ntp.c 23.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18
#include <linux/rtc.h>
19

20
#include "tick-internal.h"
21
#include "ntp_internal.h"
22

23
/*
24
 * NTP timekeeping variables:
25 26
 *
 * Note: All of the NTP state is protected by the timekeeping locks.
27 28
 */

29

30 31 32
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

33
/* SHIFTED_HZ period (nsecs): */
34
unsigned long			tick_nsec;
R
Roman Zippel 已提交
35

36
static u64			tick_length;
37 38
static u64			tick_length_base;

39
#define MAX_TICKADJ		500LL		/* usecs */
40
#define MAX_TICKADJ_SCALED \
41
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 43 44 45

/*
 * phase-lock loop variables
 */
46 47 48 49 50 51 52 53 54

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
55
static int			time_status = STA_UNSYNC;
56 57 58 59 60 61 62 63

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
64
static long			time_maxerror = NTP_PHASE_LIMIT;
65 66

/* estimated error (usecs):						*/
67
static long			time_esterror = NTP_PHASE_LIMIT;
68 69 70 71 72 73 74

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
75
static long			time_adjust;
76

77 78
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(time_status & STA_PPSSIGNAL))
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & STA_PPSFREQ)
			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
232 233 234 235 236 237 238 239 240 241 242

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


243 244 245
/*
 * NTP methods:
 */
246

247 248 249 250
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
251 252
static void ntp_update_frequency(void)
{
253
	u64 second_length;
254
	u64 new_base;
255 256 257 258

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

259
	second_length		+= ntp_tick_adj;
260
	second_length		+= time_freq;
261

262
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
263
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
264 265 266

	/*
	 * Don't wait for the next second_overflow, apply
267
	 * the change to the tick length immediately:
268
	 */
269 270
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
271 272
}

273
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
274 275 276 277
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
278
		return 0;
279 280

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
281
		return 0;
282 283 284

	time_status |= STA_MODE;

285
	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
286 287
}

R
Roman Zippel 已提交
288 289 290
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
291 292
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
293 294 295 296

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
297
	if (!(time_status & STA_NANO))
298
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
299 300 301 302 303

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
304 305
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
306 307 308 309 310

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
311
	secs = get_seconds() - time_reftime;
312
	if (unlikely(time_status & STA_FREQHOLD))
313 314
		secs = 0;

315
	time_reftime = get_seconds();
R
Roman Zippel 已提交
316

317
	offset64    = offset;
318
	freq_adj    = ntp_update_offset_fll(offset64, secs);
319

320 321 322 323 324 325 326 327 328 329
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
330 331 332 333 334 335

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
336 337
}

338 339 340 341 342
/**
 * ntp_clear - Clears the NTP state variables
 */
void ntp_clear(void)
{
343 344 345 346
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
347 348 349

	ntp_update_frequency();

350 351
	tick_length	= tick_length_base;
	time_offset	= 0;
352 353 354

	/* Clear PPS state variables */
	pps_clear();
355 356
}

357 358 359

u64 ntp_tick_length(void)
{
360
	return tick_length;
361 362 363
}


364
/*
365 366 367 368 369 370 371 372
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 * Also handles leap second processing, and returns leap offset
373
 */
374
int second_overflow(unsigned long secs)
375
{
376
	s64 delta;
377
	int leap = 0;
378 379 380 381 382 383

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second.
	 */
384 385
	switch (time_state) {
	case TIME_OK:
386 387 388 389
		if (time_status & STA_INS)
			time_state = TIME_INS;
		else if (time_status & STA_DEL)
			time_state = TIME_DEL;
390 391
		break;
	case TIME_INS:
J
John Stultz 已提交
392 393 394
		if (!(time_status & STA_INS))
			time_state = TIME_OK;
		else if (secs % 86400 == 0) {
395 396 397 398 399
			leap = -1;
			time_state = TIME_OOP;
			printk(KERN_NOTICE
				"Clock: inserting leap second 23:59:60 UTC\n");
		}
400 401
		break;
	case TIME_DEL:
J
John Stultz 已提交
402 403 404
		if (!(time_status & STA_DEL))
			time_state = TIME_OK;
		else if ((secs + 1) % 86400 == 0) {
405 406 407 408 409
			leap = 1;
			time_state = TIME_WAIT;
			printk(KERN_NOTICE
				"Clock: deleting leap second 23:59:59 UTC\n");
		}
410 411 412
		break;
	case TIME_OOP:
		time_state = TIME_WAIT;
413 414
		break;

415 416
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
417
			time_state = TIME_OK;
R
Roman Zippel 已提交
418 419
		break;
	}
420

R
Roman Zippel 已提交
421 422 423 424 425 426

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
427 428
	}

429
	/* Compute the phase adjustment for the next second */
430 431
	tick_length	 = tick_length_base;

432
	delta		 = ntp_offset_chunk(time_offset);
433 434
	time_offset	-= delta;
	tick_length	+= delta;
435

436 437 438
	/* Check PPS signal */
	pps_dec_valid();

439
	if (!time_adjust)
440
		goto out;
441 442 443 444

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
445
		goto out;
446
	}
447 448 449 450

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
451
		goto out;
452 453 454 455 456
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
457

