internal.h 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12

13
#include <linux/compat.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/fpu/api.h>
19
#include <asm/fpu/xstate.h>
20
#include <asm/cpufeature.h>
21
#include <asm/trace/fpu.h>
22

23 24 25
/*
 * High level FPU state handling functions:
 */
26
extern void fpu__activate_curr(struct fpu *fpu);
27
extern void fpu__activate_fpstate_read(struct fpu *fpu);
28
extern void fpu__activate_fpstate_write(struct fpu *fpu);
29 30
extern void fpu__current_fpstate_write_begin(void);
extern void fpu__current_fpstate_write_end(void);
31
extern void fpu__save(struct fpu *fpu);
32
extern void fpu__restore(struct fpu *fpu);
33
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
34 35
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
36
extern void fpu__clear(struct fpu *fpu);
I
Ingo Molnar 已提交
37 38
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
39

I
Ingo Molnar 已提交
40 41 42 43 44 45 46
/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
47 48
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);
49
extern u64 fpu__get_supported_xfeatures_mask(void);
50

51 52 53 54 55 56
/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
57
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
58 59
#endif

60
/*
I
Ingo Molnar 已提交
61
 * FPU related CPU feature flag helper routines:
62
 */
63 64
static __always_inline __pure bool use_xsaveopt(void)
{
65
	return static_cpu_has(X86_FEATURE_XSAVEOPT);
66 67 68 69
}

static __always_inline __pure bool use_xsave(void)
{
70
	return static_cpu_has(X86_FEATURE_XSAVE);
71 72 73 74
}

static __always_inline __pure bool use_fxsr(void)
{
75
	return static_cpu_has(X86_FEATURE_FXSR);
76 77
}

I
Ingo Molnar 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
95
extern void fpstate_sanitize_xstate(struct fpu *fpu);
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

128
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129
{
130
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
131 132
}

133
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134
{
135
	if (IS_ENABLED(CONFIG_X86_32))
136
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137
	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
138
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139

140
	/* See comment in copy_fxregs_to_kernel() below. */
141
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142 143
}

144
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145
{
146 147
	int err;

148
	if (IS_ENABLED(CONFIG_X86_32)) {
149 150
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	} else {
151
		if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
152 153 154 155 156 157 158 159
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
		} else {
			/* See comment in copy_fxregs_to_kernel() below. */
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
		}
	}
	/* Copying from a kernel buffer to FPU registers should never fail: */
	WARN_ON_FPU(err);
160 161
}

162
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
163
{
164
	if (IS_ENABLED(CONFIG_X86_32))
165
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166
	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
167 168
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

169
	/* See comment in copy_fxregs_to_kernel() below. */
170 171 172 173
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

174
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
175
{
176 177 178
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));

	WARN_ON_FPU(err);
179 180
}

181
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
182 183
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
184 185
}

186
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
187
{
188
	if (IS_ENABLED(CONFIG_X86_32))
189
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
190
	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
191
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
208
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
209 210 211 212 213 214
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
215 216
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
217
	}
218 219
}

220 221 222 223 224 225 226
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

227 228 229 230 231 232 233 234 235 236 237 238 239
#define XSTATE_OP(op, st, lmask, hmask, err)				\
	asm volatile("1:" op "\n\t"					\
		     "xor %[err], %[err]\n"				\
		     "2:\n\t"						\
		     ".pushsection .fixup,\"ax\"\n\t"			\
		     "3: movl $-2,%[err]\n\t"				\
		     "jmp 2b\n\t"					\
		     ".popsection\n\t"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/*
 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
 * format and supervisor states in addition to modified optimization in
 * XSAVEOPT.
 *
 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
 * supports modified optimization which is not supported by XSAVE.
 *
 * We use XSAVE as a fallback.
 *
 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
 * original instruction which gets replaced. We need to use it here as the
 * address of the instruction where we might get an exception at.
 */
#define XSTATE_XSAVE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE_2(XSAVE,				\
				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
				   XSAVES,   X86_FEATURE_XSAVES)	\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

/*
 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
 * XSAVE area format.
 */
#define XSTATE_XRESTORE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE(XRSTOR,				\
				 XRSTORS, X86_FEATURE_XSAVES)		\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")
288

289 290 291 292
/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
293
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
294 295 296 297
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
298
	int err;
299 300 301

	WARN_ON(system_state != SYSTEM_BOOTING);

302
	if (static_cpu_has(X86_FEATURE_XSAVES))
303
		XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
304
	else
305
		XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
306 307 308

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
309 310 311 312 313 314
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
315
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
316
{
317
	u64 mask = -1;
318 319
	u32 lmask = mask;
	u32 hmask = mask >> 32;
320
	int err;
321 322 323

	WARN_ON(system_state != SYSTEM_BOOTING);

324
	if (static_cpu_has(X86_FEATURE_XSAVES))
325
		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
326
	else
327
		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
328 329 330

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
331 332 333 334 335
}

/*
 * Save processor xstate to xsave area.
 */
336
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
337 338 339 340
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
341
	int err;
342 343 344

	WARN_ON(!alternatives_patched);

345
	XSTATE_XSAVE(xstate, lmask, hmask, err);
346

347 348
	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
349 350 351 352 353
}

/*
 * Restore processor xstate from xsave area.
 */
354
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
355 356 357
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
358
	int err;
359

