x509_public_key.c 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Instantiate a public key crypto key from an X.509 Certificate
 *
 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/mpi.h>
#include <linux/asn1_decoder.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
21
#include <keys/system_keyring.h>
22 23 24 25 26
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "public_key.h"
#include "x509_parser.h"

27
static bool use_builtin_keys;
28 29 30 31 32 33 34 35 36 37
static char *ca_keyid;

#ifndef MODULE
static int __init ca_keys_setup(char *str)
{
	if (!str)		/* default system keyring */
		return 1;

	if (strncmp(str, "id:", 3) == 0)
		ca_keyid = str;	/* owner key 'id:xxxxxx' */
38 39
	else if (strcmp(str, "builtin") == 0)
		use_builtin_keys = true;
40 41 42 43 44 45

	return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif

46 47 48 49 50
/*
 * Find a key in the given keyring by issuer and authority.
 */
static struct key *x509_request_asymmetric_key(struct key *keyring,
					       const char *signer,
51
					       const char *authority)
52 53
{
	key_ref_t key;
54
	size_t signer_len = strlen(signer), auth_len = strlen(authority);
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	char *id;

	/* Construct an identifier. */
	id = kmalloc(signer_len + 2 + auth_len + 1, GFP_KERNEL);
	if (!id)
		return ERR_PTR(-ENOMEM);

	memcpy(id, signer, signer_len);
	id[signer_len + 0] = ':';
	id[signer_len + 1] = ' ';
	memcpy(id + signer_len + 2, authority, auth_len);
	id[signer_len + 2 + auth_len] = 0;

	pr_debug("Look up: \"%s\"\n", id);

	key = keyring_search(make_key_ref(keyring, 1),
			     &key_type_asymmetric, id);
	if (IS_ERR(key))
		pr_debug("Request for module key '%s' err %ld\n",
			 id, PTR_ERR(key));
	kfree(id);

	if (IS_ERR(key)) {
		switch (PTR_ERR(key)) {
			/* Hide some search errors */
		case -EACCES:
		case -ENOTDIR:
		case -EAGAIN:
			return ERR_PTR(-ENOKEY);
		default:
			return ERR_CAST(key);
		}
	}

	pr_devel("<==%s() = 0 [%x]\n", __func__,
		 key_serial(key_ref_to_ptr(key)));
	return key_ref_to_ptr(key);
}

94
/*
95 96
 * Set up the signature parameters in an X.509 certificate.  This involves
 * digesting the signed data and extracting the signature.
97
 */
98
int x509_get_sig_params(struct x509_certificate *cert)
99 100 101 102
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
103
	void *digest;
104 105 106
	int ret;

	pr_devel("==>%s()\n", __func__);
107 108 109 110 111 112 113 114 115

	if (cert->sig.rsa.s)
		return 0;

	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
	if (!cert->sig.rsa.s)
		return -ENOMEM;
	cert->sig.nr_mpi = 1;

116 117 118
	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
119
	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
120 121 122 123 124 125
	if (IS_ERR(tfm))
		return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

126 127
	/* We allocate the hash operational data storage on the end of the
	 * digest storage space.
128 129
	 */
	ret = -ENOMEM;
130 131 132
	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
	if (!digest)
		goto error;
133

134 135
	cert->sig.digest = digest;
	cert->sig.digest_size = digest_size;
136

137 138 139
	desc = digest + digest_size;
	desc->tfm = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
140 141 142 143

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;
144 145 146 147 148 149 150 151
	might_sleep();
	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(x509_get_sig_params);
152

153 154 155 156 157 158 159
/*
 * Check the signature on a certificate using the provided public key
 */
int x509_check_signature(const struct public_key *pub,
			 struct x509_certificate *cert)
{
	int ret;
160

161
	pr_devel("==>%s()\n", __func__);
162

163 164 165
	ret = x509_get_sig_params(cert);
	if (ret < 0)
		return ret;
166

167
	ret = public_key_verify_signature(pub, &cert->sig);
168 169 170
	pr_debug("Cert Verification: %d\n", ret);
	return ret;
}
171
EXPORT_SYMBOL_GPL(x509_check_signature);
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
 * find a matching parent certificate in the trusted list and an error if there
 * is a matching certificate but the signature check fails.
 */
static int x509_validate_trust(struct x509_certificate *cert,
			       struct key *trust_keyring)
{
	struct key *key;
	int ret = 1;

	if (!trust_keyring)
		return -EOPNOTSUPP;

