posix-timers.c 31.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
L
Linus Torvalds 已提交
52

53
#include "timekeeping.h"
54
#include "posix-timers.h"
55

L
Linus Torvalds 已提交
56
/*
57 58 59 60 61 62
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
63 64 65 66 67
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
68
static struct kmem_cache *posix_timers_cache;
69 70 71

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
72

73 74 75
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);

L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

85 86 87 88 89 90 91 92
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
106
 *	    clocks.
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
116 117
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
118
 *
R
Richard Cochran 已提交
119 120 121 122
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
131 132 133 134 135 136 137
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
189 190 191 192 193
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

194
/* Get clock_realtime */
195
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
196
{
197
	ktime_get_real_ts64(tp);
198 199 200
	return 0;
}

201 202
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
203
				    const struct timespec64 *tp)
204
{
205
	return do_sys_settimeofday64(tp, NULL);
206 207
}

208 209 210 211 212 213
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

214 215 216
/*
 * Get monotonic time for posix timers
 */
217
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
218
{
219
	ktime_get_ts64(tp);
220 221
	return 0;
}
L
Linus Torvalds 已提交
222

223
/*
224
 * Get monotonic-raw time for posix timers
225
 */
226
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
227
{
228
	getrawmonotonic64(tp);
229 230 231
	return 0;
}

232

233
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
234
{
235
	*tp = current_kernel_time64();
236 237 238 239
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
240
						struct timespec64 *tp)
241
{
242
	*tp = get_monotonic_coarse64();
243 244 245
	return 0;
}

246
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
247
{
248
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
249 250
	return 0;
}
251

252
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
253
{
254
	get_monotonic_boottime64(tp);
255 256 257
	return 0;
}

258
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
J
John Stultz 已提交
259
{
260
	timekeeping_clocktai64(tp);
J
John Stultz 已提交
261 262
	return 0;
}
263

264
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
265 266 267 268 269 270
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
271 272 273 274 275 276
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
277 278
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
279 280 281 282
	return 0;
}
__initcall(init_posix_timers);

283
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
284
{
285 286
	struct hrtimer *timer = &timr->it.real.timer;

287
	if (!timr->it_interval)
L
Linus Torvalds 已提交
288 289
		return;

D
Davide Libenzi 已提交
290 291
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
292
						timr->it_interval);
293
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
294 295 296 297 298 299 300 301 302 303
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
304
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
305 306
 * we require that the it_requeue_pending flag be set.
 */
307
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
308 309 310 311 312
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
313 314
	if (!timr)
		return;
L
Linus Torvalds 已提交
315

316
	if (timr->it_requeue_pending == info->si_sys_private) {
317
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
318

319
		timr->it_active = 1;
320 321 322 323
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

324
		info->si_overrun += timr->it_overrun_last;
325 326
	}

327
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
328 329
}

330
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
331
{
332 333
	struct task_struct *task;
	int shared, ret = -1;
334 335
	/*
	 * FIXME: if ->sigq is queued we can race with
336
	 * dequeue_signal()->posixtimer_rearm().
337 338
	 *
	 * If dequeue_signal() sees the "right" value of
339
	 * si_sys_private it calls posixtimer_rearm().
340
	 * We re-queue ->sigq and drop ->it_lock().
341
	 * posixtimer_rearm() locks the timer
342 343 344
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
345 346
	timr->sigq->info.si_sys_private = si_private;

347 348 349 350 351 352 353
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
354 355
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
356 357 358 359 360 361 362 363 364
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
365
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
366
{
367
	struct k_itimer *timr;
L
Linus Torvalds 已提交
368
	unsigned long flags;
369
	int si_private = 0;
370
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
371

372
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
373 374
	spin_lock_irqsave(&timr->it_lock, flags);

375
	timr->it_active = 0;
376
	if (timr->it_interval != 0)
377
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
378

379 380 381 382 383 384
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
385
		if (timr->it_interval != 0) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
412
				ktime_t kj = NSEC_PER_SEC / HZ;
413

414
				if (timr->it_interval < kj)
415 416 417
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
418
			timr->it_overrun += (unsigned int)
419
				hrtimer_forward(timer, now,
420
						timr->it_interval);
421
			ret = HRTIMER_RESTART;
422
			++timr->it_requeue_pending;
423
			timr->it_active = 1;
L
Linus Torvalds 已提交
424 425 426
		}
	}

427 428 429
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
430

431
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
432 433 434 435
{
	struct task_struct *rtn = current->group_leader;

