posix-timers.c 35.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
52
#include <linux/compat.h>
L
Linus Torvalds 已提交
53

54
#include "timekeeping.h"
55
#include "posix-timers.h"
56

L
Linus Torvalds 已提交
57
/*
58 59 60 61 62 63
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
64 65 66 67 68
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
69
static struct kmem_cache *posix_timers_cache;
70 71 72

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
73

74 75
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
76
static const struct k_clock clock_realtime, clock_monotonic;
77

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

87 88 89 90 91 92 93 94
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
108
 *	    clocks.
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
118 119
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
120
 *
R
Richard Cochran 已提交
121 122 123 124
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
133 134 135 136 137 138 139
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
191 192 193 194 195
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

196
/* Get clock_realtime */
197
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
198
{
199
	ktime_get_real_ts64(tp);
200 201 202
	return 0;
}

203 204
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
205
				    const struct timespec64 *tp)
206
{
207
	return do_sys_settimeofday64(tp, NULL);
208 209
}

210 211 212 213 214 215
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

216 217 218
/*
 * Get monotonic time for posix timers
 */
219
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
220
{
221
	ktime_get_ts64(tp);
222 223
	return 0;
}
L
Linus Torvalds 已提交
224

225
/*
226
 * Get monotonic-raw time for posix timers
227
 */
228
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
229
{
230
	getrawmonotonic64(tp);
231 232 233
	return 0;
}

234

235
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
236
{
237
	*tp = current_kernel_time64();
238 239 240 241
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
242
						struct timespec64 *tp)
243
{
244
	*tp = get_monotonic_coarse64();
245 246 247
	return 0;
}

248
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
249
{
250
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
251 252
	return 0;
}
253

254
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
255
{
256
	get_monotonic_boottime64(tp);
257 258 259
	return 0;
}

260
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
J
John Stultz 已提交
261
{
262
	timekeeping_clocktai64(tp);
J
John Stultz 已提交
263 264
	return 0;
}
265

266 267 268 269 270 271 272
static int posix_get_monotonic_active(clockid_t which_clock,
				      struct timespec64 *tp)
{
	ktime_get_active_ts64(tp);
	return 0;
}

273
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
274 275 276 277 278 279
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
280 281 282 283 284 285
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
286 287
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
288 289 290 291
	return 0;
}
__initcall(init_posix_timers);

292
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
293
{
294 295
	struct hrtimer *timer = &timr->it.real.timer;

296
	if (!timr->it_interval)
L
Linus Torvalds 已提交
297 298
		return;

D
Davide Libenzi 已提交
299 300
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
301
						timr->it_interval);
302
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310 311 312
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
313
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
314 315
 * we require that the it_requeue_pending flag be set.
 */
316
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
317 318 319 320 321
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
322 323
	if (!timr)
		return;
L
Linus Torvalds 已提交
324

325
	if (timr->it_requeue_pending == info->si_sys_private) {
326
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
327

328
		timr->it_active = 1;
329 330 331 332
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

333
		info->si_overrun += timr->it_overrun_last;
334 335
	}

336
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
337 338
}

339
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
340
{
341 342
	struct task_struct *task;
	int shared, ret = -1;
343 344
	/*
	 * FIXME: if ->sigq is queued we can race with
345
	 * dequeue_signal()->posixtimer_rearm().
346 347
	 *
	 * If dequeue_signal() sees the "right" value of
348
	 * si_sys_private it calls posixtimer_rearm().
349
	 * We re-queue ->sigq and drop ->it_lock().
350
	 * posixtimer_rearm() locks the timer
351 352 353
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
354 355
	timr->sigq->info.si_sys_private = si_private;

356 357 358 359 360 361 362
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
363 364
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
365 366 367 368 369 370 371 372 373
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
374
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
375
{
376
	struct k_itimer *timr;
L
Linus Torvalds 已提交
377
	unsigned long flags;
378
	int si_private = 0;
379
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
380

381
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
382 383
	spin_lock_irqsave(&timr->it_lock, flags);

384
	timr->it_active = 0;
385
	if (timr->it_interval != 0)
386
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
387

388 389 390 391 392 393
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
394
		if (timr->it_interval != 0) {
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
421
				ktime_t kj = NSEC_PER_SEC / HZ;
422

