amd.c 22.1 KB
Newer Older
1 2
/*
 *  AMD CPU Microcode Update Driver for Linux
3 4 5 6
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
7
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 9 10 11 12 13
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
 *
14 15 16 17 18
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
19
 *
20
 *  Licensed under the terms of the GNU General Public
21
 *  License version 2. See file COPYING for details.
I
Ingo Molnar 已提交
22
 */
23
#define pr_fmt(fmt) "microcode: " fmt
24

25
#include <linux/earlycpio.h>
I
Ingo Molnar 已提交
26 27 28
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
29
#include <linux/initrd.h>
I
Ingo Molnar 已提交
30
#include <linux/kernel.h>
31 32
#include <linux/pci.h>

33
#include <asm/microcode_amd.h>
34
#include <asm/microcode.h>
I
Ingo Molnar 已提交
35
#include <asm/processor.h>
36 37
#include <asm/setup.h>
#include <asm/cpu.h>
I
Ingo Molnar 已提交
38
#include <asm/msr.h>
39

D
Dmitry Adamushko 已提交
40
static struct equiv_cpu_entry *equiv_cpu_table;
41

42 43 44 45 46 47
/*
 * This points to the current valid container of microcode patches which we will
 * save from the initrd before jettisoning its contents.
 */
static u8 *container;
static size_t container_size;
48
static bool ucode_builtin;
49 50

static u32 ucode_new_rev;
51
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
52 53 54 55 56 57
static u16 this_equiv_id;

static struct cpio_data ucode_cpio;

static struct cpio_data __init find_ucode_in_initrd(void)
{
58
#ifdef CONFIG_BLK_DEV_INITRD
59 60 61 62
	char *path;
	void *start;
	size_t size;

63 64 65 66 67 68
	/*
	 * Microcode patch container file is prepended to the initrd in cpio
	 * format. See Documentation/x86/early-microcode.txt
	 */
	static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#ifdef CONFIG_X86_32
	struct boot_params *p;

	/*
	 * On 32-bit, early load occurs before paging is turned on so we need
	 * to use physical addresses.
	 */
	p       = (struct boot_params *)__pa_nodebug(&boot_params);
	path    = (char *)__pa_nodebug(ucode_path);
	start   = (void *)p->hdr.ramdisk_image;
	size    = p->hdr.ramdisk_size;
#else
	path    = ucode_path;
	start   = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET);
	size    = boot_params.hdr.ramdisk_size;
84
#endif /* !CONFIG_X86_32 */
85

86
	return find_cpio_data(path, start, size, NULL);
87 88 89
#else
	return (struct cpio_data){ NULL, 0, "" };
#endif
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
}

static size_t compute_container_size(u8 *data, u32 total_size)
{
	size_t size = 0;
	u32 *header = (u32 *)data;

	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return size;

	size = header[2] + CONTAINER_HDR_SZ;
	total_size -= size;
	data += size;

	while (total_size) {
		u16 patch_size;

		header = (u32 *)data;

		if (header[0] != UCODE_UCODE_TYPE)
			break;

		/*
		 * Sanity-check patch size.
		 */
		patch_size = header[1];
		if (patch_size > PATCH_MAX_SIZE)
			break;

		size	   += patch_size + SECTION_HDR_SIZE;
		data	   += patch_size + SECTION_HDR_SIZE;
		total_size -= patch_size + SECTION_HDR_SIZE;
	}

	return size;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
				unsigned int sig)
{
	int i = 0;

	if (!equiv_cpu_table)
		return 0;

	while (equiv_cpu_table[i].installed_cpu != 0) {
		if (sig == equiv_cpu_table[i].installed_cpu)
			return equiv_cpu_table[i].equiv_cpu;

		i++;
	}
	return 0;
}

static int __apply_microcode_amd(struct microcode_amd *mc_amd)
{
	u32 rev, dummy;

	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);

	/* verify patch application was successful */
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
	if (rev != mc_amd->hdr.patch_id)
		return -1;

	return 0;
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
 */
static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch)
{
	struct equiv_cpu_entry *eq;
	size_t *cont_sz;
	u32 *header;
	u8  *data, **cont;
	u8 (*patch)[PATCH_MAX_SIZE];
	u16 eq_id = 0;
	int offset, left;
	u32 rev, eax, ebx, ecx, edx;
	u32 *new_rev;