	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
436
		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
437
		 !same_thread_group(rtn, current) ||
L
Linus Torvalds 已提交
438 439 440 441 442 443 444
		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
		return NULL;

	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
		return NULL;

445
	return task_pid(rtn);
L
Linus Torvalds 已提交
446 447 448 449 450
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
451
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
452 453 454 455
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
456
		return NULL;
L
Linus Torvalds 已提交
457
	}
458
	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
L
Linus Torvalds 已提交
459 460 461
	return tmr;
}

E
Eric Dumazet 已提交
462 463 464 465 466 467 468
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
469 470 471 472 473 474
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
475 476 477
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
478
	}
479
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
480
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
481
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
482 483
}

484 485 486 487 488 489
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
490 491
/* Create a POSIX.1b interval timer. */

492 493 494
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
L
Linus Torvalds 已提交
495
{
496
	const struct k_clock *kc = clockid_to_kclock(which_clock);
497
	struct k_itimer *new_timer;
498
	int error, new_timer_id;
L
Linus Torvalds 已提交
499 500 501
	sigevent_t event;
	int it_id_set = IT_ID_NOT_SET;

502
	if (!kc)
L
Linus Torvalds 已提交
503
		return -EINVAL;
504 505
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
506 507 508 509 510 511

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
512 513 514
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
515 516 517 518 519 520
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
521
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
522 523 524 525 526 527 528
	new_timer->it_overrun = -1;

	if (timer_event_spec) {
		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
			error = -EFAULT;
			goto out;
		}
529
		rcu_read_lock();
530
		new_timer->it_pid = get_pid(good_sigevent(&event));
531
		rcu_read_unlock();
532
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
533 534 535 536
			error = -EINVAL;
			goto out;
		}
	} else {
537
		memset(&event.sigev_value, 0, sizeof(event.sigev_value));
538 539 540
		event.sigev_notify = SIGEV_SIGNAL;
		event.sigev_signo = SIGALRM;
		event.sigev_value.sival_int = new_timer->it_id;
541
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
542 543
	}

544 545 546
	new_timer->it_sigev_notify     = event.sigev_notify;
	new_timer->sigq->info.si_signo = event.sigev_signo;
	new_timer->sigq->info.si_value = event.sigev_value;
547
	new_timer->sigq->info.si_tid   = new_timer->it_id;
548
	new_timer->sigq->info.si_code  = SI_TIMER;
549

550 551 552 553 554 555
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

556
	error = kc->timer_create(new_timer);
557 558 559
	if (error)
		goto out;

560
	spin_lock_irq(&current->sighand->siglock);
561
	new_timer->it_signal = current->signal;
562 563
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
564 565

	return 0;
566
	/*
L
Linus Torvalds 已提交
567 568 569 570 571 572
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
573
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
574 575 576 577 578 579 580 581 582 583
	return error;
}

/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
584
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
585 586
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
587

588 589 590 591 592 593 594
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
595
	rcu_read_lock();
596
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
597
	if (timr) {
E
Eric Dumazet 已提交
598
		spin_lock_irqsave(&timr->it_lock, *flags);
599
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
600
			rcu_read_unlock();
601 602
			return timr;
		}
E
Eric Dumazet 已提交
603
		spin_unlock_irqrestore(&timr->it_lock, *flags);
604
	}
E
Eric Dumazet 已提交
605
	rcu_read_unlock();
L
Linus Torvalds 已提交
606

607
	return NULL;
L
Linus Torvalds 已提交
608 609
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
static void
641
common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
642
{
643
	const struct k_clock *kc = timr->kclock;
644
	ktime_t now, remaining, iv;
645 646
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
647

648
	sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE;
649
	iv = timr->it_interval;
650

651
	/* interval timer ? */
652
	if (iv) {
653
		cur_setting->it_interval = ktime_to_timespec64(iv);
654 655 656 657 658 659 660 661
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
662

663 664 665 666 667 668
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
669

670
	/*
671 672
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
673
	 */
674 675
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
676

677
	remaining = kc->timer_remaining(timr, now);
678
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
679
	if (remaining <= 0) {
680 681 682 683
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
684
		if (!sig_none)
685
			cur_setting->it_value.tv_nsec = 1;
686
	} else {
687
		cur_setting->it_value = ktime_to_timespec64(remaining);
688
	}
L
Linus Torvalds 已提交
689 690 691
}