423
				if (timr->it_interval < kj)
424 425 426
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
427
			timr->it_overrun += (unsigned int)
428
				hrtimer_forward(timer, now,
429
						timr->it_interval);
430
			ret = HRTIMER_RESTART;
431
			++timr->it_requeue_pending;
432
			timr->it_active = 1;
L
Linus Torvalds 已提交
433 434 435
		}
	}

436 437 438
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
439

440
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
441 442 443
{
	struct task_struct *rtn = current->group_leader;

444 445 446 447 448 449 450 451 452 453 454 455 456 457
	switch (event->sigev_notify) {
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
		if (!rtn || !same_thread_group(rtn, current))
			return NULL;
		/* FALLTHRU */
	case SIGEV_SIGNAL:
	case SIGEV_THREAD:
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
			return NULL;
		/* FALLTHRU */
	case SIGEV_NONE:
		return task_pid(rtn);
	default:
L
Linus Torvalds 已提交
458
		return NULL;
459
	}
L
Linus Torvalds 已提交
460 461 462 463 464
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
465
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
466 467 468 469
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
470
		return NULL;
L
Linus Torvalds 已提交
471
	}
472
	clear_siginfo(&tmr->sigq->info);
L
Linus Torvalds 已提交
473 474 475
	return tmr;
}

E
Eric Dumazet 已提交
476 477 478 479 480 481 482
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
483 484 485 486 487 488
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
489 490 491
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
492
	}
493
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
494
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
495
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
496 497
}

498 499 500 501 502 503
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
504
/* Create a POSIX.1b interval timer. */
505 506
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
			   timer_t __user *created_timer_id)
L
Linus Torvalds 已提交
507
{
508
	const struct k_clock *kc = clockid_to_kclock(which_clock);
509
	struct k_itimer *new_timer;
510
	int error, new_timer_id;
L
Linus Torvalds 已提交
511 512
	int it_id_set = IT_ID_NOT_SET;

513
	if (!kc)
L
Linus Torvalds 已提交
514
		return -EINVAL;
515 516
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
517 518 519 520 521 522

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
523 524 525
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
526 527 528 529 530 531
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
532
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
533 534
	new_timer->it_overrun = -1;

535
	if (event) {
536
		rcu_read_lock();
537
		new_timer->it_pid = get_pid(good_sigevent(event));
538
		rcu_read_unlock();
539
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
540 541 542
			error = -EINVAL;
			goto out;
		}
543 544 545
		new_timer->it_sigev_notify     = event->sigev_notify;
		new_timer->sigq->info.si_signo = event->sigev_signo;
		new_timer->sigq->info.si_value = event->sigev_value;
L
Linus Torvalds 已提交
546
	} else {
547 548 549 550
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
		new_timer->sigq->info.si_signo = SIGALRM;
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
551
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
552 553
	}

554
	new_timer->sigq->info.si_tid   = new_timer->it_id;
555
	new_timer->sigq->info.si_code  = SI_TIMER;
556

557 558 559 560 561 562
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

563
	error = kc->timer_create(new_timer);
564 565 566
	if (error)
		goto out;

567
	spin_lock_irq(&current->sighand->siglock);
568
	new_timer->it_signal = current->signal;
569 570
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
571 572

	return 0;
573
	/*
L
Linus Torvalds 已提交
574 575 576 577 578 579
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
580
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
581 582 583
	return error;
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
		       struct compat_sigevent __user *, timer_event_spec,
		       timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (get_compat_sigevent(&event, timer_event_spec))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif

L
Linus Torvalds 已提交
614 615 616 617 618 619 620
/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
621
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
622 623
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
624

625 626 627 628 629 630 631
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
632
	rcu_read_lock();
633
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
634
	if (timr) {
E
Eric Dumazet 已提交
635
		spin_lock_irqsave(&timr->it_lock, *flags);
636
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
637
			rcu_read_unlock();
638 639
			return timr;
		}
E
Eric Dumazet 已提交
640
		spin_unlock_irqrestore(&timr->it_lock, *flags);
641
	}
E
Eric Dumazet 已提交
642
	rcu_read_unlock();
L
Linus Torvalds 已提交
643

644
	return NULL;
L
Linus Torvalds 已提交
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
677
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
678
{
679
	const struct k_clock *kc = timr->kclock;
680
	ktime_t now, remaining, iv;
681 682
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
683

684
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
685
	iv = timr->it_interval;
686