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	cont_sz = (size_t *)__pa_nodebug(&container_size);
	cont	= (u8 **)__pa_nodebug(&container);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	cont_sz = &container_size;
	cont	= &container;
	patch	= &amd_ucode_patch;
#endif

	data   = ucode;
	left   = size;
	header = (u32 *)data;

	/* find equiv cpu table */
	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return;

	eax = 0x00000001;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);

	while (left > 0) {
		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);

		*cont = data;

		/* Advance past the container header */
		offset = header[2] + CONTAINER_HDR_SZ;
		data  += offset;
		left  -= offset;

		eq_id = find_equiv_id(eq, eax);
		if (eq_id) {
			this_equiv_id = eq_id;
			*cont_sz = compute_container_size(*cont, left + offset);

			/*
			 * truncate how much we need to iterate over in the
			 * ucode update loop below
			 */
			left = *cont_sz - offset;
			break;
		}

		/*
		 * support multiple container files appended together. if this
		 * one does not have a matching equivalent cpu entry, we fast
		 * forward to the next container file.
		 */
		while (left > 0) {
			header = (u32 *)data;
			if (header[0] == UCODE_MAGIC &&
			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
				break;

			offset = header[1] + SECTION_HDR_SIZE;
			data  += offset;
			left  -= offset;
		}

		/* mark where the next microcode container file starts */
		offset    = data - (u8 *)ucode;
		ucode     = data;
	}

	if (!eq_id) {
		*cont = NULL;
		*cont_sz = 0;
		return;
	}

	if (check_current_patch_level(&rev, true))
		return;

	while (left > 0) {
		struct microcode_amd *mc;

		header = (u32 *)data;
		if (header[0] != UCODE_UCODE_TYPE || /* type */
		    header[1] == 0)                  /* size */
			break;

		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);

		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {

			if (!__apply_microcode_amd(mc)) {
				rev = mc->hdr.patch_id;
				*new_rev = rev;

				if (save_patch)
					memcpy(patch, mc,
					       min_t(u32, header[1], PATCH_MAX_SIZE));
			}
		}

		offset  = header[1] + SECTION_HDR_SIZE;
		data   += offset;
		left   -= offset;
	}
}

static bool __init load_builtin_amd_microcode(struct cpio_data *cp,
					      unsigned int family)
{
#ifdef CONFIG_X86_64
	char fw_name[36] = "amd-ucode/microcode_amd.bin";

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	return get_builtin_firmware(cp, fw_name);
#else
	return false;
#endif
}

void __init load_ucode_amd_bsp(unsigned int family)
{
	struct cpio_data cp;
307
	bool *builtin;
308 309 310 311 312 313
	void **data;
	size_t *size;

#ifdef CONFIG_X86_32
	data =  (void **)__pa_nodebug(&ucode_cpio.data);
	size = (size_t *)__pa_nodebug(&ucode_cpio.size);
314
	builtin = (bool *)__pa_nodebug(&ucode_builtin);
315 316 317
#else
	data = &ucode_cpio.data;
	size = &ucode_cpio.size;
318
	builtin = &ucode_builtin;
319 320
#endif

321 322
	*builtin = load_builtin_amd_microcode(&cp, family);
	if (!*builtin)
323 324 325 326
		cp = find_ucode_in_initrd();

	if (!(cp.data && cp.size))
		return;
327 328 329 330 331 332 333 334 335 336

	*data = cp.data;
	*size = cp.size;

	apply_ucode_in_initrd(cp.data, cp.size, true);
}

#ifdef CONFIG_X86_32
/*
 * On 32-bit, since AP's early load occurs before paging is turned on, we
337 338 339
 * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
 * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
 * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
340 341
 * which is used upon resume from suspend.
 */
342
void load_ucode_amd_ap(unsigned int family)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
{
	struct microcode_amd *mc;
	size_t *usize;
	void **ucode;

	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
		__apply_microcode_amd(mc);
		return;
	}

	ucode = (void *)__pa_nodebug(&container);
	usize = (size_t *)__pa_nodebug(&container_size);

	if (!*ucode || !*usize)
		return;

	apply_ucode_in_initrd(*ucode, *usize, false);
}

static void __init collect_cpu_sig_on_bsp(void *arg)
{
	unsigned int cpu = smp_processor_id();
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

	uci->cpu_sig.sig = cpuid_eax(0x00000001);
}

static void __init get_bsp_sig(void)
{
	unsigned int bsp = boot_cpu_data.cpu_index;
	struct ucode_cpu_info *uci = ucode_cpu_info + bsp;

	if (!uci->cpu_sig.sig)
		smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
}
#else
380
void load_ucode_amd_ap(unsigned int family)
381 382 383
{
	struct equiv_cpu_entry *eq;
	struct microcode_amd *mc;
384
	u8 *cont = container;
385 386 387 388 389 390 391 392 393 394 395 396
	u32 rev, eax;
	u16 eq_id;

	if (!container)
		return;

