internal.h 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12

13
#include <linux/compat.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/fpu/api.h>
19
#include <asm/fpu/xstate.h>
20
#include <asm/cpufeature.h>
21
#include <asm/trace/fpu.h>
22

23 24 25
/*
 * High level FPU state handling functions:
 */
26
extern void fpu__activate_curr(struct fpu *fpu);
27
extern void fpu__activate_fpstate_read(struct fpu *fpu);
28
extern void fpu__activate_fpstate_write(struct fpu *fpu);
29 30
extern void fpu__current_fpstate_write_begin(void);
extern void fpu__current_fpstate_write_end(void);
31
extern void fpu__save(struct fpu *fpu);
32
extern void fpu__restore(struct fpu *fpu);
33
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
34 35
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
36
extern void fpu__clear(struct fpu *fpu);
I
Ingo Molnar 已提交
37 38
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
39

I
Ingo Molnar 已提交
40 41 42 43 44 45 46
/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
47 48
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);
49
extern u64 fpu__get_supported_xfeatures_mask(void);
50

51 52 53 54 55 56
/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
57
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
58 59
#endif

60
/*
I
Ingo Molnar 已提交
61
 * FPU related CPU feature flag helper routines:
62
 */
63 64
static __always_inline __pure bool use_xsaveopt(void)
{
65
	return static_cpu_has(X86_FEATURE_XSAVEOPT);
66 67 68 69
}

static __always_inline __pure bool use_xsave(void)
{
70
	return static_cpu_has(X86_FEATURE_XSAVE);
71 72 73 74
}

static __always_inline __pure bool use_fxsr(void)
{
75
	return static_cpu_has(X86_FEATURE_FXSR);
76 77
}

I
Ingo Molnar 已提交
78 79 80 81 82 83 84 85 86 87 88 89
/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
90 91 92 93 94 95 96 97 98 99

static inline void fpstate_init_xstate(struct xregs_state *xsave)
{
	/*
	 * XRSTORS requires these bits set in xcomp_bv, or it will
	 * trigger #GP:
	 */
	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
}

I
Ingo Molnar 已提交
100 101 102 103 104
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
105
extern void fpstate_sanitize_xstate(struct fpu *fpu);
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

138
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
139
{
140
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
141 142
}

143
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
144
{
145
	if (IS_ENABLED(CONFIG_X86_32))
146
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
147
	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
148
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
149

150
	/* See comment in copy_fxregs_to_kernel() below. */
151
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
152 153
}

154
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
155
{
156 157
	int err;

158
	if (IS_ENABLED(CONFIG_X86_32)) {
159 160
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	} else {
161
		if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
162 163 164 165 166 167 168 169
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
		} else {
			/* See comment in copy_fxregs_to_kernel() below. */
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
		}
	}
	/* Copying from a kernel buffer to FPU registers should never fail: */
	WARN_ON_FPU(err);
170 171
}

172
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
173
{
174
	if (IS_ENABLED(CONFIG_X86_32))
175
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
176
	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
177 178
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

179
	/* See comment in copy_fxregs_to_kernel() below. */
180 181 182 183
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

184
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
185
{
186 187 188
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));

	WARN_ON_FPU(err);
189 190
}

191
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
192 193
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
194 195
}

196
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
197
{
198
	if (IS_ENABLED(CONFIG_X86_32))
199
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
200
	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
201
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
218
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
219 220 221 222 223 224
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
225 226
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
227
	}
228 229
}

230 231 232 233 234 235 236
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

237 238 239 240 241 242 243 244 245 246 247 248 249
#define XSTATE_OP(op, st, lmask, hmask, err)				\
	asm volatile("1:" op "\n\t"					\
		     "xor %[err], %[err]\n"				\
		     "2:\n\t"						\
		     ".pushsection .fixup,\"ax\"\n\t"			\
		     "3: movl $-2,%[err]\n\t"				\
		     "jmp 2b\n\t"					\
		     ".popsection\n\t"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
 * format and supervisor states in addition to modified optimization in
 * XSAVEOPT.
 *
 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
 * supports modified optimization which is not supported by XSAVE.
 *
 * We use XSAVE as a fallback.
 *
 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
 * original instruction which gets replaced. We need to use it here as the
 * address of the instruction where we might get an exception at.
 */
#define XSTATE_XSAVE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE_2(XSAVE,				\
				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
				   XSAVES,   X86_FEATURE_XSAVES)	\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

/*
 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
 * XSAVE area format.
 */
#define XSTATE_XRESTORE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE(XRSTOR,				\
				 XRSTORS, X86_FEATURE_XSAVES)		\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")
298

299 300 301 302
/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
303
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
304 305 306 307
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
308
	int err;
309 310 311

	WARN_ON(system_state != SYSTEM_BOOTING);

312
	if (static_cpu_has(X86_FEATURE_XSAVES))
313
		XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
314
	else
315
		XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
316 317 318

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
319 320 321 322 323 324
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
325
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
326
{
327
	u64 mask = -1;
328 329
	u32 lmask = mask;
	u32 hmask = mask >> 32;
330
	int err;
331 332 333

	WARN_ON(system_state != SYSTEM_BOOTING);

334
	if (static_cpu_has(X86_FEATURE_XSAVES))
335
		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
336
	else
337
		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
338 339 340

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
341 342 343 344 345
}

/*
 * Save processor xstate to xsave area.
 */
346
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
347 348 349 350
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
351
	int err;
352 353 354

	WARN_ON(!alternatives_patched);

355
	XSTATE_XSAVE(xstate, lmask, hmask, err);
356

357 358
	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
359 360 361 362 363
}