458
out:
459
	return leap;
460 461
}

462
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
463
static void sync_cmos_clock(struct work_struct *work);
464

465
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
466

467
static void sync_cmos_clock(struct work_struct *work)
468 469 470 471 472 473 474 475 476 477
{
	struct timespec now, next;
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
478
	 * We want the clock to be within a couple of ticks from the target.
479
	 */
480
	if (!ntp_synced()) {
481 482 483 484 485
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
486
	}
487 488

	getnstimeofday(&now);
489
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
490 491
		struct timespec adjust = now;

492
		fail = -ENODEV;
493 494
		if (persistent_clock_is_local)
			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
495
#ifdef CONFIG_GENERIC_CMOS_UPDATE
496
		fail = update_persistent_clock(adjust);
497 498 499
#endif
#ifdef CONFIG_RTC_SYSTOHC
		if (fail == -ENODEV)
500
			fail = rtc_set_ntp_time(adjust);
501 502
#endif
	}
503

504
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
505 506 507
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

508
	if (!fail || fail == -ENODEV)
509 510 511 512 513 514 515 516
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
517 518
	queue_delayed_work(system_power_efficient_wq,
			   &sync_cmos_work, timespec_to_jiffies(&next));
519 520
}

521
void ntp_notify_cmos_timer(void)
522
{
523
	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
524 525
}

526
#else
527
void ntp_notify_cmos_timer(void) { }
528 529
#endif

I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538

/*
 * Propagate a new txc->status value into the NTP state:
 */
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
539 540
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
541 542 543 544 545 546 547
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
548
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
549

550 551
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
552 553
	time_status |= txc->status & ~STA_RONLY;
}
554

555

556 557 558
static inline void process_adjtimex_modes(struct timex *txc,
						struct timespec *ts,
						s32 *time_tai)
I
Ingo Molnar 已提交
559 560 561 562 563 564
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
565

I
Ingo Molnar 已提交
566 567 568 569
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
570
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
571 572
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
573 574
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
575 576 577 578
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
579

I
Ingo Molnar 已提交
580 581 582 583 584 585 586 587 588 589 590 591
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
592
		*time_tai = txc->constant;
I
Ingo Molnar 已提交
593 594 595

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
596

I
Ingo Molnar 已提交
597 598 599 600 601 602 603
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

604 605 606 607


/**
 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
608
 */
609
int ntp_validate_timex(struct timex *txc)
610
{
611
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
612
		/* singleshot must not be used with any other mode bits */
613
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
614
			return -EINVAL;
615 616 617 618 619 620 621
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
622 623 624 625
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
626 627 628
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
629
			return -EINVAL;
J
John Stultz 已提交
630
	}
631

632 633 634 635 636 637 638 639 640 641 642
	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
		return -EPERM;

	return 0;
}


/*
 * adjtimex mainly allows reading (and writing, if superuser) of
 * kernel time-keeping variables. used by xntpd.
 */
643
int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
644 645 646
{
	int result;

647 648 649 650 651 652 653 654 655
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
656
	} else {
R
Roman Zippel 已提交
657

658 659
		/* If there are input parameters, then process them: */
		if (txc->modes)
660
			process_adjtimex_modes(txc, ts, time_tai);
R
Roman Zippel 已提交
661

662
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
663
				  NTP_SCALE_SHIFT);
664 665 666
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
667

R
Roman Zippel 已提交
668
	result = time_state;	/* mostly `TIME_OK' */
669 670
	/* check for errors */
	if (is_error_status(time_status))
671 672
		result = TIME_ERROR;

673
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
674
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
675 676 677 678
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
679
	txc->precision	   = 1;
680
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
681
	txc->tick	   = tick_usec;
682
	txc->tai	   = *time_tai;
683

684 685
	/* fill PPS status fields */
	pps_fill_timex(txc);
686

687 688
	txc->time.tv_sec = ts->tv_sec;
	txc->time.tv_usec = ts->tv_nsec;
R
Roman Zippel 已提交
689 690
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
691 692

	return result;
693
}
694

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
	__kernel_time_t	sec;	/* seconds */
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
789 790 791
		printk_deferred(KERN_ERR
			"hardpps: PPSERROR: interval too long - %ld s\n",
			freq_norm.sec);
792 793 794 795 796 797 798 799 800 801 802 803
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
804 805
		printk_deferred(KERN_WARNING
				"hardpps: PPSWANDER: change=%ld\n", delta);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
849 850 851
		printk_deferred(KERN_WARNING
				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
				jitter, (pps_jitter << PPS_POPCORN));
852 853 854 855 856 857 858 859 860 861 862 863 864 865
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
866
 * __hardpps() - discipline CPU clock oscillator to external PPS signal
867 868 869 870 871 872 873 874 875 876
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
877
void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
{
	struct pps_normtime pts_norm, freq_norm;

	pts_norm = pps_normalize_ts(*phase_ts);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		return;
	}

	/* ok, now we have a base for frequency calculation */
	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
908
		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

}
#endif	/* CONFIG_NTP_PPS */

927 928 929
static int __init ntp_tick_adj_setup(char *str)
{
	ntp_tick_adj = simple_strtol(str, NULL, 0);
930 931
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

932 933 934 935
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
936 937 938 939 940

void __init ntp_init(void)
{
	ntp_clear();
}