687
	/* interval timer ? */
688
	if (iv) {
689
		cur_setting->it_interval = ktime_to_timespec64(iv);
690 691 692 693 694 695 696 697
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
698

699 700 701 702 703 704
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
705

706
	/*
707 708
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
709
	 */
710 711
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
712

713
	remaining = kc->timer_remaining(timr, now);
714
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
715
	if (remaining <= 0) {
716 717 718 719
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
720
		if (!sig_none)
721
			cur_setting->it_value.tv_nsec = 1;
722
	} else {
723
		cur_setting->it_value = ktime_to_timespec64(remaining);
724
	}
L
Linus Torvalds 已提交
725 726 727
}

/* Get the time remaining on a POSIX.1b interval timer. */
728
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
L
Linus Torvalds 已提交
729
{
730
	struct k_itimer *timr;
731
	const struct k_clock *kc;
L
Linus Torvalds 已提交
732
	unsigned long flags;
733
	int ret = 0;
L
Linus Torvalds 已提交
734 735 736 737 738

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

739
	memset(setting, 0, sizeof(*setting));
740
	kc = timr->kclock;
741 742 743
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
744
		kc->timer_get(timr, setting);
L
Linus Torvalds 已提交
745 746

	unlock_timer(timr, flags);
747 748
	return ret;
}
L
Linus Torvalds 已提交
749

750 751 752 753
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		struct itimerspec __user *, setting)
{
754
	struct itimerspec64 cur_setting;
L
Linus Torvalds 已提交
755

756
	int ret = do_timer_gettime(timer_id, &cur_setting);
757
	if (!ret) {
758
		if (put_itimerspec64(&cur_setting, setting))
759 760
			ret = -EFAULT;
	}
761
	return ret;
L
Linus Torvalds 已提交
762
}
763

764 765 766 767
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		       struct compat_itimerspec __user *, setting)
{
768
	struct itimerspec64 cur_setting;
769

770
	int ret = do_timer_gettime(timer_id, &cur_setting);
771
	if (!ret) {
772
		if (put_compat_itimerspec64(&cur_setting, setting))
773 774 775 776 777 778
			ret = -EFAULT;
	}
	return ret;
}
#endif

L
Linus Torvalds 已提交
779 780 781 782 783 784
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
785
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
786 787
 * to pick up the frozen overrun.
 */
788
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
789 790 791
{
	struct k_itimer *timr;
	int overrun;
792
	unsigned long flags;
L
Linus Torvalds 已提交
793 794 795 796 797 798 799 800 801 802 803

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

804 805 806 807 808 809 810
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
811 812 813 814 815 816 817 818 819 820 821 822
	/*
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
	 * functions which use timr->kclock->clock_get() work.
	 *
	 * Note: it_clock stays unmodified, because the next timer_set() might
	 * use ABSTIME, so it needs to switch back.
	 */
	if (timr->it_clock == CLOCK_REALTIME)
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
839
/* Set a POSIX.1b interval timer. */
840 841 842
int common_timer_set(struct k_itimer *timr, int flags,
		     struct itimerspec64 *new_setting,
		     struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
843
{
844 845 846
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
847 848 849 850

	if (old_setting)
		common_timer_get(timr, old_setting);

851
	/* Prevent rearming by clearing the interval */
852
	timr->it_interval = 0;
L
Linus Torvalds 已提交
853
	/*
854 855
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
856
	 */
857
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
858 859
		return TIMER_RETRY;

860 861
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
862 863 864
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

865
	/* Switch off the timer when it_value is zero */
866 867
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
868

869
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
870
	expires = timespec64_to_ktime(new_setting->it_value);
871
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
872

873 874
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
875 876 877
	return 0;
}

878 879 880
static int do_timer_settime(timer_t timer_id, int flags,
			    struct itimerspec64 *new_spec64,
			    struct itimerspec64 *old_spec64)
L
Linus Torvalds 已提交
881
{
882
	const struct k_clock *kc;
883
	struct k_itimer *timr;
884
	unsigned long flag;
885
	int error = 0;
L
Linus Torvalds 已提交
886

887 888
	if (!timespec64_valid(&new_spec64->it_interval) ||
	    !timespec64_valid(&new_spec64->it_value))
L
Linus Torvalds 已提交
889 890
		return -EINVAL;

