fsi.c 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/list.h>
20
#include <linux/pm_runtime.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <linux/io.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include <sound/sh_fsi.h>
#include <asm/atomic.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
#define REG_END		MUTE_ST

#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
#define MREG_START	INT_ST
#define MREG_END	SOFT_RST

/* DO_FMT */
/* DI_FMT */
#define CR_FMT(param) ((param) << 4)
# define CR_MONO	0x0
# define CR_MONO_D	0x1
# define CR_PCM		0x2
# define CR_I2S		0x3
# define CR_TDM		0x4
# define CR_TDM_D	0x5

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
70
#define ST_ERR		(ERR_OVER | ERR_UNDER)
71 72 73 74 75 76 77 78 79 80 81

/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

82 83 84 85 86 87
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

88 89 90 91 92 93 94 95 96 97 98 99 100 101
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
102
	struct fsi_master *master;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
};

struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
	struct sh_fsi_platform_info *info;
119
	spinlock_t lock;
120 121 122 123 124 125 126 127 128
};

/************************************************************************


		basic read write function


************************************************************************/
129
static void __fsi_reg_write(u32 reg, u32 data)
130 131 132 133
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

134
	__raw_writel(data, reg);
135 136 137 138
}

static u32 __fsi_reg_read(u32 reg)
{
139
	return __raw_readl(reg);
140 141
}

142
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
143 144 145 146 147 148
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

149
	__fsi_reg_write(reg, val);
150 151
}

152
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
153 154
{
	if (reg > REG_END)
155
		return;
156

157
	__fsi_reg_write((u32)(fsi->base + reg), data);
158 159 160 161 162 163 164 165 166 167
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
	if (reg > REG_END)
		return 0;

	return __fsi_reg_read((u32)(fsi->base + reg));
}

168
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
169 170
{
	if (reg > REG_END)
171
		return;
172

173
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
174 175
}

176
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
177
{
178 179
	unsigned long flags;

180 181
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
182
		return;
183

184
	spin_lock_irqsave(&master->lock, flags);
185
	__fsi_reg_write((u32)(master->base + reg), data);
186
	spin_unlock_irqrestore(&master->lock, flags);
187 188
}

189
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
190
{
191 192 193
	u32 ret;
	unsigned long flags;

194 195 196 197
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
		return 0;

198 199 200 201 202
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
203 204
}

205
static void fsi_master_mask_set(struct fsi_master *master,
206
			       u32 reg, u32 mask, u32 data)
207
{
208 209
	unsigned long flags;

210 211
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
212
		return;
213

214
	spin_lock_irqsave(&master->lock, flags);
215
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
216
	spin_unlock_irqrestore(&master->lock, flags);
217 218 219 220 221 222 223 224 225
}

/************************************************************************


		basic function


************************************************************************/
226
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
227
{
228
	return fsi->master;
229 230 231 232
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
233 234
	return fsi->master->base == fsi->base;
}
235

236
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
237 238 239
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai_link *machine = rtd->dai;
240 241 242 243 244 245 246

	return  machine->cpu_dai;
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
247

248
	return dai->private_data;
249 250 251 252 253
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
254
	struct fsi_master *master = fsi_get_master(fsi);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


325
		irq function
326 327 328 329 330 331


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
332
	struct fsi_master *master = fsi_get_master(fsi);
333

334 335
	fsi_master_mask_set(master, IMSK,  data, data);
	fsi_master_mask_set(master, IEMSK, data, data);
336 337 338 339 340
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
341
	struct fsi_master *master = fsi_get_master(fsi);
342

343 344
	fsi_master_mask_set(master, IMSK,  data, 0);
	fsi_master_mask_set(master, IEMSK, data, 0);
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static u32 fsi_irq_get_status(struct fsi_master *master)
{
	return fsi_master_read(master, INT_ST);
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
	fsi_master_write(master, INT_ST, 0x0000000);
}

static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
	fsi_master_mask_set(master, INT_ST, data, 0);
}

/************************************************************************


		ctrl function


************************************************************************/
376 377 378
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
379
	struct fsi_master *master = fsi_get_master(fsi);
380 381

	if (enable)
382
		fsi_master_mask_set(master, CLK_RST, val, val);
383
	else
384
		fsi_master_mask_set(master, CLK_RST, val, 0);
385 386
}