	/*
	 * 64-bit runs with paging enabled, thus early==false.
	 */
	if (check_current_patch_level(&rev, false))
		return;

397
	/* Add CONFIG_RANDOMIZE_MEMORY offset. */
398 399
	if (!ucode_builtin)
		cont += PAGE_OFFSET - __PAGE_OFFSET_BASE;
400

401
	eax = cpuid_eax(0x00000001);
402
	eq  = (struct equiv_cpu_entry *)(cont + CONTAINER_HDR_SZ);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

	eq_id = find_equiv_id(eq, eax);
	if (!eq_id)
		return;

	if (eq_id == this_equiv_id) {
		mc = (struct microcode_amd *)amd_ucode_patch;

		if (mc && rev < mc->hdr.patch_id) {
			if (!__apply_microcode_amd(mc))
				ucode_new_rev = mc->hdr.patch_id;
		}

	} else {
		if (!ucode_cpio.data)
			return;

		/*
		 * AP has a different equivalence ID than BSP, looks like
		 * mixed-steppings silicon so go through the ucode blob anew.
		 */
		apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false);
	}
}
#endif

429 430 431
static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);

432
int __init save_microcode_in_initrd_amd(unsigned int family)
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
	unsigned long cont;
	int retval = 0;
	enum ucode_state ret;
	u8 *cont_va;
	u32 eax;

	if (!container)
		return -EINVAL;

#ifdef CONFIG_X86_32
	get_bsp_sig();
	cont	= (unsigned long)container;
	cont_va = __va(container);
#else
	/*
	 * We need the physical address of the container for both bitness since
	 * boot_params.hdr.ramdisk_image is a physical address.
	 */
	cont    = __pa(container);
	cont_va = container;
#endif

	/*
	 * Take into account the fact that the ramdisk might get relocated and
	 * therefore we need to recompute the container's position in virtual
	 * memory space.
	 */
	if (relocated_ramdisk)
		container = (u8 *)(__va(relocated_ramdisk) +
			     (cont - boot_params.hdr.ramdisk_image));
	else
		container = cont_va;

467
	/* Add CONFIG_RANDOMIZE_MEMORY offset. */
468 469
	if (!ucode_builtin)
		container += PAGE_OFFSET - __PAGE_OFFSET_BASE;
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	eax   = cpuid_eax(0x00000001);
	eax   = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);

	ret = load_microcode_amd(smp_processor_id(), eax, container, container_size);
	if (ret != UCODE_OK)
		retval = -EINVAL;

	/*
	 * This will be freed any msec now, stash patches for the current
	 * family and switch to patch cache for cpu hotplug, etc later.
	 */
	container = NULL;
	container_size = 0;

	return retval;
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
	u32 rev;

	/*
	 * early==false because this is a syscore ->resume path and by
	 * that time paging is long enabled.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	mc = (struct microcode_amd *)amd_ucode_patch;

	if (mc && rev < mc->hdr.patch_id) {
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
505
			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
506 507 508
		}
	}
}
509
static u16 __find_equiv_id(unsigned int cpu)
510 511
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
512
	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
}

static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
	int i = 0;

	BUG_ON(!equiv_cpu_table);

	while (equiv_cpu_table[i].equiv_cpu != 0) {
		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
			return equiv_cpu_table[i].installed_cpu;
		i++;
	}
	return 0;
}

529 530 531 532 533 534 535
/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

536
	list_for_each_entry(p, &microcode_cache, plist)
537 538 539 540 541 542 543 544 545
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

546
	list_for_each_entry(p, &microcode_cache, plist) {
547 548 549 550 551 552 553 554 555 556 557 558
		if (p->equiv_cpu == new_patch->equiv_cpu) {
			if (p->patch_id >= new_patch->patch_id)
				/* we already have the latest patch */
				return;

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
559
	list_add_tail(&new_patch->plist, &microcode_cache);
560 561 562 563
}

static void free_cache(void)
{
564
	struct ucode_patch *p, *tmp;
565

566
	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
567 568 569 570 571 572 573 574 575 576
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

