fsi.c 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
33 34
#define OUT_SEL		0x0030
#define REG_END		OUT_SEL
35

36 37
#define A_MST_CTLR	0x0180
#define B_MST_CTLR	0x01A0
38 39 40
#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
41 42 43 44 45 46
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
47
#define FIFO_SZ		0x0218
48
#define MREG_START	A_MST_CTLR
49
#define MREG_END	FIFO_SZ
50 51 52

/* DO_FMT */
/* DI_FMT */
53 54 55 56 57 58
#define CR_MONO		(0x0 << 4)
#define CR_MONO_D	(0x1 << 4)
#define CR_PCM		(0x2 << 4)
#define CR_I2S		(0x3 << 4)
#define CR_TDM		(0x4 << 4)
#define CR_TDM_D	(0x5 << 4)
59
#define CR_SPDIF	0x00100120
60 61 62 63 64 65 66 67 68

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
69
#define ST_ERR		(ERR_OVER | ERR_UNDER)
70

71 72 73 74
/* CKG1 */
#define ACKMD_MASK	0x00007000
#define BPFMD_MASK	0x00000700

75 76 77 78
/* A/B MST_CTLR */
#define BP	(1 << 4)	/* Fix the signal of Biphase output */
#define SE	(1 << 0)	/* Fix the master clock */

79 80 81 82 83 84 85 86 87 88
/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

89 90 91 92 93 94
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

95 96 97 98 99
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

100 101 102 103
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

104 105 106 107 108 109 110 111 112
/*
 * FSI driver use below type name for variable
 *
 * xxx_len	: data length
 * xxx_width	: data width
 * xxx_offset	: data offset
 * xxx_num	: number of data
 */

113 114 115
/*
 *		struct
 */
116 117 118 119

struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
120
	struct fsi_master *master;
121

122 123
	int fifo_max_num;
	int chan_num;
124

125 126
	int buff_offset;
	int buff_len;
127
	int period_len;
128
	int period_num;
129 130

	u32 mst_ctrl;
131 132
};

133 134 135
struct fsi_core {
	int ver;

136 137 138 139 140
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

141 142 143 144 145
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
146
	struct fsi_core *core;
147
	struct sh_fsi_platform_info *info;
148
	spinlock_t lock;
149 150
};

151 152 153
/*
 *		basic read write function
 */
154

155
static void __fsi_reg_write(u32 reg, u32 data)
156 157 158 159
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

160
	__raw_writel(data, reg);
161 162 163 164
}

static u32 __fsi_reg_read(u32 reg)
{
165
	return __raw_readl(reg);
166 167
}

168
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
169 170 171 172 173 174
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

175
	__fsi_reg_write(reg, val);
176 177
}

178
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
179
{
180 181
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
182
		return;
183
	}
184

185
	__fsi_reg_write((u32)(fsi->base + reg), data);
186 187 188 189
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
190 191
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
192
		return 0;
193
	}
194 195 196 197

	return __fsi_reg_read((u32)(fsi->base + reg));
}

198
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
199
{
200 201
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
202
		return;
203
	}
204

205
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
206 207
}

208
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
209
{
210 211
	unsigned long flags;

212
	if ((reg < MREG_START) ||
213 214
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
215
		return;
216
	}
217

218
	spin_lock_irqsave(&master->lock, flags);
219
	__fsi_reg_write((u32)(master->base + reg), data);
220
	spin_unlock_irqrestore(&master->lock, flags);
221 222
}

223
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
224
{
225 226 227
	u32 ret;
	unsigned long flags;

228
	if ((reg < MREG_START) ||
229 230
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
231
		return 0;
232
	}
233

234 235 236 237 238
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
239 240
}

241
static void fsi_master_mask_set(struct fsi_master *master,
242
			       u32 reg, u32 mask, u32 data)
243
{
244 245
	unsigned long flags;

246
	if ((reg < MREG_START) ||
247 248
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
249
		return;
250
	}
251

252
	spin_lock_irqsave(&master->lock, flags);
253
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
254
	spin_unlock_irqrestore(&master->lock, flags);
255 256
}

257 258 259
/*
 *		basic function
 */
260

261
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
262
{
263
	return fsi->master;
264 265 266 267
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
268 269
	return fsi->master->base == fsi->base;
}
270