387
static void fsi_fifo_init(struct fsi_priv *fsi, int is_play)
388 389 390 391 392 393 394 395 396 397 398 399
{
	u32 ctrl;

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

400
static void fsi_soft_all_reset(struct fsi_master *master)
401 402
{
	/* port AB reset */
403
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
404 405 406
	mdelay(10);

	/* soft reset */
407 408
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
409 410 411 412
	mdelay(10);
}

/* playback interrupt */
413
static int fsi_data_push(struct fsi_priv *fsi, int startup)
414 415 416
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
417
	u32 status;
418 419 420
	int send;
	int fifo_free;
	int width;
421
	u8 *start;
422
	int i, over_period;
423 424 425 426 427 428

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

429 430 431
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
432 433 434 435 436 437 438

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

439
		over_period = 1;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

459 460 461 462 463 464 465 466 467 468 469 470 471 472
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
473
		return -EINVAL;
474
	}
475 476 477

	fsi->byte_offset += send * width;

478
	status = fsi_reg_read(fsi, DOFF_ST);
479
	if (!startup) {
480
		struct snd_soc_dai *dai = fsi_get_dai(substream);
481 482 483 484 485

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
486
	}
487
	fsi_reg_write(fsi, DOFF_ST, 0);
488

489 490
	fsi_irq_enable(fsi, 1);

491
	if (over_period)
492 493
		snd_pcm_period_elapsed(substream);

494
	return 0;
495 496
}

497
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
498 499 500
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
501
	u32 status;
502 503 504 505
	int free;
	int fifo_fill;
	int width;
	u8 *start;
506
	int i, over_period;
507 508 509 510 511 512

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

513 514 515
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
516 517 518 519 520 521 522

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

523
		over_period = 1;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

561
	status = fsi_reg_read(fsi, DIFF_ST);
562
	if (!startup) {
563
		struct snd_soc_dai *dai = fsi_get_dai(substream);
564 565 566 567 568

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
569
	}
570
	fsi_reg_write(fsi, DIFF_ST, 0);
571

572 573
	fsi_irq_enable(fsi, 0);

574
	if (over_period)
575 576
		snd_pcm_period_elapsed(substream);

577
	return 0;
578 579
}

580 581
static irqreturn_t fsi_interrupt(int irq, void *data)
{
582
	struct fsi_master *master = data;
583
	u32 int_st = fsi_irq_get_status(master);
584 585

	/* clear irq status */
586 587
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
588 589

	if (int_st & INT_A_OUT)
590
		fsi_data_push(&master->fsia, 0);
591
	if (int_st & INT_B_OUT)
592
		fsi_data_push(&master->fsib, 0);
593
	if (int_st & INT_A_IN)
594
		fsi_data_pop(&master->fsia, 0);
595
	if (int_st & INT_B_IN)
596
		fsi_data_pop(&master->fsib, 0);
597

598
	fsi_irq_clear_all_status(master);
599 600 601 602 603 604 605 606 607 608 609 610 611 612

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
613
	struct fsi_priv *fsi = fsi_get_priv(substream);
614 615 616 617 618 619 620 621 622
	const char *msg;
	u32 flags = fsi_get_info_flags(fsi);
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

623
	pm_runtime_get_sync(dai->dev);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
	switch (SH_FSI_INVERSION_MASK & flags) {
	case SH_FSI_LRM_INV:
		data = 1 << 12;
		break;
	case SH_FSI_BRM_INV:
		data = 1 << 8;
		break;
	case SH_FSI_LRS_INV:
		data = 1 << 4;
		break;
	case SH_FSI_BRS_INV:
		data = 1 << 0;
		break;
	}
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
		msg = "MONO";
		data = CR_FMT(CR_MONO);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
		msg = "MONO Delay";
		data = CR_FMT(CR_MONO_D);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
		msg = "PCM";
		data = CR_FMT(CR_PCM);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
		msg = "I2S";
		data = CR_FMT(CR_I2S);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		msg = "TDM";
		data = CR_FMT(CR_TDM) | (fsi->chan - 1);
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
		break;
	case SH_FSI_FMT_TDM_DELAY:
		msg = "TDM Delay";
		data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
		break;
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}

