNOTSUPP;

198 199 200
	if (ca_keyid && !asymmetric_keyid_match(cert->authority, ca_keyid))
		return -EPERM;

201
	key = x509_request_asymmetric_key(trust_keyring,
202
					  cert->issuer, cert->authority);
203
	if (!IS_ERR(key))  {
204 205 206
		if (!use_builtin_keys
		    || test_bit(KEY_FLAG_BUILTIN, &key->flags))
			ret = x509_check_signature(key->payload.data, cert);
207 208 209 210 211
		key_put(key);
	}
	return ret;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * Attempt to parse a data blob for a key as an X509 certificate.
 */
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
	struct x509_certificate *cert;
	size_t srlen, sulen;
	char *desc = NULL;
	int ret;

	cert = x509_cert_parse(prep->data, prep->datalen);
	if (IS_ERR(cert))
		return PTR_ERR(cert);

	pr_devel("Cert Issuer: %s\n", cert->issuer);
	pr_devel("Cert Subject: %s\n", cert->subject);
228 229 230 231 232 233

	if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
	    !pkey_algo[cert->pub->pkey_algo] ||
	    !pkey_algo[cert->sig.pkey_algo] ||
234
	    !hash_algo_name[cert->sig.pkey_hash_algo]) {
235 236 237 238
		ret = -ENOPKG;
		goto error_free_cert;
	}

239
	pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
240
	pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
241 242 243
		 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
		 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
		 cert->valid_from.tm_min,  cert->valid_from.tm_sec);
244
	pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
245 246 247
		 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
		 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
		 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
248 249
	pr_devel("Cert Signature: %s + %s\n",
		 pkey_algo_name[cert->sig.pkey_algo],
250
		 hash_algo_name[cert->sig.pkey_hash_algo]);
251

252 253
	if (!cert->fingerprint) {
		pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
254 255 256 257 258
			cert->subject);
		ret = -EKEYREJECTED;
		goto error_free_cert;
	}

259
	cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
260 261
	cert->pub->id_type = PKEY_ID_X509;

262 263 264
	/* Check the signature on the key if it appears to be self-signed */
	if (!cert->authority ||
	    strcmp(cert->fingerprint, cert->authority) == 0) {
265
		ret = x509_check_signature(cert->pub, cert); /* self-signed */
266 267
		if (ret < 0)
			goto error_free_cert;
268 269 270 271
	} else if (!prep->trusted) {
		ret = x509_validate_trust(cert, get_system_trusted_keyring());
		if (!ret)
			prep->trusted = 1;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	}

	/* Propose a description */
	sulen = strlen(cert->subject);
	srlen = strlen(cert->fingerprint);
	ret = -ENOMEM;
	desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL);
	if (!desc)
		goto error_free_cert;
	memcpy(desc, cert->subject, sulen);
	desc[sulen] = ':';
	desc[sulen + 1] = ' ';
	memcpy(desc + sulen + 2, cert->fingerprint, srlen);
	desc[sulen + 2 + srlen] = 0;

	/* We're pinning the module by being linked against it */
	__module_get(public_key_subtype.owner);
	prep->type_data[0] = &public_key_subtype;
	prep->type_data[1] = cert->fingerprint;
291
	prep->payload[0] = cert->pub;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	prep->description = desc;
	prep->quotalen = 100;

	/* We've finished with the certificate */
	cert->pub = NULL;
	cert->fingerprint = NULL;
	desc = NULL;
	ret = 0;

error_free_cert:
	x509_free_certificate(cert);
	return ret;
}

static struct asymmetric_key_parser x509_key_parser = {
	.owner	= THIS_MODULE,
	.name	= "x509",
	.parse	= x509_key_preparse,
};

/*
 * Module stuff
 */
static int __init x509_key_init(void)
{
	return register_asymmetric_key_parser(&x509_key_parser);
}

static void __exit x509_key_exit(void)
{
	unregister_asymmetric_key_parser(&x509_key_parser);
}

module_init(x509_key_init);
module_exit(x509_key_exit);
327 328 329

MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");