271
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
272 273
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
274

275
	return  rtd->cpu_dai;
276 277 278 279 280
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
281
	struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
282

283 284 285 286
	if (dai->id == 0)
		return &master->fsia;
	else
		return &master->fsib;
287 288 289 290 291
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
292
	struct fsi_master *master = fsi_get_master(fsi);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
332 333
	fsi->buff_len		= buffer_len;
	fsi->buff_offset	= 0;
334
	fsi->period_len		= period_len;
335
	fsi->period_num		= 0;
336 337 338 339 340
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
341 342
	fsi->buff_len		= 0;
	fsi->buff_offset	= 0;
343
	fsi->period_len		= 0;
344
	fsi->period_num		= 0;
345 346
}

347
static int fsi_get_fifo_data_num(struct fsi_priv *fsi, int is_play)
348 349 350
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
351
	int data_num;
352 353

	status = fsi_reg_read(fsi, reg);
354 355 356 357 358
	data_num = 0x1ff & (status >> 8);
	data_num *= fsi->chan_num;

	return data_num;
}
359

360 361 362 363 364 365 366 367 368
static int fsi_len2num(int len, int width)
{
	return len / width;
}

#define fsi_num2offset(a, b) fsi_num2len(a, b)
static int fsi_num2len(int num, int width)
{
	return num * width;
369 370
}

371 372 373 374 375 376 377 378
static int fsi_get_frame_width(struct fsi_priv *fsi)
{
	struct snd_pcm_substream *substream = fsi->substream;
	struct snd_pcm_runtime *runtime = substream->runtime;

	return frames_to_bytes(runtime, 1) / fsi->chan_num;
}

379 380 381 382
/*
 *		dma function
 */

383 384
static u8 *fsi_dma_get_area(struct fsi_priv *fsi)
{
385
	return fsi->substream->runtime->dma_area + fsi->buff_offset;
386 387
}

388
static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
389 390 391 392 393 394
{
	u16 *start;
	int i;

	start  = (u16 *)fsi_dma_get_area(fsi);

395
	for (i = 0; i < num; i++)
396 397 398
		fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
}

399
static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
400 401 402 403 404 405
{
	u16 *start;
	int i;

	start  = (u16 *)fsi_dma_get_area(fsi);

406
	for (i = 0; i < num; i++)
407 408 409
		*(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
}

410
static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
411 412 413 414 415 416
{
	u32 *start;
	int i;

	start  = (u32 *)fsi_dma_get_area(fsi);

417
	for (i = 0; i < num; i++)
418 419 420
		fsi_reg_write(fsi, DODT, *(start + i));
}

421
static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
422 423 424 425 426 427
{
	u32 *start;
	int i;

	start  = (u32 *)fsi_dma_get_area(fsi);

428
	for (i = 0; i < num; i++)
429 430 431
		*(start + i) = fsi_reg_read(fsi, DIDT);
}

432 433 434
/*
 *		irq function
 */
435 436 437 438

static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
439
	struct fsi_master *master = fsi_get_master(fsi);
440

441 442
	fsi_master_mask_set(master, master->core->imsk,  data, data);
	fsi_master_mask_set(master, master->core->iemsk, data, data);
443 444 445 446 447
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
448
	struct fsi_master *master = fsi_get_master(fsi);
449

450 451
	fsi_master_mask_set(master, master->core->imsk,  data, 0);
	fsi_master_mask_set(master, master->core->iemsk, data, 0);
452 453
}

454 455
static u32 fsi_irq_get_status(struct fsi_master *master)
{
456
	return fsi_master_read(master, master->core->int_st);
457 458 459 460
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
461
	fsi_master_write(master, master->core->int_st, 0);
462 463
}

464 465 466 467 468 469 470 471 472
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
473
	fsi_master_mask_set(master, master->core->int_st, data, 0);
474 475
}

476 477 478 479 480
/*
 *		SPDIF master clock function
 *
 * These functions are used later FSI2
 */
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	struct fsi_master *master = fsi_get_master(fsi);
	u32 val = BP | SE;

	if (master->core->ver < 2) {
		pr_err("fsi: register access err (%s)\n", __func__);
		return;
	}

	if (enable)
		fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
	else
		fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
}