/* Get the time remaining on a POSIX.1b interval timer. */
692 693
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		struct itimerspec __user *, setting)
L
Linus Torvalds 已提交
694
{
695
	struct itimerspec64 cur_setting64;
L
Linus Torvalds 已提交
696
	struct itimerspec cur_setting;
697
	struct k_itimer *timr;
698
	const struct k_clock *kc;
L
Linus Torvalds 已提交
699
	unsigned long flags;
700
	int ret = 0;
L
Linus Torvalds 已提交
701 702 703 704 705

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

706
	memset(&cur_setting64, 0, sizeof(cur_setting64));
707
	kc = timr->kclock;
708 709 710
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
711
		kc->timer_get(timr, &cur_setting64);
L
Linus Torvalds 已提交
712 713 714

	unlock_timer(timr, flags);

715
	cur_setting = itimerspec64_to_itimerspec(&cur_setting64);
716
	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
L
Linus Torvalds 已提交
717 718
		return -EFAULT;

719
	return ret;
L
Linus Torvalds 已提交
720
}
721

L
Linus Torvalds 已提交
722 723 724 725 726 727
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
728
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
729 730
 * to pick up the frozen overrun.
 */
731
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
732 733 734
{
	struct k_itimer *timr;
	int overrun;
735
	unsigned long flags;
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743 744 745 746

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
770
/* Set a POSIX.1b interval timer. */
771
static int
L
Linus Torvalds 已提交
772
common_timer_set(struct k_itimer *timr, int flags,
773 774
		 struct itimerspec64 *new_setting,
		 struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
775
{
776 777 778
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
779 780 781 782

	if (old_setting)
		common_timer_get(timr, old_setting);

783
	/* Prevent rearming by clearing the interval */
784
	timr->it_interval = 0;
L
Linus Torvalds 已提交
785
	/*
786 787
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
788
	 */
789
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
790 791
		return TIMER_RETRY;

792 793
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
794 795 796
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

797
	/* Switch off the timer when it_value is zero */
798 799
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
800

801
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
802 803
	expires = timespec64_to_ktime(new_setting->it_value);
	sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
804

805 806
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
807 808 809 810
	return 0;
}

/* Set a POSIX.1b interval timer */
811 812 813
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		const struct itimerspec __user *, new_setting,
		struct itimerspec __user *, old_setting)
L
Linus Torvalds 已提交
814
{
815 816
	struct itimerspec64 new_spec64, old_spec64;
	struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL;
L
Linus Torvalds 已提交
817
	struct itimerspec new_spec, old_spec;
818
	struct k_itimer *timr;
819
	unsigned long flag;
820
	const struct k_clock *kc;
821
	int error = 0;
L
Linus Torvalds 已提交
822 823 824 825 826 827

	if (!new_setting)
		return -EINVAL;

	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
		return -EFAULT;
828
	new_spec64 = itimerspec_to_itimerspec64(&new_spec);
L
Linus Torvalds 已提交
829

830 831
	if (!timespec64_valid(&new_spec64.it_interval) ||
	    !timespec64_valid(&new_spec64.it_value))
L
Linus Torvalds 已提交
832 833 834 835 836 837
		return -EINVAL;
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

838
	kc = timr->kclock;
839 840 841
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
842
		error = kc->timer_set(timr, flags, &new_spec64, rtn);
L
Linus Torvalds 已提交
843 844 845 846 847 848 849

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
		rtn = NULL;	// We already got the old time...
		goto retry;
	}

850
	old_spec = itimerspec64_to_itimerspec(&old_spec64);
851 852
	if (old_setting && !error &&
	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
L
Linus Torvalds 已提交
853 854 855 856 857
		error = -EFAULT;

	return error;
}

858
static int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
859
{
860
	const struct k_clock *kc = timer->kclock;
861

862 863
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
864
		return TIMER_RETRY;
865
	timer->it_active = 0;
L
Linus Torvalds 已提交
866 867 868 869 870
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
871
	const struct k_clock *kc = timer->kclock;
872 873 874 875

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
876 877 878
}

/* Delete a POSIX.1b interval timer. */
879
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
880 881
{
	struct k_itimer *timer;
882
	unsigned long flags;
L
Linus Torvalds 已提交
883 884 885 886 887 888

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

889
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
890 891 892
		unlock_timer(timer, flags);
		goto retry_delete;
	}
893

L
Linus Torvalds 已提交
894 895 896 897 898 899 900
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
901
	timer->it_signal = NULL;
902

L
Linus Torvalds 已提交
903 904 905 906
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
907

L
Linus Torvalds 已提交
908 909 910
/*
 * return timer owned by the process, used by exit_itimers
 */
911
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
912 913 914 915 916 917
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

918
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
919 920 921 922 923 924 925 926
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
927
	timer->it_signal = NULL;
928

