posix-timers.c 35.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
52
#include <linux/compat.h>
L
Linus Torvalds 已提交
53

54
#include "timekeeping.h"
55
#include "posix-timers.h"
56

L
Linus Torvalds 已提交
57
/*
58 59 60 61 62 63
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
64 65 66 67 68
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
69
static struct kmem_cache *posix_timers_cache;
70 71 72

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
73

74 75
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
76
static const struct k_clock clock_realtime, clock_monotonic;
77

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

87 88 89 90 91 92 93 94
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
108
 *	    clocks.
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
118 119
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
120
 *
R
Richard Cochran 已提交
121 122 123 124
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
133 134 135 136 137 138 139
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
191 192 193 194 195
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

196
/* Get clock_realtime */
197
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
198
{
199
	ktime_get_real_ts64(tp);
200 201 202
	return 0;
}

203 204
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
205
				    const struct timespec64 *tp)
206
{
207
	return do_sys_settimeofday64(tp, NULL);
208 209
}

210 211 212 213 214 215
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

216 217 218
/*
 * Get monotonic time for posix timers
 */
219
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
220
{
221
	ktime_get_ts64(tp);
222 223
	return 0;
}
L
Linus Torvalds 已提交
224

225
/*
226
 * Get monotonic-raw time for posix timers
227
 */
228
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
229
{
230
	getrawmonotonic64(tp);
231 232 233
	return 0;
}

234

235
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
236
{
237
	*tp = current_kernel_time64();
238 239 240 241
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
242
						struct timespec64 *tp)
243
{
244
	*tp = get_monotonic_coarse64();
245 246 247
	return 0;
}

248
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
249
{
250
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
251 252
	return 0;
}
253

254
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
255
{
256
	get_monotonic_boottime64(tp);
257 258 259
	return 0;
}

260
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
J
John Stultz 已提交
261
{
262
	timekeeping_clocktai64(tp);
J
John Stultz 已提交
263 264
	return 0;
}
265

266
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
267 268 269 270 271 272
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
273 274 275 276 277 278
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
279 280
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
281 282 283 284
	return 0;
}
__initcall(init_posix_timers);

285
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
286
{
287 288
	struct hrtimer *timer = &timr->it.real.timer;

289
	if (!timr->it_interval)
L
Linus Torvalds 已提交
290 291
		return;

D
Davide Libenzi 已提交
292 293
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
294
						timr->it_interval);
295
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
296 297 298 299 300 301 302 303 304 305
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
306
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
307 308
 * we require that the it_requeue_pending flag be set.
 */
309
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
310 311 312 313 314
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
315 316
	if (!timr)
		return;
L
Linus Torvalds 已提交
317

318
	if (timr->it_requeue_pending == info->si_sys_private) {
319
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
320

321
		timr->it_active = 1;
322 323 324 325
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

326
		info->si_overrun += timr->it_overrun_last;
327 328
	}

329
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
330 331
}

332
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
333
{
334 335
	struct task_struct *task;
	int shared, ret = -1;
336 337
	/*
	 * FIXME: if ->sigq is queued we can race with
338
	 * dequeue_signal()->posixtimer_rearm().
339 340
	 *
	 * If dequeue_signal() sees the "right" value of
341
	 * si_sys_private it calls posixtimer_rearm().
342
	 * We re-queue ->sigq and drop ->it_lock().
343
	 * posixtimer_rearm() locks the timer
344 345 346
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
347 348
	timr->sigq->info.si_sys_private = si_private;

349 350 351 352 353 354 355
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
356 357
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
358 359 360 361 362 363 364 365 366
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
367
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
368
{
369
	struct k_itimer *timr;
L
Linus Torvalds 已提交
370
	unsigned long flags;
371
	int si_private = 0;
372
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
373

374
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
375 376
	spin_lock_irqsave(&timr->it_lock, flags);

377
	timr->it_active = 0;
378
	if (timr->it_interval != 0)
379
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
380

381 382 383 384 385 386
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
387
		if (timr->it_interval != 0) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
414
				ktime_t kj = NSEC_PER_SEC / HZ;
415