497 498 499
/*
 *		ctrl function
 */
500

501 502 503
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
504
	struct fsi_master *master = fsi_get_master(fsi);
505 506

	if (enable)
507
		fsi_master_mask_set(master, CLK_RST, val, val);
508
	else
509
		fsi_master_mask_set(master, CLK_RST, val, 0);
510 511
}

512 513 514
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
515
{
516 517
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
518

519 520 521 522
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
523 524
	fsi->fifo_max_num = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max_num);
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
545 546 547 548
	for (i = 1; i < fsi->chan_num; i <<= 1)
		fsi->fifo_max_num >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n",
		fsi->chan_num, fsi->fifo_max_num);
549 550 551 552 553 554 555 556 557 558

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

559
static void fsi_soft_all_reset(struct fsi_master *master)
560 561
{
	/* port AB reset */
562
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
563 564 565
	mdelay(10);

	/* soft reset */
566 567
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
568 569 570
	mdelay(10);
}

571
static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int startup, int is_play)
572 573 574
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
575 576 577 578
	u32 status_reg = is_play ? DOFF_ST : DIFF_ST;
	int data_residue_num;
	int data_num;
	int data_num_max;
579
	int ch_width;
580
	int over_period;
581
	void (*fn)(struct fsi_priv *fsi, int size);
582 583 584 585 586 587

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

588 589 590
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
591 592 593 594

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
595 596
	if (fsi->buff_offset >=
	    fsi_num2offset(fsi->period_num + 1, fsi->period_len)) {
597

598
		over_period = 1;
599
		fsi->period_num = (fsi->period_num + 1) % runtime->periods;
600

601 602
		if (0 == fsi->period_num)
			fsi->buff_offset = 0;
603 604 605
	}

	/* get 1 channel data width */
606
	ch_width = fsi_get_frame_width(fsi);
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	/* get residue data number of alsa */
	data_residue_num = fsi_len2num(fsi->buff_len - fsi->buff_offset,
				       ch_width);

	if (is_play) {
		/*
		 * for play-back
		 *
		 * data_num_max	: number of FSI fifo free space
		 * data_num	: number of ALSA residue data
		 */
		data_num_max  = fsi->fifo_max_num * fsi->chan_num;
		data_num_max -= fsi_get_fifo_data_num(fsi, is_play);

		data_num = data_residue_num;

		switch (ch_width) {
		case 2:
			fn = fsi_dma_soft_push16;
			break;
		case 4:
			fn = fsi_dma_soft_push32;
			break;
		default:
			return -EINVAL;
		}
	} else {
		/*
		 * for capture
		 *
		 * data_num_max	: number of ALSA free space
		 * data_num	: number of data in FSI fifo
		 */
		data_num_max = data_residue_num;
		data_num     = fsi_get_fifo_data_num(fsi, is_play);

		switch (ch_width) {
		case 2:
			fn = fsi_dma_soft_pop16;
			break;
		case 4:
			fn = fsi_dma_soft_pop32;
			break;
		default:
			return -EINVAL;
		}
	}
655

656
	data_num = min(data_num, data_num_max);
657

658
	fn(fsi, data_num);
659

660 661
	/* update buff_offset */
	fsi->buff_offset += fsi_num2offset(data_num, ch_width);
662

663
	/* check fifo status */
664
	if (!startup) {
665
		struct snd_soc_dai *dai = fsi_get_dai(substream);
666
		u32 status = fsi_reg_read(fsi, status_reg);
667 668 669 670 671

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
672
	}
673
	fsi_reg_write(fsi, status_reg, 0);
674

675 676
	/* re-enable irq */
	fsi_irq_enable(fsi, is_play);
677

678
	if (over_period)
679 680
		snd_pcm_period_elapsed(substream);

681
	return 0;
682 683
}

684
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
685
{
686 687
	return fsi_fifo_data_ctrl(fsi, startup, 0);
}
688

689 690 691
static int fsi_data_push(struct fsi_priv *fsi, int startup)
{
	return fsi_fifo_data_ctrl(fsi, startup, 1);
692 693
}

694 695
static irqreturn_t fsi_interrupt(int irq, void *data)
{
696
	struct fsi_master *master = data;
697
	u32 int_st = fsi_irq_get_status(master);
698 699