L
Linus Torvalds 已提交
929 930 931 932 933
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
934
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
935 936 937 938 939 940 941 942 943 944 945 946
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

947 948
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
		const struct timespec __user *, tp)
L
Linus Torvalds 已提交
949
{
950
	const struct k_clock *kc = clockid_to_kclock(which_clock);
951
	struct timespec64 new_tp64;
L
Linus Torvalds 已提交
952 953
	struct timespec new_tp;

954
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
955
		return -EINVAL;
956

L
Linus Torvalds 已提交
957 958
	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
		return -EFAULT;
959
	new_tp64 = timespec_to_timespec64(new_tp);
L
Linus Torvalds 已提交
960

961
	return kc->clock_set(which_clock, &new_tp64);
L
Linus Torvalds 已提交
962 963
}

964 965
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
		struct timespec __user *,tp)
L
Linus Torvalds 已提交
966
{
967
	const struct k_clock *kc = clockid_to_kclock(which_clock);
968
	struct timespec64 kernel_tp64;
L
Linus Torvalds 已提交
969 970 971
	struct timespec kernel_tp;
	int error;

972
	if (!kc)
L
Linus Torvalds 已提交
973
		return -EINVAL;
974

975 976
	error = kc->clock_get(which_clock, &kernel_tp64);
	kernel_tp = timespec64_to_timespec(kernel_tp64);
977

L
Linus Torvalds 已提交
978 979 980 981 982 983
	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
		error = -EFAULT;

	return error;
}

984 985 986
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
987
	const struct k_clock *kc = clockid_to_kclock(which_clock);
988 989 990 991 992 993 994 995 996 997 998 999 1000
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1001
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1002 1003 1004 1005 1006
		return -EFAULT;

	return err;
}

1007 1008
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
		struct timespec __user *, tp)
L
Linus Torvalds 已提交
1009
{
1010
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1011
	struct timespec64 rtn_tp64;
L
Linus Torvalds 已提交
1012 1013 1014
	struct timespec rtn_tp;
	int error;

1015
	if (!kc)
L
Linus Torvalds 已提交
1016 1017
		return -EINVAL;

1018 1019
	error = kc->clock_getres(which_clock, &rtn_tp64);
	rtn_tp = timespec64_to_timespec(rtn_tp64);
L
Linus Torvalds 已提交
1020

1021
	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026
		error = -EFAULT;

	return error;
}

1027 1028 1029 1030
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1031
			 struct timespec64 *tsave, struct timespec __user *rmtp)
1032
{
1033 1034 1035
	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1036
}
L
Linus Torvalds 已提交
1037

1038 1039 1040
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
		const struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
L
Linus Torvalds 已提交
1041
{
1042
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1043
	struct timespec64 t64;
L
Linus Torvalds 已提交
1044 1045
	struct timespec t;

1046
	if (!kc)
L
Linus Torvalds 已提交
1047
		return -EINVAL;
1048 1049
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1050 1051 1052 1053

	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
		return -EFAULT;

1054 1055
	t64 = timespec_to_timespec64(t);
	if (!timespec64_valid(&t64))
L
Linus Torvalds 已提交
1056 1057
		return -EINVAL;

1058
	return kc->nsleep(which_clock, flags, &t64, rmtp);
L
Linus Torvalds 已提交
1059
}
1060 1061 1062 1063 1064

/*
 * This will restart clock_nanosleep. This is required only by
 * compat_clock_nanosleep_restart for now.
 */
1065
long clock_nanosleep_restart(struct restart_block *restart_block)
1066
{
1067
	clockid_t which_clock = restart_block->nanosleep.clockid;
1068
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1069 1070 1071

	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
		return -EINVAL;
1072

1073
	return kc->nsleep_restart(restart_block);
1074
}
1075 1076

static const struct k_clock clock_realtime = {
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1092 1093 1094
};

static const struct k_clock clock_monotonic = {
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1108 1109 1110
};

static const struct k_clock clock_monotonic_raw = {
1111 1112
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1113 1114 1115
};

static const struct k_clock clock_realtime_coarse = {
1116 1117
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1118 1119 1120
};

static const struct k_clock clock_monotonic_coarse = {
1121 1122
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1123 1124 1125
};

static const struct k_clock clock_tai = {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1139 1140 1141
};

static const struct k_clock clock_boottime = {
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_boottime,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
};

static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
	[CLOCK_BOOTTIME]		= &clock_boottime,
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
	if (id < 0)
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;

	if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
		return NULL;
	return posix_clocks[id];
}