416
				if (timr->it_interval < kj)
417 418 419
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
420
			timr->it_overrun += (unsigned int)
421
				hrtimer_forward(timer, now,
422
						timr->it_interval);
423
			ret = HRTIMER_RESTART;
424
			++timr->it_requeue_pending;
425
			timr->it_active = 1;
L
Linus Torvalds 已提交
426 427 428
		}
	}

429 430 431
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
432

433
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
434 435 436
{
	struct task_struct *rtn = current->group_leader;

437 438 439 440 441 442 443 444 445 446 447 448 449 450
	switch (event->sigev_notify) {
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
		if (!rtn || !same_thread_group(rtn, current))
			return NULL;
		/* FALLTHRU */
	case SIGEV_SIGNAL:
	case SIGEV_THREAD:
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
			return NULL;
		/* FALLTHRU */
	case SIGEV_NONE:
		return task_pid(rtn);
	default:
L
Linus Torvalds 已提交
451
		return NULL;
452
	}
L
Linus Torvalds 已提交
453 454 455 456 457
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
458
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
459 460 461 462
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
463
		return NULL;
L
Linus Torvalds 已提交
464
	}
465
	clear_siginfo(&tmr->sigq->info);
L
Linus Torvalds 已提交
466 467 468
	return tmr;
}

E
Eric Dumazet 已提交
469 470 471 472 473 474 475
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
476 477 478 479 480 481
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
482 483 484
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
485
	}
486
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
487
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
488
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
489 490
}

491 492 493 494 495 496
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
497
/* Create a POSIX.1b interval timer. */
498 499
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
			   timer_t __user *created_timer_id)
L
Linus Torvalds 已提交
500
{
501
	const struct k_clock *kc = clockid_to_kclock(which_clock);
502
	struct k_itimer *new_timer;
503
	int error, new_timer_id;
L
Linus Torvalds 已提交
504 505
	int it_id_set = IT_ID_NOT_SET;

506
	if (!kc)
L
Linus Torvalds 已提交
507
		return -EINVAL;
508 509
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
510 511 512 513 514 515

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
516 517 518
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
519 520 521 522 523 524
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
525
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
526 527
	new_timer->it_overrun = -1;

528
	if (event) {
529
		rcu_read_lock();
530
		new_timer->it_pid = get_pid(good_sigevent(event));
531
		rcu_read_unlock();
532
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
533 534 535
			error = -EINVAL;
			goto out;
		}
536 537 538
		new_timer->it_sigev_notify     = event->sigev_notify;
		new_timer->sigq->info.si_signo = event->sigev_signo;
		new_timer->sigq->info.si_value = event->sigev_value;
L
Linus Torvalds 已提交
539
	} else {
540 541 542 543
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
		new_timer->sigq->info.si_signo = SIGALRM;
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
544
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
545 546
	}

547
	new_timer->sigq->info.si_tid   = new_timer->it_id;
548
	new_timer->sigq->info.si_code  = SI_TIMER;
549

550 551 552 553 554 555
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

556
	error = kc->timer_create(new_timer);
557 558 559
	if (error)
		goto out;

560
	spin_lock_irq(&current->sighand->siglock);
561
	new_timer->it_signal = current->signal;
562 563
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
564 565

	return 0;
566
	/*
L
Linus Torvalds 已提交
567 568 569 570 571 572
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
573
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
574 575 576
	return error;
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
		       struct compat_sigevent __user *, timer_event_spec,
		       timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (get_compat_sigevent(&event, timer_event_spec))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif

L
Linus Torvalds 已提交
607 608 609 610 611 612 613
/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
614
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
615 616
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
617

618 619 620 621 622 623 624
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
625
	rcu_read_lock();
626
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
627
	if (timr) {
E
Eric Dumazet 已提交
628
		spin_lock_irqsave(&timr->it_lock, *flags);
629
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
630
			rcu_read_unlock();
631 632
			return timr;
		}
E
Eric Dumazet 已提交
633
		spin_unlock_irqrestore(&timr->it_lock, *flags);
634
	}
E
Eric Dumazet 已提交
635
	rcu_read_unlock();
L
Linus Torvalds 已提交
636

637
	return NULL;
L
Linus Torvalds 已提交
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
670
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
671
{
672
	const struct k_clock *kc = timr->kclock;
673
	ktime_t now, remaining, iv;
674 675
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
676

677
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
678
	iv = timr->it_interval;
679

