internal.h 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12

13
#include <linux/compat.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/fpu/api.h>
19
#include <asm/fpu/xstate.h>
20
#include <asm/cpufeature.h>
21
#include <asm/trace/fpu.h>
22

23 24 25
/*
 * High level FPU state handling functions:
 */
26
extern void fpu__activate_curr(struct fpu *fpu);
27
extern void fpu__activate_fpstate_read(struct fpu *fpu);
28
extern void fpu__activate_fpstate_write(struct fpu *fpu);
29 30
extern void fpu__current_fpstate_write_begin(void);
extern void fpu__current_fpstate_write_end(void);
31
extern void fpu__save(struct fpu *fpu);
32
extern void fpu__restore(struct fpu *fpu);
33
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
34 35
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
36
extern void fpu__clear(struct fpu *fpu);
I
Ingo Molnar 已提交
37 38
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
39

I
Ingo Molnar 已提交
40 41 42 43 44 45 46
/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
47 48
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);
49
extern u64 fpu__get_supported_xfeatures_mask(void);
50

51 52 53 54 55 56
/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
57
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
58 59
#endif

60
/*
I
Ingo Molnar 已提交
61
 * FPU related CPU feature flag helper routines:
62
 */
63 64
static __always_inline __pure bool use_eager_fpu(void)
{
65
	return static_cpu_has(X86_FEATURE_EAGER_FPU);
66 67
}

68 69
static __always_inline __pure bool use_xsaveopt(void)
{
70
	return static_cpu_has(X86_FEATURE_XSAVEOPT);
71 72 73 74
}

static __always_inline __pure bool use_xsave(void)
{
75
	return static_cpu_has(X86_FEATURE_XSAVE);
76 77 78 79
}

static __always_inline __pure bool use_fxsr(void)
{
80
	return static_cpu_has(X86_FEATURE_FXSR);
81 82
}

I
Ingo Molnar 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
100
extern void fpstate_sanitize_xstate(struct fpu *fpu);
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

133
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
134
{
135
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
136 137
}

138
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
139
{
140
	if (config_enabled(CONFIG_X86_32))
141
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
142
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
143
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
144

145
	/* See comment in copy_fxregs_to_kernel() below. */
146
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
147 148
}

149
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163 164
	int err;

	if (config_enabled(CONFIG_X86_32)) {
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	} else {
		if (config_enabled(CONFIG_AS_FXSAVEQ)) {
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
		} else {
			/* See comment in copy_fxregs_to_kernel() below. */
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
		}
	}
	/* Copying from a kernel buffer to FPU registers should never fail: */
	WARN_ON_FPU(err);
165 166
}

167
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
168 169 170 171 172 173
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

174
	/* See comment in copy_fxregs_to_kernel() below. */
175 176 177 178
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

179
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
180
{
181 182 183
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));

	WARN_ON_FPU(err);
184 185
}

186
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
187 188
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
189 190
}

191
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
192
{
193
	if (config_enabled(CONFIG_X86_32))
194
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
195
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
196
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
213
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
214 215 216 217 218 219
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
220 221
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
222
	}
223 224
}

225 226 227 228 229 230 231
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

232 233 234 235 236 237 238 239 240 241 242 243 244
#define XSTATE_OP(op, st, lmask, hmask, err)				\
	asm volatile("1:" op "\n\t"					\
		     "xor %[err], %[err]\n"				\
		     "2:\n\t"						\
		     ".pushsection .fixup,\"ax\"\n\t"			\
		     "3: movl $-2,%[err]\n\t"				\
		     "jmp 2b\n\t"					\
		     ".popsection\n\t"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
 * format and supervisor states in addition to modified optimization in
 * XSAVEOPT.
 *
 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
 * supports modified optimization which is not supported by XSAVE.
 *
 * We use XSAVE as a fallback.
 *
 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
 * original instruction which gets replaced. We need to use it here as the
 * address of the instruction where we might get an exception at.
 */
#define XSTATE_XSAVE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE_2(XSAVE,				\
				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
				   XSAVES,   X86_FEATURE_XSAVES)	\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

/*
 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
 * XSAVE area format.
 */
#define XSTATE_XRESTORE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE(XRSTOR,				\
				 XRSTORS, X86_FEATURE_XSAVES)		\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")
293

294 295 296 297
/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
298
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
299 300 301 302
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
303
	int err;
304 305 306

	WARN_ON(system_state != SYSTEM_BOOTING);

307
	if (static_cpu_has(X86_FEATURE_XSAVES))
308
		XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
309
	else
310
		XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
311 312 313

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
314 315 316 317 318 319
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
320
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
321
{
322
	u64 mask = -1;
323 324
	u32 lmask = mask;
	u32 hmask = mask >> 32;
325
	int err;
326 327 328

	WARN_ON(system_state != SYSTEM_BOOTING);

329
	if (static_cpu_has(X86_FEATURE_XSAVES))
330
		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
331
	else
332
		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
333 334 335

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
336 337 338 339 340
}

/*
 * Save processor xstate to xsave area.
 */
341
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
342 343 344 345
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
346
	int err;
347 348 349

	WARN_ON(!alternatives_patched);

350
	XSTATE_XSAVE(xstate, lmask, hmask, err);
351

352 353
	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
354 355 356 357 358
}