191 192 193
	if (ca_keyid && !asymmetric_keyid_match(cert->authority, ca_keyid))
		return -EPERM;

194
	key = x509_request_asymmetric_key(trust_keyring,
195
					  cert->issuer, cert->authority);
196
	if (!IS_ERR(key))  {
197 198 199
		if (!use_builtin_keys
		    || test_bit(KEY_FLAG_BUILTIN, &key->flags))
			ret = x509_check_signature(key->payload.data, cert);
200 201 202 203 204
		key_put(key);
	}
	return ret;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Attempt to parse a data blob for a key as an X509 certificate.
 */
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
	struct x509_certificate *cert;
	size_t srlen, sulen;
	char *desc = NULL;
	int ret;

	cert = x509_cert_parse(prep->data, prep->datalen);
	if (IS_ERR(cert))
		return PTR_ERR(cert);

	pr_devel("Cert Issuer: %s\n", cert->issuer);
	pr_devel("Cert Subject: %s\n", cert->subject);
221 222 223 224 225 226

	if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
	    !pkey_algo[cert->pub->pkey_algo] ||
	    !pkey_algo[cert->sig.pkey_algo] ||
227
	    !hash_algo_name[cert->sig.pkey_hash_algo]) {
228 229 230 231
		ret = -ENOPKG;
		goto error_free_cert;
	}

232
	pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
233
	pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
234 235 236
		 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
		 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
		 cert->valid_from.tm_min,  cert->valid_from.tm_sec);
237
	pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
238 239 240
		 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
		 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
		 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
241 242
	pr_devel("Cert Signature: %s + %s\n",
		 pkey_algo_name[cert->sig.pkey_algo],
243
		 hash_algo_name[cert->sig.pkey_hash_algo]);
244

245 246
	if (!cert->fingerprint) {
		pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
247 248 249 250 251
			cert->subject);
		ret = -EKEYREJECTED;
		goto error_free_cert;
	}

252
	cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
253 254
	cert->pub->id_type = PKEY_ID_X509;

255 256 257
	/* Check the signature on the key if it appears to be self-signed */
	if (!cert->authority ||
	    strcmp(cert->fingerprint, cert->authority) == 0) {
258
		ret = x509_check_signature(cert->pub, cert); /* self-signed */
259 260
		if (ret < 0)
			goto error_free_cert;
261 262 263 264
	} else if (!prep->trusted) {
		ret = x509_validate_trust(cert, get_system_trusted_keyring());
		if (!ret)
			prep->trusted = 1;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	}

	/* Propose a description */
	sulen = strlen(cert->subject);
	srlen = strlen(cert->fingerprint);
	ret = -ENOMEM;
	desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL);
	if (!desc)
		goto error_free_cert;
	memcpy(desc, cert->subject, sulen);
	desc[sulen] = ':';
	desc[sulen + 1] = ' ';
	memcpy(desc + sulen + 2, cert->fingerprint, srlen);
	desc[sulen + 2 + srlen] = 0;

	/* We're pinning the module by being linked against it */
	__module_get(public_key_subtype.owner);
	prep->type_data[0] = &public_key_subtype;
	prep->type_data[1] = cert->fingerprint;
284
	prep->payload[0] = cert->pub;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	prep->description = desc;
	prep->quotalen = 100;

	/* We've finished with the certificate */
	cert->pub = NULL;
	cert->fingerprint = NULL;
	desc = NULL;
	ret = 0;

error_free_cert:
	x509_free_certificate(cert);
	return ret;
}

static struct asymmetric_key_parser x509_key_parser = {
	.owner	= THIS_MODULE,
	.name	= "x509",
	.parse	= x509_key_preparse,
};

/*
 * Module stuff
 */
static int __init x509_key_init(void)
{
	return register_asymmetric_key_parser(&x509_key_parser);
}

static void __exit x509_key_exit(void)
{
	unregister_asymmetric_key_parser(&x509_key_parser);
}

module_init(x509_key_init);
module_exit(x509_key_exit);
320 321 322

MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");