360
	XSTATE_XRESTORE(xstate, lmask, hmask, err);
361

362 363
	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

388 389 390 391
	stac();
	XSTATE_OP(XSAVE, buf, -1, -1, err);
	clac();

392 393 394 395 396 397 398 399 400 401 402
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
403 404 405 406 407
	int err;

	stac();
	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
	clac();
408 409 410 411

	return err;
}

412 413
/*
 * These must be called with preempt disabled. Returns
414 415 416 417 418 419
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
420
 * no pending FP exceptions.
421
 */
422
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
423
{
424
	if (likely(use_xsave())) {
425
		copy_xregs_to_kernel(&fpu->state.xsave);
426 427
		return 1;
	}
428

429
	if (likely(use_fxsr())) {
430
		copy_fxregs_to_kernel(fpu);
431
		return 1;
432 433 434
	}

	/*
435 436
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
437
	 */
438
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
439 440

	return 0;
441 442
}

443
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
444
{
445
	if (use_xsave()) {
446
		copy_kernel_to_xregs(&fpstate->xsave, -1);
447 448
	} else {
		if (use_fxsr())
449
			copy_kernel_to_fxregs(&fpstate->fxsave);
450
		else
451
			copy_kernel_to_fregs(&fpstate->fsave);
452
	}
453 454
}

455
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
456
{
457 458 459 460 461
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
462
	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
463 464 465 466
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
467
			: : [addr] "m" (fpstate));
468
	}
469

470
	__copy_kernel_to_fpregs(fpstate);
471 472
}

473
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
I
Ingo Molnar 已提交
474 475 476 477 478 479 480 481

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
482 483 484 485 486 487 488 489 490 491 492 493
 * The in-register FPU state for an FPU context on a CPU is assumed to be
 * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
 * matches the FPU.
 *
 * If the FPU register state is valid, the kernel can skip restoring the
 * FPU state from memory.
 *
 * Any code that clobbers the FPU registers or updates the in-memory
 * FPU state for a task MUST let the rest of the kernel know that the
 * FPU registers are no longer valid for this task. Calling either of
 * these two invalidate functions is enough, use whichever is convenient.
 *
I
Ingo Molnar 已提交
494 495 496
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 * on this CPU.
 */
497
static inline void __cpu_invalidate_fpregs_state(unsigned int cpu)
I
Ingo Molnar 已提交
498 499 500 501
{
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
}

502 503 504 505 506 507
static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
{
	fpu->last_cpu = -1;
}

static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
I
Ingo Molnar 已提交
508 509 510 511
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}

512 513 514 515 516
/*
 * These generally need preemption protection to work,
 * do try to avoid using these on their own:
 */
static inline void fpregs_deactivate(struct fpu *fpu)
517
{
518 519
	WARN_ON_FPU(!fpu->fpregs_active);

520
	fpu->fpregs_active = 0;
521
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
522
	trace_x86_fpu_regs_deactivated(fpu);
523 524
}

525
static inline void fpregs_activate(struct fpu *fpu)
526
{
527 528
	WARN_ON_FPU(fpu->fpregs_active);

529
	fpu->fpregs_active = 1;
530
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
531
	trace_x86_fpu_regs_activated(fpu);
532 533
}

534 535 536 537 538 539 540 541 542 543
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
544
static inline int fpregs_active(void)
545 546 547 548
{
	return current->thread.fpu.fpregs_active;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

563 564
static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
565 566 567
{
	fpu_switch_t fpu;

568 569 570 571
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
572
	fpu.preload = static_cpu_has(X86_FEATURE_FPU) &&
A
Andy Lutomirski 已提交
573
		      new_fpu->fpstate_active;
574

575
	if (old_fpu->fpregs_active) {
576
		if (!copy_fpregs_to_fpstate(old_fpu))
577
			old_fpu->last_cpu = -1;
578
		else
579
			old_fpu->last_cpu = cpu;
580

581
		/* But leave fpu_fpregs_owner_ctx! */
582
		old_fpu->fpregs_active = 0;
583
		trace_x86_fpu_regs_deactivated(old_fpu);
584 585
	} else
		old_fpu->last_cpu = -1;
586

587 588 589 590
	if (fpu.preload) {
		if (fpregs_state_valid(new_fpu, cpu))
			fpu.preload = 0;
		else
591
			prefetch(&new_fpu->state);
592
		fpregs_activate(new_fpu);
593
	}
594

595 596 597
	return fpu;
}

I
Ingo Molnar 已提交
598 599 600 601
/*
 * Misc helper functions:
 */

602 603 604 605 606 607
/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
608
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
609
{
610
	if (fpu_switch.preload)
611
		copy_kernel_to_fpregs(&new_fpu->state);
612 613 614
}

/*
615
 * Needs to be preemption-safe.
616
 *
617
 * NOTE! user_fpu_begin() must be used only immediately before restoring
618 619 620
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
621 622 623
 */
static inline void user_fpu_begin(void)
{
624 625
	struct fpu *fpu = &current->thread.fpu;

626
	preempt_disable();
627
	if (!fpregs_active())
628
		fpregs_activate(fpu);
629 630 631
	preempt_enable();
}

I
Ingo Molnar 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

659
#endif /* _ASM_X86_FPU_INTERNAL_H */