fsi.c 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
33 34
#define OUT_SEL		0x0030
#define REG_END		OUT_SEL
35

36 37
#define A_MST_CTLR	0x0180
#define B_MST_CTLR	0x01A0
38 39 40
#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
41 42 43 44 45 46
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
47
#define FIFO_SZ		0x0218
48
#define MREG_START	A_MST_CTLR
49
#define MREG_END	FIFO_SZ
50 51 52

/* DO_FMT */
/* DI_FMT */
53 54 55 56 57 58
#define CR_MONO		(0x0 << 4)
#define CR_MONO_D	(0x1 << 4)
#define CR_PCM		(0x2 << 4)
#define CR_I2S		(0x3 << 4)
#define CR_TDM		(0x4 << 4)
#define CR_TDM_D	(0x5 << 4)
59
#define CR_SPDIF	0x00100120
60 61 62 63 64 65 66 67 68

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
69
#define ST_ERR		(ERR_OVER | ERR_UNDER)
70

71 72 73 74
/* CKG1 */
#define ACKMD_MASK	0x00007000
#define BPFMD_MASK	0x00000700

75 76 77 78
/* A/B MST_CTLR */
#define BP	(1 << 4)	/* Fix the signal of Biphase output */
#define SE	(1 << 0)	/* Fix the master clock */

79 80 81 82 83 84 85 86 87 88
/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

89 90 91 92 93 94
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

95 96 97 98 99
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

100 101 102 103
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

104 105 106
/*
 *		struct
 */
107 108 109 110

struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
111
	struct fsi_master *master;
112 113 114 115 116 117 118 119

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
120 121

	u32 mst_ctrl;
122 123
};

124 125 126
struct fsi_core {
	int ver;

127 128 129 130 131
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

132 133 134 135 136
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
137
	struct fsi_core *core;
138
	struct sh_fsi_platform_info *info;
139
	spinlock_t lock;
140 141
};

142 143 144
/*
 *		basic read write function
 */
145

146
static void __fsi_reg_write(u32 reg, u32 data)
147 148 149 150
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

151
	__raw_writel(data, reg);
152 153 154 155
}

static u32 __fsi_reg_read(u32 reg)
{
156
	return __raw_readl(reg);
157 158
}

159
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
160 161 162 163 164 165
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

166
	__fsi_reg_write(reg, val);
167 168
}

169
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
170
{
171 172
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
173
		return;
174
	}
175

176
	__fsi_reg_write((u32)(fsi->base + reg), data);
177 178 179 180
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
181 182
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
183
		return 0;
184
	}
185 186 187 188

	return __fsi_reg_read((u32)(fsi->base + reg));
}

189
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
190
{
191 192
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
193
		return;
194
	}
195

196
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
197 198
}

199
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
200
{
201 202
	unsigned long flags;

203
	if ((reg < MREG_START) ||
204 205
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
206
		return;
207
	}
208

209
	spin_lock_irqsave(&master->lock, flags);
210
	__fsi_reg_write((u32)(master->base + reg), data);
211
	spin_unlock_irqrestore(&master->lock, flags);
212 213
}

214
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
215
{
216 217 218
	u32 ret;
	unsigned long flags;

219
	if ((reg < MREG_START) ||
220 221
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
222
		return 0;
223
	}
224

225 226 227 228 229
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
230 231
}

232
static void fsi_master_mask_set(struct fsi_master *master,
233
			       u32 reg, u32 mask, u32 data)
234
{
235 236
	unsigned long flags;

237
	if ((reg < MREG_START) ||
238 239
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
240
		return;
241
	}
242

243
	spin_lock_irqsave(&master->lock, flags);
244
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
245
	spin_unlock_irqrestore(&master->lock, flags);
246 247
}

248 249 250
/*
 *		basic function
 */
251

252
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
253
{
254
	return fsi->master;
255 256 257 258
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
259 260
	return fsi->master->base == fsi->base;
}
261

262
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
263 264
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
265

266
	return  rtd->cpu_dai;
267 268 269 270 271
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
272
	struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
273

274 275 276 277
	if (dai->id == 0)
		return &master->fsia;
	else
		return &master->fsib;
278 279 280 281 282
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
283
	struct fsi_master *master = fsi_get_master(fsi);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