/*
 * Restore processor xstate from xsave area.
 */
364
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
365 366 367
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
368
	int err;
369

370
	XSTATE_XRESTORE(xstate, lmask, hmask, err);
371

372 373
	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

398 399 400 401
	stac();
	XSTATE_OP(XSAVE, buf, -1, -1, err);
	clac();

402 403 404 405 406 407 408 409 410 411 412
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
413 414 415 416 417
	int err;

	stac();
	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
	clac();
418 419 420 421

	return err;
}

422 423
/*
 * These must be called with preempt disabled. Returns
424 425 426 427 428 429
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
430
 * no pending FP exceptions.
431
 */
432
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
433
{
434
	if (likely(use_xsave())) {
435
		copy_xregs_to_kernel(&fpu->state.xsave);
436 437
		return 1;
	}
438

439
	if (likely(use_fxsr())) {
440
		copy_fxregs_to_kernel(fpu);
441
		return 1;
442 443 444
	}

	/*
445 446
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
447
	 */
448
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
449 450

	return 0;
451 452
}

453
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
454
{
455
	if (use_xsave()) {
456
		copy_kernel_to_xregs(&fpstate->xsave, mask);
457 458
	} else {
		if (use_fxsr())
459
			copy_kernel_to_fxregs(&fpstate->fxsave);
460
		else
461
			copy_kernel_to_fregs(&fpstate->fsave);
462
	}
463 464
}

465
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
466
{
467 468 469 470 471
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
472
	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
473 474 475 476
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
477
			: : [addr] "m" (fpstate));
478
	}
479

480
	__copy_kernel_to_fpregs(fpstate, -1);
481 482
}

483
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
I
Ingo Molnar 已提交
484 485 486 487 488 489 490 491

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
492 493 494 495 496 497 498 499 500
 * The in-register FPU state for an FPU context on a CPU is assumed to be
 * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
 * matches the FPU.
 *
 * If the FPU register state is valid, the kernel can skip restoring the
 * FPU state from memory.
 *
 * Any code that clobbers the FPU registers or updates the in-memory
 * FPU state for a task MUST let the rest of the kernel know that the
501
 * FPU registers are no longer valid for this task.
502
 *
503 504 505 506
 * Either one of these invalidation functions is enough. Invalidate
 * a resource you control: CPU if using the CPU for something else
 * (with preemption disabled), FPU for the current task, or a task that
 * is prevented from running by the current task.
I
Ingo Molnar 已提交
507
 */
508
static inline void __cpu_invalidate_fpregs_state(void)
I
Ingo Molnar 已提交
509
{
510
	__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
I
Ingo Molnar 已提交
511 512
}

513 514 515 516 517 518
static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
{
	fpu->last_cpu = -1;
}

static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
I
Ingo Molnar 已提交
519 520 521 522
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}

523 524 525 526 527
/*
 * These generally need preemption protection to work,
 * do try to avoid using these on their own:
 */
static inline void fpregs_deactivate(struct fpu *fpu)
528
{
529 530
	WARN_ON_FPU(!fpu->fpregs_active);

531
	fpu->fpregs_active = 0;
532
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
533
	trace_x86_fpu_regs_deactivated(fpu);
534 535
}

536
static inline void fpregs_activate(struct fpu *fpu)
537
{
538 539
	WARN_ON_FPU(fpu->fpregs_active);

540
	fpu->fpregs_active = 1;
541
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
542
	trace_x86_fpu_regs_activated(fpu);
543 544
}

545 546 547 548 549 550 551 552 553 554
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
555
static inline int fpregs_active(void)
556 557 558 559
{
	return current->thread.fpu.fpregs_active;
}

560 561 562 563 564
/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
565 566
 *  - switch_fpu_prepare() saves the old state.
 *    This is done within the context of the old process.
567 568 569 570
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
571 572
static inline void
switch_fpu_prepare(struct fpu *old_fpu, int cpu)
573
{
574
	if (old_fpu->fpregs_active) {
575
		if (!copy_fpregs_to_fpstate(old_fpu))
576
			old_fpu->last_cpu = -1;
577
		else
578
			old_fpu->last_cpu = cpu;
579

580
		/* But leave fpu_fpregs_owner_ctx! */
581
		old_fpu->fpregs_active = 0;
582
		trace_x86_fpu_regs_deactivated(old_fpu);
583 584
	} else
		old_fpu->last_cpu = -1;
585 586
}

I
Ingo Molnar 已提交
587 588 589 590
/*
 * Misc helper functions:
 */

591
/*
592 593
 * Set up the userspace FPU context for the new task, if the task
 * has used the FPU.
594
 */
595
static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu)
596
{
597 598 599 600 601 602 603 604
	bool preload = static_cpu_has(X86_FEATURE_FPU) &&
		       new_fpu->fpstate_active;

	if (preload) {
		if (!fpregs_state_valid(new_fpu, cpu))
			copy_kernel_to_fpregs(&new_fpu->state);
		fpregs_activate(new_fpu);
	}
605 606 607
}

/*
608
 * Needs to be preemption-safe.
609
 *
610
 * NOTE! user_fpu_begin() must be used only immediately before restoring
611 612 613
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
614 615 616
 */
static inline void user_fpu_begin(void)
{
617 618
	struct fpu *fpu = &current->thread.fpu;

619
	preempt_disable();
620
	if (!fpregs_active())
621
		fpregs_activate(fpu);
622 623 624
	preempt_enable();
}

I
Ingo Molnar 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

652
#endif /* _ASM_X86_FPU_INTERNAL_H */