891 892
	if (old_spec64)
		memset(old_spec64, 0, sizeof(*old_spec64));
L
Linus Torvalds 已提交
893 894 895 896 897
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

898
	kc = timr->kclock;
899 900 901
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
902
		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
L
Linus Torvalds 已提交
903 904 905

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
906
		old_spec64 = NULL;	// We already got the old time...
L
Linus Torvalds 已提交
907 908 909
		goto retry;
	}

910 911
	return error;
}
L
Linus Torvalds 已提交
912

913 914 915 916 917
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		const struct itimerspec __user *, new_setting,
		struct itimerspec __user *, old_setting)
{
918 919
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
920 921 922 923 924
	int error = 0;

	if (!new_setting)
		return -EINVAL;

925
	if (get_itimerspec64(&new_spec, new_setting))
926 927
		return -EFAULT;

928
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
929
	if (!error && old_setting) {
930
		if (put_itimerspec64(&old_spec, old_setting))
931 932 933 934 935 936 937 938 939 940
			error = -EFAULT;
	}
	return error;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		       struct compat_itimerspec __user *, new,
		       struct compat_itimerspec __user *, old)
{
941 942
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
943 944 945 946
	int error = 0;

	if (!new)
		return -EINVAL;
947
	if (get_compat_itimerspec64(&new_spec, new))
948 949
		return -EFAULT;

950
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
951
	if (!error && old) {
952
		if (put_compat_itimerspec64(&old_spec, old))
953 954
			error = -EFAULT;
	}
L
Linus Torvalds 已提交
955 956
	return error;
}
957
#endif
L
Linus Torvalds 已提交
958

959
int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
960
{
961
	const struct k_clock *kc = timer->kclock;
962

963 964
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
965
		return TIMER_RETRY;
966
	timer->it_active = 0;
L
Linus Torvalds 已提交
967 968 969 970 971
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
972
	const struct k_clock *kc = timer->kclock;
973 974 975 976

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
977 978 979
}

/* Delete a POSIX.1b interval timer. */
980
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
981 982
{
	struct k_itimer *timer;
983
	unsigned long flags;
L
Linus Torvalds 已提交
984 985 986 987 988 989

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

990
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
991 992 993
		unlock_timer(timer, flags);
		goto retry_delete;
	}
994

L
Linus Torvalds 已提交
995 996 997 998 999 1000 1001
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
1002
	timer->it_signal = NULL;
1003

L
Linus Torvalds 已提交
1004 1005 1006 1007
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
1008

L
Linus Torvalds 已提交
1009 1010 1011
/*
 * return timer owned by the process, used by exit_itimers
 */
1012
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

1019
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
1020 1021 1022 1023 1024 1025 1026 1027
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
1028
	timer->it_signal = NULL;
1029

L
Linus Torvalds 已提交
1030 1031 1032 1033 1034
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
1035
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

1048 1049
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
		const struct timespec __user *, tp)
L
Linus Torvalds 已提交
1050
{
1051
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1052
	struct timespec64 new_tp;
L
Linus Torvalds 已提交
1053

1054
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
1055
		return -EINVAL;
1056

1057
	if (get_timespec64(&new_tp, tp))
L
Linus Torvalds 已提交
1058 1059
		return -EFAULT;

1060
	return kc->clock_set(which_clock, &new_tp);
L
Linus Torvalds 已提交
1061 1062
}

1063 1064
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
		struct timespec __user *,tp)
L
Linus Torvalds 已提交
1065
{
1066
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1067
	struct timespec64 kernel_tp;
L
Linus Torvalds 已提交
1068 1069
	int error;

1070
	if (!kc)
L
Linus Torvalds 已提交
1071
		return -EINVAL;
1072

1073
	error = kc->clock_get(which_clock, &kernel_tp);
1074

1075
	if (!error && put_timespec64(&kernel_tp, tp))
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080
		error = -EFAULT;

	return error;
}

1081 1082 1083
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
1084
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1098
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1099 1100 1101 1102 1103
		return -EFAULT;

	return err;
}

1104 1105 1106 1107
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
		struct timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1108
	struct timespec64 rtn_tp;
1109 1110 1111 1112 1113
	int error;

	if (!kc)
		return -EINVAL;