680
	/* interval timer ? */
681
	if (iv) {
682
		cur_setting->it_interval = ktime_to_timespec64(iv);
683 684 685 686 687 688 689 690
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
691

692 693 694 695 696 697
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
698

699
	/*
700 701
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
702
	 */
703 704
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
705

706
	remaining = kc->timer_remaining(timr, now);
707
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
708
	if (remaining <= 0) {
709 710 711 712
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
713
		if (!sig_none)
714
			cur_setting->it_value.tv_nsec = 1;
715
	} else {
716
		cur_setting->it_value = ktime_to_timespec64(remaining);
717
	}
L
Linus Torvalds 已提交
718 719 720
}

/* Get the time remaining on a POSIX.1b interval timer. */
721
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
L
Linus Torvalds 已提交
722
{
723
	struct k_itimer *timr;
724
	const struct k_clock *kc;
L
Linus Torvalds 已提交
725
	unsigned long flags;
726
	int ret = 0;
L
Linus Torvalds 已提交
727 728 729 730 731

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

732
	memset(setting, 0, sizeof(*setting));
733
	kc = timr->kclock;
734 735 736
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
737
		kc->timer_get(timr, setting);
L
Linus Torvalds 已提交
738 739

	unlock_timer(timr, flags);
740 741
	return ret;
}
L
Linus Torvalds 已提交
742

743 744 745 746
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		struct itimerspec __user *, setting)
{
747
	struct itimerspec64 cur_setting;
L
Linus Torvalds 已提交
748

749
	int ret = do_timer_gettime(timer_id, &cur_setting);
750
	if (!ret) {
751
		if (put_itimerspec64(&cur_setting, setting))
752 753
			ret = -EFAULT;
	}
754
	return ret;
L
Linus Torvalds 已提交
755
}
756

757 758 759 760
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		       struct compat_itimerspec __user *, setting)
{
761
	struct itimerspec64 cur_setting;
762

763
	int ret = do_timer_gettime(timer_id, &cur_setting);
764
	if (!ret) {
765
		if (put_compat_itimerspec64(&cur_setting, setting))
766 767 768 769 770 771
			ret = -EFAULT;
	}
	return ret;
}
#endif

L
Linus Torvalds 已提交
772 773 774 775 776 777
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
778
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
779 780
 * to pick up the frozen overrun.
 */
781
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
782 783 784
{
	struct k_itimer *timr;
	int overrun;
785
	unsigned long flags;
L
Linus Torvalds 已提交
786 787 788 789 790 791 792 793 794 795 796

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

797 798 799 800 801 802 803
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
804 805 806 807 808 809 810 811 812 813 814 815
	/*
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
	 * functions which use timr->kclock->clock_get() work.
	 *
	 * Note: it_clock stays unmodified, because the next timer_set() might
	 * use ABSTIME, so it needs to switch back.
	 */
	if (timr->it_clock == CLOCK_REALTIME)
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
832
/* Set a POSIX.1b interval timer. */
833 834 835
int common_timer_set(struct k_itimer *timr, int flags,
		     struct itimerspec64 *new_setting,
		     struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
836
{
837 838 839
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
840 841 842 843

	if (old_setting)
		common_timer_get(timr, old_setting);

844
	/* Prevent rearming by clearing the interval */
845
	timr->it_interval = 0;
L
Linus Torvalds 已提交
846
	/*
847 848
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
849
	 */
850
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
851 852
		return TIMER_RETRY;

853 854
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
855 856 857
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

858
	/* Switch off the timer when it_value is zero */
859 860
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
861

862
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
863
	expires = timespec64_to_ktime(new_setting->it_value);
864
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
865

866 867
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
868 869 870
	return 0;
}

871 872 873
static int do_timer_settime(timer_t timer_id, int flags,
			    struct itimerspec64 *new_spec64,
			    struct itimerspec64 *old_spec64)
L
Linus Torvalds 已提交
874
{
875
	const struct k_clock *kc;
876
	struct k_itimer *timr;
877
	unsigned long flag;
878
	int error = 0;
L
Linus Torvalds 已提交
879

880 881
	if (!timespec64_valid(&new_spec64->it_interval) ||
	    !timespec64_valid(&new_spec64->it_value))
L
Linus Torvalds 已提交
882 883
		return -EINVAL;