	switch (fsi->chan) {
	case 1:
		fsi->fifo_max = 256;
		break;
	case 2:
		fsi->fifo_max = 128;
		break;
	case 3:
	case 4:
		fsi->fifo_max = 64;
		break;
	case 5:
	case 6:
	case 7:
	case 8:
		fsi->fifo_max = 32;
		break;
	default:
		dev_err(dai->dev, "channel size error.\n");
		return -EINVAL;
	}

	fsi_reg_write(fsi, reg, data);

	/*
	 * clear clk reset if master mode
	 */
	if (is_master)
		fsi_clk_ctrl(fsi, 1);

723 724 725 726 727 728
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
	fsi_fifo_init(fsi, is_play);
729 730 731 732 733 734 735

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
736
	struct fsi_priv *fsi = fsi_get_priv(substream);
737 738 739 740 741
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

742
	pm_runtime_put_sync(dai->dev);
743 744 745 746 747
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
748
	struct fsi_priv *fsi = fsi_get_priv(substream);
749 750 751 752 753 754 755 756 757
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
758
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
829
	struct fsi_priv *fsi = fsi_get_priv(substream);
830 831
	long location;

832
	location = (fsi->byte_offset - 1);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
struct snd_soc_dai fsi_soc_dai[] = {
	{
		.name			= "FSIA",
		.id			= 0,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
894 895 896 897 898 899
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
900 901 902 903 904 905 906 907 908 909 910
		.ops = &fsi_dai_ops,
	},
	{
		.name			= "FSIB",
		.id			= 1,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
911 912 913 914 915 916
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		.ops = &fsi_dai_ops,
	},
};
EXPORT_SYMBOL_GPL(fsi_soc_dai);

struct snd_soc_platform fsi_soc_platform = {
	.name		= "fsi-pcm",
	.pcm_ops 	= &fsi_pcm_ops,
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};
EXPORT_SYMBOL_GPL(fsi_soc_platform);

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
939
	struct fsi_master *master;
940 941 942 943
	struct resource *res;
	unsigned int irq;
	int ret;

944 945 946 947 948
	if (0 != pdev->id) {
		dev_err(&pdev->dev, "current fsi support id 0 only now\n");
		return -ENODEV;
	}

949 950
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
951
	if (!res || (int)irq <= 0) {
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
	master->fsia.base	= master->base;
974
	master->fsia.master	= master;
975
	master->fsib.base	= master->base + 0x40;
976
	master->fsib.master	= master;
977
	spin_lock_init(&master->lock);
978

979 980
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
981 982

	fsi_soc_dai[0].dev		= &pdev->dev;
983
	fsi_soc_dai[0].private_data	= &master->fsia;
984
	fsi_soc_dai[1].dev		= &pdev->dev;
985
	fsi_soc_dai[1].private_data	= &master->fsib;
986

987
	fsi_soft_all_reset(master);
988 989 990 991

	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED, "fsi", master);
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
992
		goto exit_iounmap;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	}

	ret = snd_soc_register_platform(&fsi_soc_platform);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

	return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1007
	pm_runtime_disable(&pdev->dev);
1008 1009 1010 1011 1012 1013 1014 1015 1016
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1017 1018 1019 1020
	struct fsi_master *master;

	master = fsi_get_master(fsi_soc_dai[0].private_data);

1021 1022 1023
	snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&fsi_soc_platform);

1024
	pm_runtime_disable(&pdev->dev);
1025 1026 1027 1028 1029

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1030 1031 1032 1033 1034 1035

	fsi_soc_dai[0].dev		= NULL;
	fsi_soc_dai[0].private_data	= NULL;
	fsi_soc_dai[1].dev		= NULL;
	fsi_soc_dai[1].private_data	= NULL;

1036 1037 1038
	return 0;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1056 1057 1058
static struct platform_driver fsi_driver = {
	.driver 	= {
		.name	= "sh_fsi",
1059
		.pm	= &fsi_pm_ops,
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");