577
	equiv_id = __find_equiv_id(cpu);
578 579 580 581 582 583
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

584
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
585
{
586
	struct cpuinfo_x86 *c = &cpu_data(cpu);
587 588
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;
589

590
	csig->sig = cpuid_eax(0x00000001);
591
	csig->rev = c->microcode;
592 593 594 595 596 597 598 599 600

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

601 602
	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

603
	return 0;
604 605
}

606
static unsigned int verify_patch_size(u8 family, u32 patch_size,
607
				      unsigned int size)
608
{
609 610 611 612 613
	u32 max_size;

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
614
#define F16H_MPB_MAX_SIZE 3458
615

616
	switch (family) {
617 618 619 620 621 622
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	case 0x15:
		max_size = F15H_MPB_MAX_SIZE;
		break;
623 624 625
	case 0x16:
		max_size = F16H_MPB_MAX_SIZE;
		break;
626 627 628 629 630 631 632 633 634 635 636 637 638
	default:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	}

	if (patch_size > min_t(u32, size, max_size)) {
		pr_err("patch size mismatch\n");
		return 0;
	}

	return patch_size;
}

639 640 641 642 643 644 645 646 647 648
/*
 * Those patch levels cannot be updated to newer ones and thus should be final.
 */
static u32 final_levels[] = {
	0x01000098,
	0x0100009f,
	0x010000af,
	0, /* T-101 terminator */
};

649 650 651 652 653 654 655 656 657 658
/*
 * Check the current patch level on this CPU.
 *
 * @rev: Use it to return the patch level. It is set to 0 in the case of
 * error.
 *
 * Returns:
 *  - true: if update should stop
 *  - false: otherwise
 */
659
bool check_current_patch_level(u32 *rev, bool early)
660
{
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	u32 lvl, dummy, i;
	bool ret = false;
	u32 *levels;

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);

	if (IS_ENABLED(CONFIG_X86_32) && early)
		levels = (u32 *)__pa_nodebug(&final_levels);
	else
		levels = final_levels;

	for (i = 0; levels[i]; i++) {
		if (lvl == levels[i]) {
			lvl = 0;
			ret = true;
			break;
		}
	}
679

680 681
	if (rev)
		*rev = lvl;
682

683
	return ret;
684 685
}

686
static int apply_microcode_amd(int cpu)
687
{
688
	struct cpuinfo_x86 *c = &cpu_data(cpu);
689 690 691
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
692
	u32 rev;
693 694

	BUG_ON(raw_smp_processor_id() != cpu);
695

696
	uci = ucode_cpu_info + cpu;
697

698 699
	p = find_patch(cpu);
	if (!p)
700
		return 0;
701

702 703 704
	mc_amd  = p->data;
	uci->mc = p->data;

705
	if (check_current_patch_level(&rev, false))
706
		return -1;
707

708 709 710
	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		c->microcode = rev;
711
		uci->cpu_sig.rev = rev;
712 713 714
		return 0;
	}

715
	if (__apply_microcode_amd(mc_amd)) {
716
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
717
			cpu, mc_amd->hdr.patch_id);
718 719 720 721
		return -1;
	}
	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
		mc_amd->hdr.patch_id);
722

723 724
	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
	c->microcode = mc_amd->hdr.patch_id;
725 726

	return 0;
727 728
}

729
static int install_equiv_cpu_table(const u8 *buf)
730
{
731 732 733
	unsigned int *ibuf = (unsigned int *)buf;
	unsigned int type = ibuf[1];
	unsigned int size = ibuf[2];
734

735
	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
736 737
		pr_err("empty section/"
		       "invalid type field in container file section header\n");
738
		return -EINVAL;
739 740
	}

741
	equiv_cpu_table = vmalloc(size);
742
	if (!equiv_cpu_table) {
743
		pr_err("failed to allocate equivalent CPU table\n");
744
		return -ENOMEM;
745 746
	}

747
	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
748

749 750
	/* add header length */
	return size + CONTAINER_HDR_SZ;
751 752
}

D
Dmitry Adamushko 已提交
753
static void free_equiv_cpu_table(void)
754
{
755 756
	vfree(equiv_cpu_table);
	equiv_cpu_table = NULL;
D
Dmitry Adamushko 已提交
757
}
758

759
static void cleanup(void)
D
Dmitry Adamushko 已提交
760
{
761 762 763 764 765 766 767 768 769 770 771
	free_equiv_cpu_table();
	free_cache();
}