884 885
	if (old_spec64)
		memset(old_spec64, 0, sizeof(*old_spec64));
L
Linus Torvalds 已提交
886 887 888 889 890
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

891
	kc = timr->kclock;
892 893 894
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
895
		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
L
Linus Torvalds 已提交
896 897 898

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
899
		old_spec64 = NULL;	// We already got the old time...
L
Linus Torvalds 已提交
900 901 902
		goto retry;
	}

903 904
	return error;
}
L
Linus Torvalds 已提交
905

906 907 908 909 910
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		const struct itimerspec __user *, new_setting,
		struct itimerspec __user *, old_setting)
{
911 912
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
913 914 915 916 917
	int error = 0;

	if (!new_setting)
		return -EINVAL;

918
	if (get_itimerspec64(&new_spec, new_setting))
919 920
		return -EFAULT;

921
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
922
	if (!error && old_setting) {
923
		if (put_itimerspec64(&old_spec, old_setting))
924 925 926 927 928 929 930 931 932 933
			error = -EFAULT;
	}
	return error;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		       struct compat_itimerspec __user *, new,
		       struct compat_itimerspec __user *, old)
{
934 935
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
936 937 938 939
	int error = 0;

	if (!new)
		return -EINVAL;
940
	if (get_compat_itimerspec64(&new_spec, new))
941 942
		return -EFAULT;

943
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
944
	if (!error && old) {
945
		if (put_compat_itimerspec64(&old_spec, old))
946 947
			error = -EFAULT;
	}
L
Linus Torvalds 已提交
948 949
	return error;
}
950
#endif
L
Linus Torvalds 已提交
951

952
int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
953
{
954
	const struct k_clock *kc = timer->kclock;
955

956 957
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
958
		return TIMER_RETRY;
959
	timer->it_active = 0;
L
Linus Torvalds 已提交
960 961 962 963 964
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
965
	const struct k_clock *kc = timer->kclock;
966 967 968 969

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
970 971 972
}

/* Delete a POSIX.1b interval timer. */
973
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
974 975
{
	struct k_itimer *timer;
976
	unsigned long flags;
L
Linus Torvalds 已提交
977 978 979 980 981 982

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

983
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
984 985 986
		unlock_timer(timer, flags);
		goto retry_delete;
	}
987

L
Linus Torvalds 已提交
988 989 990 991 992 993 994
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
995
	timer->it_signal = NULL;
996

L
Linus Torvalds 已提交
997 998 999 1000
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
1001

L
Linus Torvalds 已提交
1002 1003 1004
/*
 * return timer owned by the process, used by exit_itimers
 */
1005
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

1012
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018 1019 1020
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
1021
	timer->it_signal = NULL;
1022

L
Linus Torvalds 已提交
1023 1024 1025 1026 1027
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
1028
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

1041 1042
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
		const struct timespec __user *, tp)
L
Linus Torvalds 已提交
1043
{
1044
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1045
	struct timespec64 new_tp;
L
Linus Torvalds 已提交
1046

1047
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
1048
		return -EINVAL;
1049

1050
	if (get_timespec64(&new_tp, tp))
L
Linus Torvalds 已提交
1051 1052
		return -EFAULT;

1053
	return kc->clock_set(which_clock, &new_tp);
L
Linus Torvalds 已提交
1054 1055
}

1056 1057
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
		struct timespec __user *,tp)
L
Linus Torvalds 已提交
1058
{
1059
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1060
	struct timespec64 kernel_tp;
L
Linus Torvalds 已提交
1061 1062
	int error;

1063
	if (!kc)
L
Linus Torvalds 已提交
1064
		return -EINVAL;
1065

1066
	error = kc->clock_get(which_clock, &kernel_tp);
1067

1068
	if (!error && put_timespec64(&kernel_tp, tp))
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073
		error = -EFAULT;

	return error;
}

1074 1075 1076
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
1077
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1091
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1092 1093 1094 1095 1096
		return -EFAULT;

	return err;
}

1097 1098 1099 1100
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
		struct timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1101
	struct timespec64 rtn_tp;
1102 1103 1104 1105 1106
	int error;

	if (!kc)
		return -EINVAL;