351 352 353 354 355
static u8 *fsi_dma_get_area(struct fsi_priv *fsi)
{
	return fsi->substream->runtime->dma_area + fsi->byte_offset;
}

356 357 358
/*
 *		irq function
 */
359 360 361 362

static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
363
	struct fsi_master *master = fsi_get_master(fsi);
364

365 366
	fsi_master_mask_set(master, master->core->imsk,  data, data);
	fsi_master_mask_set(master, master->core->iemsk, data, data);
367 368 369 370 371
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
372
	struct fsi_master *master = fsi_get_master(fsi);
373

374 375
	fsi_master_mask_set(master, master->core->imsk,  data, 0);
	fsi_master_mask_set(master, master->core->iemsk, data, 0);
376 377
}

378 379
static u32 fsi_irq_get_status(struct fsi_master *master)
{
380
	return fsi_master_read(master, master->core->int_st);
381 382 383 384
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
385
	fsi_master_write(master, master->core->int_st, 0);
386 387
}

388 389 390 391 392 393 394 395 396
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
397
	fsi_master_mask_set(master, master->core->int_st, data, 0);
398 399
}

400 401 402 403 404
/*
 *		SPDIF master clock function
 *
 * These functions are used later FSI2
 */
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	struct fsi_master *master = fsi_get_master(fsi);
	u32 val = BP | SE;

	if (master->core->ver < 2) {
		pr_err("fsi: register access err (%s)\n", __func__);
		return;
	}

	if (enable)
		fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
	else
		fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
}

421 422 423
/*
 *		ctrl function
 */
424

425 426 427
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
428
	struct fsi_master *master = fsi_get_master(fsi);
429 430

	if (enable)
431
		fsi_master_mask_set(master, CLK_RST, val, val);
432
	else
433
		fsi_master_mask_set(master, CLK_RST, val, 0);
434 435
}

436 437 438
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
439
{
440 441
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
442

443 444 445 446 447 448
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
472 473 474 475 476 477 478 479 480 481

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

482
static void fsi_soft_all_reset(struct fsi_master *master)
483 484
{
	/* port AB reset */
485
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
486 487 488
	mdelay(10);

	/* soft reset */
489 490
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
491 492 493 494
	mdelay(10);
}

/* playback interrupt */
495
static int fsi_data_push(struct fsi_priv *fsi, int startup)
496 497 498
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
499
	u32 status;
500 501 502
	int send;
	int fifo_free;
	int width;
503
	u8 *start;
504
	int i, over_period;
505 506 507 508 509 510

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

511 512 513
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
514 515 516 517 518 519 520

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

521
		over_period = 1;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

541
	start = fsi_dma_get_area(fsi);
542 543 544 545 546 547 548 549 550 551 552 553

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
554
		return -EINVAL;
555
	}
556 557 558

	fsi->byte_offset += send * width;

559
	status = fsi_reg_read(fsi, DOFF_ST);
560
	if (!startup) {
561
		struct snd_soc_dai *dai = fsi_get_dai(substream);
562 563 564 565 566

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
567
	}
568
	fsi_reg_write(fsi, DOFF_ST, 0);
569

570 571
	fsi_irq_enable(fsi, 1);

572
	if (over_period)
573 574
		snd_pcm_period_elapsed(substream);

575
	return 0;
576 577
}

578
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
579 580 581
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
582
	u32 status;
583 584 585 586
	int free;
	int fifo_fill;
	int width;
	u8 *start;
587
	int i, over_period;
588 589 590 591 592 593

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

594 595 596
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
597 598 599 600 601 602 603

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

604
		over_period = 1;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

623
	start = fsi_dma_get_area(fsi);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

641
	status = fsi_reg_read(fsi, DIFF_ST);
642
	if (!startup) {
643
		struct snd_soc_dai *dai = fsi_get_dai(substream);
644 645 646 647 648

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
649
	}
650
	fsi_reg_write(fsi, DIFF_ST, 0);
651

652 653
	fsi_irq_enable(fsi, 0);

654
	if (over_period)
655 656
		snd_pcm_period_elapsed(substream);