/*
 * We return the current size even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
772
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	unsigned int patch_size, crnt_size, ret;
	u32 proc_fam;
	u16 proc_id;

	patch_size  = *(u32 *)(fw + 4);
	crnt_size   = patch_size + SECTION_HDR_SIZE;
	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id	    = mc_hdr->processor_rev_id;

	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
	if (!proc_fam) {
		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
		return crnt_size;
	}

	/* check if patch is for the current family */
	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
793
	if (proc_fam != family)
794 795 796 797 798 799 800 801
		return crnt_size;

	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
			mc_hdr->patch_id);
		return crnt_size;
	}

802
	ret = verify_patch_size(family, patch_size, leftover);
803 804 805 806 807 808 809 810 811 812 813
	if (!ret) {
		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
		return crnt_size;
	}

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

814
	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
815 816 817 818 819 820 821 822 823 824
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}

	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

825 826 827
	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

828 829 830 831 832 833
	/* ... and add to cache. */
	update_cache(patch);

	return crnt_size;
}

834 835
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
836 837 838 839 840
{
	enum ucode_state ret = UCODE_ERROR;
	unsigned int leftover;
	u8 *fw = (u8 *)data;
	int crnt_size = 0;
841
	int offset;
842

843
	offset = install_equiv_cpu_table(data);
844
	if (offset < 0) {
845
		pr_err("failed to create equivalent cpu table\n");
846
		return ret;
847
	}
848
	fw += offset;
D
Dmitry Adamushko 已提交
849 850
	leftover = size - offset;

851
	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
852
		pr_err("invalid type field in container file section header\n");
853 854
		free_equiv_cpu_table();
		return ret;
855
	}
D
Dmitry Adamushko 已提交
856

857
	while (leftover) {
858
		crnt_size = verify_and_add_patch(family, fw, leftover);
859 860
		if (crnt_size < 0)
			return ret;
861

862 863
		fw	 += crnt_size;
		leftover -= crnt_size;
864
	}
D
Dmitry Adamushko 已提交
865

866
	return UCODE_OK;
D
Dmitry Adamushko 已提交
867 868
}

869 870
static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
871 872 873 874 875 876
{
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

877
	ret = __load_microcode_amd(family, data, size);
878 879 880 881

	if (ret != UCODE_OK)
		cleanup();

882
#ifdef CONFIG_X86_32
883
	/* save BSP's matching patch for early load */
884 885
	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
		struct ucode_patch *p = find_patch(cpu);
886
		if (p) {
887 888 889
			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
							       PATCH_MAX_SIZE));
890 891 892
		}
	}
#endif
893 894 895
	return ret;
}

896 897 898 899 900 901 902 903
/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
904
 * Beginning with family 15h, they are in family-specific firmware files:
905 906 907 908 909 910 911
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
912 913
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
D
Dmitry Adamushko 已提交
914
{
915 916
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
917 918 919 920 921 922
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
		return UCODE_OK;
923 924 925

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
D
Dmitry Adamushko 已提交
926

927
	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
928
		pr_debug("failed to load file %s\n", fw_name);
929
		goto out;
930
	}
D
Dmitry Adamushko 已提交
931

932 933
	ret = UCODE_ERROR;
	if (*(u32 *)fw->data != UCODE_MAGIC) {
934
		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
935
		goto fw_release;
936 937
	}

938
	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
D
Dmitry Adamushko 已提交
939

940
 fw_release:
941
	release_firmware(fw);
942

943
 out:
D
Dmitry Adamushko 已提交
944 945 946
	return ret;
}

947 948
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
D
Dmitry Adamushko 已提交
949
{
950
	return UCODE_ERROR;
951 952 953 954 955 956
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

957
	uci->mc = NULL;
958 959 960
}

static struct microcode_ops microcode_amd_ops = {
D
Dmitry Adamushko 已提交
961
	.request_microcode_user           = request_microcode_user,
962
	.request_microcode_fw             = request_microcode_amd,
963 964 965 966 967
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

968
struct microcode_ops * __init init_amd_microcode(void)
969
{
970
	struct cpuinfo_x86 *c = &boot_cpu_data;
971 972

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
973
		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
974 975 976
		return NULL;
	}

977 978 979 980
	if (ucode_new_rev)
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);

981
	return &microcode_amd_ops;
982
}
983 984 985

void __exit exit_amd_microcode(void)
{
986
	cleanup();
987
}