1114
	error = kc->clock_getres(which_clock, &rtn_tp);
1115

1116
	if (!error && tp && put_timespec64(&rtn_tp, tp))
1117 1118 1119 1120 1121
		error = -EFAULT;

	return error;
}

1122 1123
#ifdef CONFIG_COMPAT

1124 1125 1126 1127
COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1128
	struct timespec64 ts;
1129 1130 1131 1132

	if (!kc || !kc->clock_set)
		return -EINVAL;

1133
	if (compat_get_timespec64(&ts, tp))
1134 1135
		return -EFAULT;

1136
	return kc->clock_set(which_clock, &ts);
1137 1138 1139 1140 1141 1142
}

COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1143 1144
	struct timespec64 ts;
	int err;
1145 1146 1147 1148

	if (!kc)
		return -EINVAL;

1149
	err = kc->clock_get(which_clock, &ts);
1150

1151 1152
	if (!err && compat_put_timespec64(&ts, tp))
		err = -EFAULT;
1153

1154
	return err;
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
		       struct compat_timex __user *, utp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	err = compat_get_timex(&ktx, utp);
	if (err)
		return err;

	err = kc->clock_adj(which_clock, &ktx);

	if (err >= 0)
		err = compat_put_timex(utp, &ktx);

	return err;
}

1181 1182
COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
L
Linus Torvalds 已提交
1183
{
1184
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1185 1186
	struct timespec64 ts;
	int err;
L
Linus Torvalds 已提交
1187

1188
	if (!kc)
L
Linus Torvalds 已提交
1189 1190
		return -EINVAL;

1191 1192 1193
	err = kc->clock_getres(which_clock, &ts);
	if (!err && tp && compat_put_timespec64(&ts, tp))
		return -EFAULT;
L
Linus Torvalds 已提交
1194

1195
	return err;
L
Linus Torvalds 已提交
1196
}
1197

1198
#endif
L
Linus Torvalds 已提交
1199

1200 1201 1202 1203
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1204
			 const struct timespec64 *rqtp)
1205
{
1206
	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1207 1208
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1209
}
L
Linus Torvalds 已提交
1210

1211 1212 1213
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
		const struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
L
Linus Torvalds 已提交
1214
{
1215
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1216
	struct timespec64 t;
L
Linus Torvalds 已提交
1217

1218
	if (!kc)
L
Linus Torvalds 已提交
1219
		return -EINVAL;
1220 1221
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1222

1223
	if (get_timespec64(&t, rqtp))
L
Linus Torvalds 已提交
1224 1225
		return -EFAULT;

1226
	if (!timespec64_valid(&t))
L
Linus Torvalds 已提交
1227
		return -EINVAL;
1228 1229
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
1230
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1231
	current->restart_block.nanosleep.rmtp = rmtp;
L
Linus Torvalds 已提交
1232

1233
	return kc->nsleep(which_clock, flags, &t);
L
Linus Torvalds 已提交
1234
}
1235

1236 1237 1238 1239
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
		       struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
1240
{
1241
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1242
	struct timespec64 t;
1243

1244
	if (!kc)
1245
		return -EINVAL;
1246 1247 1248
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;

1249
	if (compat_get_timespec64(&t, rqtp))
1250
		return -EFAULT;
1251

1252
	if (!timespec64_valid(&t))
1253 1254 1255 1256 1257 1258
		return -EINVAL;
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;

1259
	return kc->nsleep(which_clock, flags, &t);
1260
}
1261
#endif
1262 1263

static const struct k_clock clock_realtime = {
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1278 1279 1280
};

static const struct k_clock clock_monotonic = {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1293 1294 1295
};

static const struct k_clock clock_monotonic_raw = {
1296 1297
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1298 1299 1300
};

static const struct k_clock clock_realtime_coarse = {
1301 1302
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1303 1304 1305
};

static const struct k_clock clock_monotonic_coarse = {
1306 1307
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1308 1309 1310
};

static const struct k_clock clock_tai = {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1323 1324 1325
};

static const struct k_clock clock_boottime = {
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_boottime,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1338 1339
};

1340 1341 1342 1343 1344
static const struct k_clock clock_monotonic_active = {
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_active,
};

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
	[CLOCK_BOOTTIME]		= &clock_boottime,
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
1357
	[CLOCK_MONOTONIC_ACTIVE]	= &clock_monotonic_active,
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
	if (id < 0)
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;

	if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
		return NULL;
	return posix_clocks[id];
}