	/* clear irq status */
700 701
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
702 703

	if (int_st & INT_A_OUT)
704
		fsi_data_push(&master->fsia, 0);
705
	if (int_st & INT_B_OUT)
706
		fsi_data_push(&master->fsib, 0);
707
	if (int_st & INT_A_IN)
708
		fsi_data_pop(&master->fsia, 0);
709
	if (int_st & INT_B_IN)
710
		fsi_data_pop(&master->fsib, 0);
711

712
	fsi_irq_clear_all_status(master);
713 714 715 716

	return IRQ_HANDLED;
}

717 718 719
/*
 *		dai ops
 */
720 721 722 723

static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
724
	struct fsi_priv *fsi = fsi_get_priv(substream);
725
	u32 flags = fsi_get_info_flags(fsi);
726
	struct fsi_master *master = fsi_get_master(fsi);
727 728 729 730 731 732
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;

733
	pm_runtime_get_sync(dai->dev);
734 735 736 737 738 739 740 741 742 743 744

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
745 746 747 748 749 750 751 752 753
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

754 755 756 757 758 759 760 761
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
762
		data = CR_MONO;
763
		fsi->chan_num = 1;
764 765
		break;
	case SH_FSI_FMT_MONO_DELAY:
766
		data = CR_MONO_D;
767
		fsi->chan_num = 1;
768 769
		break;
	case SH_FSI_FMT_PCM:
770
		data = CR_PCM;
771
		fsi->chan_num = 2;
772 773
		break;
	case SH_FSI_FMT_I2S:
774
		data = CR_I2S;
775
		fsi->chan_num = 2;
776 777
		break;
	case SH_FSI_FMT_TDM:
778
		fsi->chan_num = is_play ?
779
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
780
		data = CR_TDM | (fsi->chan_num - 1);
781 782
		break;
	case SH_FSI_FMT_TDM_DELAY:
783
		fsi->chan_num = is_play ?
784
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
785
		data = CR_TDM_D | (fsi->chan_num - 1);
786
		break;
787 788 789 790 791 792
	case SH_FSI_FMT_SPDIF:
		if (master->core->ver < 2) {
			dev_err(dai->dev, "This FSI can not use SPDIF\n");
			return -EINVAL;
		}
		data = CR_SPDIF;
793
		fsi->chan_num = 2;
794 795 796
		fsi_spdif_clk_ctrl(fsi, 1);
		fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
		break;
797 798 799 800 801 802
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

803 804 805 806 807
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
808
	fsi_fifo_init(fsi, is_play, dai);
809

810
	return 0;
811 812 813 814 815
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
816
	struct fsi_priv *fsi = fsi_get_priv(substream);
817 818 819 820 821
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

822
	pm_runtime_put_sync(dai->dev);
823 824 825 826 827
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
828
	struct fsi_priv *fsi = fsi_get_priv(substream);
829 830 831 832 833 834 835 836 837
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
838
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
839 840 841 842 843 844 845 846 847 848
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params,
			     struct snd_soc_dai *dai)
{
	struct fsi_priv *fsi = fsi_get_priv(substream);
	struct fsi_master *master = fsi_get_master(fsi);
	int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
	int fsi_ver = master->core->ver;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int ret;

	/* if slave mode, set_rate is not needed */
	if (!fsi_is_master_mode(fsi, is_play))
		return 0;

	/* it is error if no set_rate */
	if (!set_rate)
		return -EIO;

	ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
	if (ret > 0) {
		u32 data = 0;

		switch (ret & SH_FSI_ACKMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_ACKMD_512:
			data |= (0x0 << 12);
			break;
		case SH_FSI_ACKMD_256:
			data |= (0x1 << 12);
			break;
		case SH_FSI_ACKMD_128:
			data |= (0x2 << 12);
			break;
		case SH_FSI_ACKMD_64:
			data |= (0x3 << 12);
			break;
		case SH_FSI_ACKMD_32:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x4 << 12);
			break;
		}

		switch (ret & SH_FSI_BPFMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_BPFMD_32:
			data |= (0x0 << 8);
			break;
		case SH_FSI_BPFMD_64:
			data |= (0x1 << 8);
			break;
		case SH_FSI_BPFMD_128:
			data |= (0x2 << 8);
			break;
		case SH_FSI_BPFMD_256:
			data |= (0x3 << 8);
			break;
		case SH_FSI_BPFMD_512:
			data |= (0x4 << 8);
			break;
		case SH_FSI_BPFMD_16:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x7 << 8);
			break;
		}

		fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
		udelay(10);
		fsi_clk_ctrl(fsi, 1);
		ret = 0;
	}

	return ret;