657
	return 0;
658 659
}

660 661
static irqreturn_t fsi_interrupt(int irq, void *data)
{
662
	struct fsi_master *master = data;
663
	u32 int_st = fsi_irq_get_status(master);
664 665

	/* clear irq status */
666 667
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
668 669

	if (int_st & INT_A_OUT)
670
		fsi_data_push(&master->fsia, 0);
671
	if (int_st & INT_B_OUT)
672
		fsi_data_push(&master->fsib, 0);
673
	if (int_st & INT_A_IN)
674
		fsi_data_pop(&master->fsia, 0);
675
	if (int_st & INT_B_IN)
676
		fsi_data_pop(&master->fsib, 0);
677

678
	fsi_irq_clear_all_status(master);
679 680 681 682

	return IRQ_HANDLED;
}

683 684 685
/*
 *		dai ops
 */
686 687 688 689

static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
690
	struct fsi_priv *fsi = fsi_get_priv(substream);
691
	u32 flags = fsi_get_info_flags(fsi);
692
	struct fsi_master *master = fsi_get_master(fsi);
693 694 695 696 697 698 699
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

700
	pm_runtime_get_sync(dai->dev);
701 702 703 704 705 706 707 708 709 710 711

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
712 713 714 715 716 717 718 719 720
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

721 722 723 724 725 726 727 728
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
729
		data = CR_MONO;
730 731 732
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
733
		data = CR_MONO_D;
734 735 736
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
737
		data = CR_PCM;
738 739 740
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
741
		data = CR_I2S;
742 743 744 745 746
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
747
		data = CR_TDM | (fsi->chan - 1);
748 749 750 751
		break;
	case SH_FSI_FMT_TDM_DELAY:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
752
		data = CR_TDM_D | (fsi->chan - 1);
753
		break;
754 755 756 757 758 759 760 761 762 763
	case SH_FSI_FMT_SPDIF:
		if (master->core->ver < 2) {
			dev_err(dai->dev, "This FSI can not use SPDIF\n");
			return -EINVAL;
		}
		data = CR_SPDIF;
		fsi->chan = 2;
		fsi_spdif_clk_ctrl(fsi, 1);
		fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
		break;
764 765 766 767 768 769
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

770 771 772 773 774
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
775
	fsi_fifo_init(fsi, is_play, dai);
776 777 778 779 780 781 782

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
783
	struct fsi_priv *fsi = fsi_get_priv(substream);
784 785 786 787 788
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

789
	pm_runtime_put_sync(dai->dev);
790 791 792 793 794
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
795
	struct fsi_priv *fsi = fsi_get_priv(substream);
796 797 798 799 800 801 802 803 804
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
805
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
806 807 808 809 810 811 812 813 814 815
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params,
			     struct snd_soc_dai *dai)
{
	struct fsi_priv *fsi = fsi_get_priv(substream);
	struct fsi_master *master = fsi_get_master(fsi);
	int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
	int fsi_ver = master->core->ver;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int ret;

	/* if slave mode, set_rate is not needed */
	if (!fsi_is_master_mode(fsi, is_play))
		return 0;

	/* it is error if no set_rate */
	if (!set_rate)
		return -EIO;

	ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
	if (ret > 0) {
		u32 data = 0;

		switch (ret & SH_FSI_ACKMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_ACKMD_512:
			data |= (0x0 << 12);
			break;
		case SH_FSI_ACKMD_256:
			data |= (0x1 << 12);
			break;
		case SH_FSI_ACKMD_128:
			data |= (0x2 << 12);
			break;
		case SH_FSI_ACKMD_64:
			data |= (0x3 << 12);
			break;
		case SH_FSI_ACKMD_32:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x4 << 12);
			break;
		}

		switch (ret & SH_FSI_BPFMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_BPFMD_32:
			data |= (0x0 << 8);
			break;
		case SH_FSI_BPFMD_64:
			data |= (0x1 << 8);
			break;
		case SH_FSI_BPFMD_128:
			data |= (0x2 << 8);
			break;
		case SH_FSI_BPFMD_256:
			data |= (0x3 << 8);
			break;
		case SH_FSI_BPFMD_512:
			data |= (0x4 << 8);
			break;
		case SH_FSI_BPFMD_16:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x7 << 8);
			break;
		}

		fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
		udelay(10);
		fsi_clk_ctrl(fsi, 1);
		ret = 0;
	}

	return ret;

