x509_public_key.c 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Instantiate a public key crypto key from an X.509 Certificate
 *
 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/mpi.h>
#include <linux/asn1_decoder.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
21
#include <keys/system_keyring.h>
22 23 24 25 26
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "public_key.h"
#include "x509_parser.h"

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * Find a key in the given keyring by issuer and authority.
 */
static struct key *x509_request_asymmetric_key(struct key *keyring,
					       const char *signer,
					       size_t signer_len,
					       const char *authority,
					       size_t auth_len)
{
	key_ref_t key;
	char *id;

	/* Construct an identifier. */
	id = kmalloc(signer_len + 2 + auth_len + 1, GFP_KERNEL);
	if (!id)
		return ERR_PTR(-ENOMEM);

	memcpy(id, signer, signer_len);
	id[signer_len + 0] = ':';
	id[signer_len + 1] = ' ';
	memcpy(id + signer_len + 2, authority, auth_len);
	id[signer_len + 2 + auth_len] = 0;

	pr_debug("Look up: \"%s\"\n", id);

	key = keyring_search(make_key_ref(keyring, 1),
			     &key_type_asymmetric, id);
	if (IS_ERR(key))
		pr_debug("Request for module key '%s' err %ld\n",
			 id, PTR_ERR(key));
	kfree(id);

	if (IS_ERR(key)) {
		switch (PTR_ERR(key)) {
			/* Hide some search errors */
		case -EACCES:
		case -ENOTDIR:
		case -EAGAIN:
			return ERR_PTR(-ENOKEY);
		default:
			return ERR_CAST(key);
		}
	}

	pr_devel("<==%s() = 0 [%x]\n", __func__,
		 key_serial(key_ref_to_ptr(key)));
	return key_ref_to_ptr(key);
}

76
/*
77 78
 * Set up the signature parameters in an X.509 certificate.  This involves
 * digesting the signed data and extracting the signature.
79
 */
80
int x509_get_sig_params(struct x509_certificate *cert)
81 82 83 84
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
85
	void *digest;
86 87 88
	int ret;

	pr_devel("==>%s()\n", __func__);
89 90 91 92 93 94 95 96 97

	if (cert->sig.rsa.s)
		return 0;

	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
	if (!cert->sig.rsa.s)
		return -ENOMEM;
	cert->sig.nr_mpi = 1;

98 99 100
	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
101
	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
102 103 104 105 106 107
	if (IS_ERR(tfm))
		return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

108 109
	/* We allocate the hash operational data storage on the end of the
	 * digest storage space.
110 111
	 */
	ret = -ENOMEM;
112 113 114
	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
	if (!digest)
		goto error;
115

116 117
	cert->sig.digest = digest;
	cert->sig.digest_size = digest_size;
118

119 120 121
	desc = digest + digest_size;
	desc->tfm = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
122 123 124 125

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;
126 127 128 129 130 131 132 133
	might_sleep();
	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(x509_get_sig_params);
134

135 136 137 138 139 140 141
/*
 * Check the signature on a certificate using the provided public key
 */
int x509_check_signature(const struct public_key *pub,
			 struct x509_certificate *cert)
{
	int ret;
142

143
	pr_devel("==>%s()\n", __func__);
144

145 146 147
	ret = x509_get_sig_params(cert);
	if (ret < 0)
		return ret;
148

149
	ret = public_key_verify_signature(pub, &cert->sig);
150 151 152
	pr_debug("Cert Verification: %d\n", ret);
	return ret;
}
153
EXPORT_SYMBOL_GPL(x509_check_signature);
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
 * find a matching parent certificate in the trusted list and an error if there
 * is a matching certificate but the signature check fails.
 */
static int x509_validate_trust(struct x509_certificate *cert,
			       struct key *trust_keyring)
{
	const struct public_key *pk;
	struct key *key;
	int ret = 1;

	if (!trust_keyring)
		return -EOPNOTSUPP;

	key = x509_request_asymmetric_key(trust_keyring,
					  cert->issuer, strlen(cert->issuer),
					  cert->authority,
					  strlen(cert->authority));
	if (!IS_ERR(key))  {
		pk = key->payload.data;
		ret = x509_check_signature(pk, cert);
		key_put(key);
	}
	return ret;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Attempt to parse a data blob for a key as an X509 certificate.
 */
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
	struct x509_certificate *cert;
	size_t srlen, sulen;
	char *desc = NULL;
	int ret;

	cert = x509_cert_parse(prep->data, prep->datalen);
	if (IS_ERR(cert))
		return PTR_ERR(cert);

	pr_devel("Cert Issuer: %s\n", cert->issuer);
	pr_devel("Cert Subject: %s\n", cert->subject);
202 203 204 205 206 207

	if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
	    !pkey_algo[cert->pub->pkey_algo] ||
	    !pkey_algo[cert->sig.pkey_algo] ||
208
	    !hash_algo_name[cert->sig.pkey_hash_algo]) {
209 210 211 212
		ret = -ENOPKG;
		goto error_free_cert;
	}

213
	pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
214
	pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
215 216 217
		 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
		 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
		 cert->valid_from.tm_min,  cert->valid_from.tm_sec);
218
	pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
219 220 221
		 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
		 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
		 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
222 223
	pr_devel("Cert Signature: %s + %s\n",
		 pkey_algo_name[cert->sig.pkey_algo],
224
		 hash_algo_name[cert->sig.pkey_hash_algo]);
225

226 227
	if (!cert->fingerprint) {
		pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
228 229 230 231 232
			cert->subject);
		ret = -EKEYREJECTED;
		goto error_free_cert;
	}

233
	cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
234 235
	cert->pub->id_type = PKEY_ID_X509;

236 237 238
	/* Check the signature on the key if it appears to be self-signed */
	if (!cert->authority ||
	    strcmp(cert->fingerprint, cert->authority) == 0) {
239
		ret = x509_check_signature(cert->pub, cert); /* self-signed */
240 241
		if (ret < 0)
			goto error_free_cert;
242 243 244 245
	} else if (!prep->trusted) {
		ret = x509_validate_trust(cert, get_system_trusted_keyring());
		if (!ret)
			prep->trusted = 1;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	}

	/* Propose a description */
	sulen = strlen(cert->subject);
	srlen = strlen(cert->fingerprint);
	ret = -ENOMEM;
	desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL);
	if (!desc)
		goto error_free_cert;
	memcpy(desc, cert->subject, sulen);
	desc[sulen] = ':';
	desc[sulen + 1] = ' ';
	memcpy(desc + sulen + 2, cert->fingerprint, srlen);
	desc[sulen + 2 + srlen] = 0;

	/* We're pinning the module by being linked against it */
	__module_get(public_key_subtype.owner);
	prep->type_data[0] = &public_key_subtype;
	prep->type_data[1] = cert->fingerprint;
	prep->payload = cert->pub;
	prep->description = desc;
	prep->quotalen = 100;

	/* We've finished with the certificate */
	cert->pub = NULL;
	cert->fingerprint = NULL;
	desc = NULL;
	ret = 0;

error_free_cert:
	x509_free_certificate(cert);
	return ret;
}

static struct asymmetric_key_parser x509_key_parser = {
	.owner	= THIS_MODULE,
	.name	= "x509",
	.parse	= x509_key_preparse,
};

/*
 * Module stuff
 */
static int __init x509_key_init(void)
{
	return register_asymmetric_key_parser(&x509_key_parser);
}

static void __exit x509_key_exit(void)
{
	unregister_asymmetric_key_parser(&x509_key_parser);
}

module_init(x509_key_init);
module_exit(x509_key_exit);
301 302 303

MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");