}

931 932 933 934
static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
935
	.hw_params	= fsi_dai_hw_params,
936 937
};

938 939 940
/*
 *		pcm ops
 */
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
989
	struct fsi_priv *fsi = fsi_get_priv(substream);
990 991
	long location;

992
	location = (fsi->buff_offset - 1);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

1007 1008 1009
/*
 *		snd_soc_platform
 */
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

1034 1035 1036
/*
 *		alsa struct
 */
1037

1038
static struct snd_soc_dai_driver fsi_soc_dai[] = {
1039
	{
1040
		.name			= "fsia-dai",
1041 1042 1043 1044 1045 1046
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1047 1048 1049 1050 1051 1052
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1053 1054 1055
		.ops = &fsi_dai_ops,
	},
	{
1056
		.name			= "fsib-dai",
1057 1058 1059 1060 1061 1062
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1063 1064 1065 1066 1067 1068
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1069 1070 1071 1072
		.ops = &fsi_dai_ops,
	},
};

1073 1074
static struct snd_soc_platform_driver fsi_soc_platform = {
	.ops		= &fsi_pcm_ops,
1075 1076 1077 1078
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};

1079 1080 1081
/*
 *		platform function
 */
1082 1083 1084

static int fsi_probe(struct platform_device *pdev)
{
1085
	struct fsi_master *master;
1086
	const struct platform_device_id	*id_entry;
1087 1088 1089 1090
	struct resource *res;
	unsigned int irq;
	int ret;

1091 1092 1093 1094 1095 1096
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

1097 1098
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1099
	if (!res || (int)irq <= 0) {
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

1119
	/* master setting */
1120 1121
	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
1122 1123 1124 1125
	master->core		= (struct fsi_core *)id_entry->driver_data;
	spin_lock_init(&master->lock);

	/* FSI A setting */
1126
	master->fsia.base	= master->base;
1127
	master->fsia.master	= master;
1128 1129 1130
	master->fsia.mst_ctrl	= A_MST_CTLR;

	/* FSI B setting */
1131
	master->fsib.base	= master->base + 0x40;
1132
	master->fsib.master	= master;
1133
	master->fsib.mst_ctrl	= B_MST_CTLR;
1134

1135 1136
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1137
	dev_set_drvdata(&pdev->dev, master);
1138

1139
	fsi_soft_all_reset(master);
1140

1141 1142
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1143 1144
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1145
		goto exit_iounmap;
1146 1147
	}

1148
	ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
1149 1150 1151 1152 1153
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

1154
	return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
1155 1156 1157 1158 1159

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1160
	pm_runtime_disable(&pdev->dev);
1161 1162 1163 1164 1165 1166 1167 1168 1169
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1170 1171
	struct fsi_master *master;

1172
	master = dev_get_drvdata(&pdev->dev);
1173

1174 1175
	snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&pdev->dev);
1176

1177
	pm_runtime_disable(&pdev->dev);
1178 1179 1180 1181 1182

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1183

1184 1185 1186
	return 0;
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1204 1205 1206 1207
static struct fsi_core fsi1_core = {
	.ver	= 1,

	/* Interrupt */
1208 1209 1210 1211 1212
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

1213 1214 1215 1216
static struct fsi_core fsi2_core = {
	.ver	= 2,

	/* Interrupt */
1217 1218 1219 1220 1221 1222
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
1223 1224
	{ "sh_fsi",	(kernel_ulong_t)&fsi1_core },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_core },
1225
	{},
1226
};
1227
MODULE_DEVICE_TABLE(platform, fsi_id_table);
1228

1229 1230
static struct platform_driver fsi_driver = {
	.driver 	= {
1231
		.name	= "fsi-pcm-audio",
1232
		.pm	= &fsi_pm_ops,
1233 1234 1235
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1236
	.id_table	= fsi_id_table,
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
1248

1249 1250 1251 1252 1253 1254
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");