/*
 * Restore processor xstate from xsave area.
 */
359
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
360 361 362
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
363
	int err;
364

365
	XSTATE_XRESTORE(xstate, lmask, hmask, err);
366

367 368
	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

393 394 395 396
	stac();
	XSTATE_OP(XSAVE, buf, -1, -1, err);
	clac();

397 398 399 400 401 402 403 404 405 406 407
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
408 409 410 411 412
	int err;

	stac();
	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
	clac();
413 414 415 416

	return err;
}

417 418
/*
 * These must be called with preempt disabled. Returns
419 420 421 422 423 424
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
425
 * no pending FP exceptions.
426
 */
427
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
428
{
429
	if (likely(use_xsave())) {
430
		copy_xregs_to_kernel(&fpu->state.xsave);
431 432
		return 1;
	}
433

434
	if (likely(use_fxsr())) {
435
		copy_fxregs_to_kernel(fpu);
436
		return 1;
437 438 439
	}

	/*
440 441
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
442
	 */
443
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
444 445

	return 0;
446 447
}

448
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
449
{
450
	if (use_xsave()) {
451
		copy_kernel_to_xregs(&fpstate->xsave, -1);
452 453
	} else {
		if (use_fxsr())
454
			copy_kernel_to_fxregs(&fpstate->fxsave);
455
		else
456
			copy_kernel_to_fregs(&fpstate->fsave);
457
	}
458 459
}

460
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
461
{
462 463 464 465 466
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
467
	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
468 469 470 471
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
472
			: : [addr] "m" (fpstate));
473
	}
474

475
	__copy_kernel_to_fpregs(fpstate);
476 477
}

478
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
I
Ingo Molnar 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
}

static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/*
 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
 */

static inline void __fpregs_activate_hw(void)
{
	if (!use_eager_fpu())
		clts();
}

static inline void __fpregs_deactivate_hw(void)
{
	if (!use_eager_fpu())
		stts();
}

/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
522
static inline void __fpregs_deactivate(struct fpu *fpu)
523
{
524 525
	WARN_ON_FPU(!fpu->fpregs_active);

526
	fpu->fpregs_active = 0;
527
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
528
	trace_x86_fpu_regs_deactivated(fpu);
529 530
}

531
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
532
static inline void __fpregs_activate(struct fpu *fpu)
533
{
534 535
	WARN_ON_FPU(fpu->fpregs_active);

536
	fpu->fpregs_active = 1;
537
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
538
	trace_x86_fpu_regs_activated(fpu);
539 540
}

541 542 543 544 545 546 547 548 549 550
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
551
static inline int fpregs_active(void)
552 553 554 555
{
	return current->thread.fpu.fpregs_active;
}

556 557 558 559 560 561 562
/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
563
static inline void fpregs_activate(struct fpu *fpu)
564
{
565
	__fpregs_activate_hw();
566
	__fpregs_activate(fpu);
567 568
}

569
static inline void fpregs_deactivate(struct fpu *fpu)
570
{
571
	__fpregs_deactivate(fpu);
572
	__fpregs_deactivate_hw();
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
}

/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

589 590
static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
591 592 593
{
	fpu_switch_t fpu;

594 595 596 597
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
598 599
	fpu.preload = static_cpu_has(X86_FEATURE_FPU) &&
		      new_fpu->fpstate_active &&
600
		      (use_eager_fpu() || new_fpu->counter > 5);
601

602
	if (old_fpu->fpregs_active) {
603
		if (!copy_fpregs_to_fpstate(old_fpu))
604
			old_fpu->last_cpu = -1;
605
		else
606
			old_fpu->last_cpu = cpu;
607

608
		/* But leave fpu_fpregs_owner_ctx! */
609
		old_fpu->fpregs_active = 0;
610
		trace_x86_fpu_regs_deactivated(old_fpu);
611 612 613

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
614
			new_fpu->counter++;
615
			__fpregs_activate(new_fpu);
616
			trace_x86_fpu_regs_activated(new_fpu);
617
			prefetch(&new_fpu->state);
618 619 620
		} else {
			__fpregs_deactivate_hw();
		}
621
	} else {
622 623
		old_fpu->counter = 0;
		old_fpu->last_cpu = -1;
624
		if (fpu.preload) {
625
			new_fpu->counter++;
626
			if (fpu_want_lazy_restore(new_fpu, cpu))
627 628
				fpu.preload = 0;
			else
629
				prefetch(&new_fpu->state);
630
			fpregs_activate(new_fpu);
631 632 633 634 635
		}
	}
	return fpu;
}

I
Ingo Molnar 已提交
636 637 638 639
/*
 * Misc helper functions:
 */

640 641 642 643 644 645
/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
646
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
647
{
648
	if (fpu_switch.preload)
649
		copy_kernel_to_fpregs(&new_fpu->state);
650 651 652
}

/*
653
 * Needs to be preemption-safe.
654
 *
655
 * NOTE! user_fpu_begin() must be used only immediately before restoring
656 657 658
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
659 660 661
 */
static inline void user_fpu_begin(void)
{
662 663
	struct fpu *fpu = &current->thread.fpu;

664
	preempt_disable();
665
	if (!fpregs_active())
666
		fpregs_activate(fpu);
667 668 669
	preempt_enable();
}

I
Ingo Molnar 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

697
#endif /* _ASM_X86_FPU_INTERNAL_H */