x509_public_key.c 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Instantiate a public key crypto key from an X.509 Certificate
 *
 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/mpi.h>
#include <linux/asn1_decoder.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
21
#include <keys/system_keyring.h>
22 23 24 25 26
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "public_key.h"
#include "x509_parser.h"

27
static bool use_builtin_keys;
28 29 30 31 32 33 34 35 36 37
static char *ca_keyid;

#ifndef MODULE
static int __init ca_keys_setup(char *str)
{
	if (!str)		/* default system keyring */
		return 1;

	if (strncmp(str, "id:", 3) == 0)
		ca_keyid = str;	/* owner key 'id:xxxxxx' */
38 39
	else if (strcmp(str, "builtin") == 0)
		use_builtin_keys = true;
40 41 42 43 44 45

	return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * Find a key in the given keyring by issuer and authority.
 */
static struct key *x509_request_asymmetric_key(struct key *keyring,
					       const char *signer,
					       size_t signer_len,
					       const char *authority,
					       size_t auth_len)
{
	key_ref_t key;
	char *id;

	/* Construct an identifier. */
	id = kmalloc(signer_len + 2 + auth_len + 1, GFP_KERNEL);
	if (!id)
		return ERR_PTR(-ENOMEM);

	memcpy(id, signer, signer_len);
	id[signer_len + 0] = ':';
	id[signer_len + 1] = ' ';
	memcpy(id + signer_len + 2, authority, auth_len);
	id[signer_len + 2 + auth_len] = 0;

	pr_debug("Look up: \"%s\"\n", id);

	key = keyring_search(make_key_ref(keyring, 1),
			     &key_type_asymmetric, id);
	if (IS_ERR(key))
		pr_debug("Request for module key '%s' err %ld\n",
			 id, PTR_ERR(key));
	kfree(id);

	if (IS_ERR(key)) {
		switch (PTR_ERR(key)) {
			/* Hide some search errors */
		case -EACCES:
		case -ENOTDIR:
		case -EAGAIN:
			return ERR_PTR(-ENOKEY);
		default:
			return ERR_CAST(key);
		}
	}

	pr_devel("<==%s() = 0 [%x]\n", __func__,
		 key_serial(key_ref_to_ptr(key)));
	return key_ref_to_ptr(key);
}

95
/*
96 97
 * Set up the signature parameters in an X.509 certificate.  This involves
 * digesting the signed data and extracting the signature.
98
 */
99
int x509_get_sig_params(struct x509_certificate *cert)
100 101 102 103
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
104
	void *digest;
105 106 107
	int ret;

	pr_devel("==>%s()\n", __func__);
108 109 110 111 112 113 114 115 116

	if (cert->sig.rsa.s)
		return 0;

	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
	if (!cert->sig.rsa.s)
		return -ENOMEM;
	cert->sig.nr_mpi = 1;

117 118 119
	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
120
	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
121 122 123 124 125 126
	if (IS_ERR(tfm))
		return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

127 128
	/* We allocate the hash operational data storage on the end of the
	 * digest storage space.
129 130
	 */
	ret = -ENOMEM;
131 132 133
	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
	if (!digest)
		goto error;
134

135 136
	cert->sig.digest = digest;
	cert->sig.digest_size = digest_size;
137

138 139 140
	desc = digest + digest_size;
	desc->tfm = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
141 142 143 144

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;
145 146 147 148 149 150 151 152
	might_sleep();
	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(x509_get_sig_params);
153

154 155 156 157 158 159 160
/*
 * Check the signature on a certificate using the provided public key
 */
int x509_check_signature(const struct public_key *pub,
			 struct x509_certificate *cert)
{
	int ret;
161

162
	pr_devel("==>%s()\n", __func__);
163

164 165 166
	ret = x509_get_sig_params(cert);
	if (ret < 0)
		return ret;
167

168
	ret = public_key_verify_signature(pub, &cert->sig);
169 170 171
	pr_debug("Cert Verification: %d\n", ret);
	return ret;
}
172
EXPORT_SYMBOL_GPL(x509_check_signature);
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
 * find a matching parent certificate in the trusted list and an error if there
 * is a matching certificate but the signature check fails.
 */
static int x509_validate_trust(struct x509_certificate *cert,
			       struct key *trust_keyring)
{
	struct key *key;
	int ret = 1;

	if (!trust_keyring)
		return -EOPNOTSUPP;