}

898 899 900 901
static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
902
	.hw_params	= fsi_dai_hw_params,
903 904
};

905 906 907
/*
 *		pcm ops
 */
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
956
	struct fsi_priv *fsi = fsi_get_priv(substream);
957 958
	long location;

959
	location = (fsi->byte_offset - 1);
960 961 962 963 964 965 966 967 968 969 970 971 972 973
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

974 975 976
/*
 *		snd_soc_platform
 */
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

1001 1002 1003
/*
 *		alsa struct
 */
1004

1005
static struct snd_soc_dai_driver fsi_soc_dai[] = {
1006
	{
1007
		.name			= "fsia-dai",
1008 1009 1010 1011 1012 1013
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1014 1015 1016 1017 1018 1019
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1020 1021 1022
		.ops = &fsi_dai_ops,
	},
	{
1023
		.name			= "fsib-dai",
1024 1025 1026 1027 1028 1029
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1030 1031 1032 1033 1034 1035
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1036 1037 1038 1039
		.ops = &fsi_dai_ops,
	},
};

1040 1041
static struct snd_soc_platform_driver fsi_soc_platform = {
	.ops		= &fsi_pcm_ops,
1042 1043 1044 1045
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};

1046 1047 1048
/*
 *		platform function
 */
1049 1050 1051

static int fsi_probe(struct platform_device *pdev)
{
1052
	struct fsi_master *master;
1053
	const struct platform_device_id	*id_entry;
1054 1055 1056 1057
	struct resource *res;
	unsigned int irq;
	int ret;

1058 1059 1060 1061 1062 1063
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

1064 1065
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1066
	if (!res || (int)irq <= 0) {
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

1086
	/* master setting */
1087 1088
	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
1089 1090 1091 1092
	master->core		= (struct fsi_core *)id_entry->driver_data;
	spin_lock_init(&master->lock);

	/* FSI A setting */
1093
	master->fsia.base	= master->base;
1094
	master->fsia.master	= master;
1095 1096 1097
	master->fsia.mst_ctrl	= A_MST_CTLR;

	/* FSI B setting */
1098
	master->fsib.base	= master->base + 0x40;
1099
	master->fsib.master	= master;
1100
	master->fsib.mst_ctrl	= B_MST_CTLR;
1101

1102 1103
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1104
	dev_set_drvdata(&pdev->dev, master);
1105

1106
	fsi_soft_all_reset(master);
1107

1108 1109
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1110 1111
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1112
		goto exit_iounmap;
1113 1114
	}

1115
	ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
1116 1117 1118 1119 1120
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

1121
	return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
1122 1123 1124 1125 1126

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1127
	pm_runtime_disable(&pdev->dev);
1128 1129 1130 1131 1132 1133 1134 1135 1136
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1137 1138
	struct fsi_master *master;

1139
	master = dev_get_drvdata(&pdev->dev);
1140

1141 1142
	snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&pdev->dev);
1143

1144
	pm_runtime_disable(&pdev->dev);
1145 1146 1147 1148 1149

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1150

1151 1152 1153
	return 0;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1171 1172 1173 1174
static struct fsi_core fsi1_core = {
	.ver	= 1,

	/* Interrupt */
1175 1176 1177 1178 1179
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

1180 1181 1182 1183
static struct fsi_core fsi2_core = {
	.ver	= 2,

	/* Interrupt */
1184 1185 1186 1187 1188 1189
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
1190 1191
	{ "sh_fsi",	(kernel_ulong_t)&fsi1_core },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_core },
1192
};
1193
MODULE_DEVICE_TABLE(platform, fsi_id_table);
1194

1195 1196
static struct platform_driver fsi_driver = {
	.driver 	= {
1197
		.name	= "fsi-pcm-audio",
1198
		.pm	= &fsi_pm_ops,
1199 1200 1201
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1202
	.id_table	= fsi_id_table,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
1214

1215 1216 1217 1218 1219 1220
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");