1107
	error = kc->clock_getres(which_clock, &rtn_tp);
1108

1109
	if (!error && tp && put_timespec64(&rtn_tp, tp))
1110 1111 1112 1113 1114
		error = -EFAULT;

	return error;
}

1115 1116
#ifdef CONFIG_COMPAT

1117 1118 1119 1120
COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1121
	struct timespec64 ts;
1122 1123 1124 1125

	if (!kc || !kc->clock_set)
		return -EINVAL;

1126
	if (compat_get_timespec64(&ts, tp))
1127 1128
		return -EFAULT;

1129
	return kc->clock_set(which_clock, &ts);
1130 1131 1132 1133 1134 1135
}

COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1136 1137
	struct timespec64 ts;
	int err;
1138 1139 1140 1141

	if (!kc)
		return -EINVAL;

1142
	err = kc->clock_get(which_clock, &ts);
1143

1144 1145
	if (!err && compat_put_timespec64(&ts, tp))
		err = -EFAULT;
1146

1147
	return err;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
		       struct compat_timex __user *, utp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	err = compat_get_timex(&ktx, utp);
	if (err)
		return err;

	err = kc->clock_adj(which_clock, &ktx);

	if (err >= 0)
		err = compat_put_timex(utp, &ktx);

	return err;
}

1174 1175
COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
L
Linus Torvalds 已提交
1176
{
1177
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1178 1179
	struct timespec64 ts;
	int err;
L
Linus Torvalds 已提交
1180

1181
	if (!kc)
L
Linus Torvalds 已提交
1182 1183
		return -EINVAL;

1184 1185 1186
	err = kc->clock_getres(which_clock, &ts);
	if (!err && tp && compat_put_timespec64(&ts, tp))
		return -EFAULT;
L
Linus Torvalds 已提交
1187

1188
	return err;
L
Linus Torvalds 已提交
1189
}
1190

1191
#endif
L
Linus Torvalds 已提交
1192

1193 1194 1195 1196
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1197
			 const struct timespec64 *rqtp)
1198
{
1199
	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1200 1201
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1202
}
L
Linus Torvalds 已提交
1203

1204 1205 1206
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
		const struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
L
Linus Torvalds 已提交
1207
{
1208
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1209
	struct timespec64 t;
L
Linus Torvalds 已提交
1210

1211
	if (!kc)
L
Linus Torvalds 已提交
1212
		return -EINVAL;
1213 1214
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1215

1216
	if (get_timespec64(&t, rqtp))
L
Linus Torvalds 已提交
1217 1218
		return -EFAULT;

1219
	if (!timespec64_valid(&t))
L
Linus Torvalds 已提交
1220
		return -EINVAL;
1221 1222
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
1223
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1224
	current->restart_block.nanosleep.rmtp = rmtp;
L
Linus Torvalds 已提交
1225

1226
	return kc->nsleep(which_clock, flags, &t);
L
Linus Torvalds 已提交
1227
}
1228

1229 1230 1231 1232
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
		       struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
1233
{
1234
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1235
	struct timespec64 t;
1236

1237
	if (!kc)
1238
		return -EINVAL;
1239 1240 1241
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;

1242
	if (compat_get_timespec64(&t, rqtp))
1243
		return -EFAULT;
1244

1245
	if (!timespec64_valid(&t))
1246 1247 1248 1249 1250 1251
		return -EINVAL;
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;

1252
	return kc->nsleep(which_clock, flags, &t);
1253
}
1254
#endif
1255 1256

static const struct k_clock clock_realtime = {
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1271 1272 1273
};

static const struct k_clock clock_monotonic = {
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1286 1287 1288
};

static const struct k_clock clock_monotonic_raw = {
1289 1290
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1291 1292 1293
};

static const struct k_clock clock_realtime_coarse = {
1294 1295
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1296 1297 1298
};

static const struct k_clock clock_monotonic_coarse = {
1299 1300
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1301 1302 1303
};

static const struct k_clock clock_tai = {
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1316 1317 1318
};

static const struct k_clock clock_boottime = {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_boottime,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
};

static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
	[CLOCK_BOOTTIME]		= &clock_boottime,
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
	if (id < 0)
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;

	if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
		return NULL;
	return posix_clocks[id];
}