192 193 194
	if (ca_keyid && !asymmetric_keyid_match(cert->authority, ca_keyid))
		return -EPERM;

195 196 197 198 199
	key = x509_request_asymmetric_key(trust_keyring,
					  cert->issuer, strlen(cert->issuer),
					  cert->authority,
					  strlen(cert->authority));
	if (!IS_ERR(key))  {
200 201 202
		if (!use_builtin_keys
		    || test_bit(KEY_FLAG_BUILTIN, &key->flags))
			ret = x509_check_signature(key->payload.data, cert);
203 204 205 206 207
		key_put(key);
	}
	return ret;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
 * Attempt to parse a data blob for a key as an X509 certificate.
 */
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
	struct x509_certificate *cert;
	size_t srlen, sulen;
	char *desc = NULL;
	int ret;

	cert = x509_cert_parse(prep->data, prep->datalen);
	if (IS_ERR(cert))
		return PTR_ERR(cert);

	pr_devel("Cert Issuer: %s\n", cert->issuer);
	pr_devel("Cert Subject: %s\n", cert->subject);
224 225 226 227 228 229

	if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
	    !pkey_algo[cert->pub->pkey_algo] ||
	    !pkey_algo[cert->sig.pkey_algo] ||
230
	    !hash_algo_name[cert->sig.pkey_hash_algo]) {
231 232 233 234
		ret = -ENOPKG;
		goto error_free_cert;
	}

235
	pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
236
	pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
237 238 239
		 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
		 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
		 cert->valid_from.tm_min,  cert->valid_from.tm_sec);
240
	pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
241 242 243
		 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
		 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
		 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
244 245
	pr_devel("Cert Signature: %s + %s\n",
		 pkey_algo_name[cert->sig.pkey_algo],
246
		 hash_algo_name[cert->sig.pkey_hash_algo]);
247

248 249
	if (!cert->fingerprint) {
		pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
250 251 252 253 254
			cert->subject);
		ret = -EKEYREJECTED;
		goto error_free_cert;
	}

255
	cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
256 257
	cert->pub->id_type = PKEY_ID_X509;

258 259 260
	/* Check the signature on the key if it appears to be self-signed */
	if (!cert->authority ||
	    strcmp(cert->fingerprint, cert->authority) == 0) {
261
		ret = x509_check_signature(cert->pub, cert); /* self-signed */
262 263
		if (ret < 0)
			goto error_free_cert;
264 265 266 267
	} else if (!prep->trusted) {
		ret = x509_validate_trust(cert, get_system_trusted_keyring());
		if (!ret)
			prep->trusted = 1;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	}

	/* Propose a description */
	sulen = strlen(cert->subject);
	srlen = strlen(cert->fingerprint);
	ret = -ENOMEM;
	desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL);
	if (!desc)
		goto error_free_cert;
	memcpy(desc, cert->subject, sulen);
	desc[sulen] = ':';
	desc[sulen + 1] = ' ';
	memcpy(desc + sulen + 2, cert->fingerprint, srlen);
	desc[sulen + 2 + srlen] = 0;

	/* We're pinning the module by being linked against it */
	__module_get(public_key_subtype.owner);
	prep->type_data[0] = &public_key_subtype;
	prep->type_data[1] = cert->fingerprint;
287
	prep->payload[0] = cert->pub;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	prep->description = desc;
	prep->quotalen = 100;

	/* We've finished with the certificate */
	cert->pub = NULL;
	cert->fingerprint = NULL;
	desc = NULL;
	ret = 0;

error_free_cert:
	x509_free_certificate(cert);
	return ret;
}

static struct asymmetric_key_parser x509_key_parser = {
	.owner	= THIS_MODULE,
	.name	= "x509",
	.parse	= x509_key_preparse,
};

/*
 * Module stuff
 */
static int __init x509_key_init(void)
{
	return register_asymmetric_key_parser(&x509_key_parser);
}

static void __exit x509_key_exit(void)
{
	unregister_asymmetric_key_parser(&x509_key_parser);
}

module_init(x509_key_init);
module_exit(x509_key_exit);
323 324 325

MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");