internal.h 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12

13
#include <linux/compat.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16

17
#include <asm/user.h>
18
#include <asm/fpu/api.h>
19
#include <asm/fpu/xstate.h>
20
#include <asm/cpufeature.h>
21

22 23 24
/*
 * High level FPU state handling functions:
 */
25
extern void fpu__activate_curr(struct fpu *fpu);
26
extern void fpu__activate_fpstate_read(struct fpu *fpu);
27
extern void fpu__activate_fpstate_write(struct fpu *fpu);
28
extern void fpu__save(struct fpu *fpu);
29
extern void fpu__restore(struct fpu *fpu);
30
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
31 32
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
33
extern void fpu__clear(struct fpu *fpu);
I
Ingo Molnar 已提交
34 35
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
36

I
Ingo Molnar 已提交
37 38 39 40 41 42 43
/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
44 45
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);
46
extern u64 fpu__get_supported_xfeatures_mask(void);
47

48 49 50 51 52 53
/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
54
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
55 56
#endif

57
/*
I
Ingo Molnar 已提交
58
 * FPU related CPU feature flag helper routines:
59
 */
60 61
static __always_inline __pure bool use_eager_fpu(void)
{
62
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
63 64
}

65 66
static __always_inline __pure bool use_xsaveopt(void)
{
67
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
68 69 70 71
}

static __always_inline __pure bool use_xsave(void)
{
72
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
73 74 75 76
}

static __always_inline __pure bool use_fxsr(void)
{
77
	return static_cpu_has_safe(X86_FEATURE_FXSR);
78 79
}

I
Ingo Molnar 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
97
extern void fpstate_sanitize_xstate(struct fpu *fpu);
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

130
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
131
{
132
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
133 134
}

135
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
136
{
137
	if (config_enabled(CONFIG_X86_32))
138
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
139
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
140
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
141

142
	/* See comment in copy_fxregs_to_kernel() below. */
143
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
144 145
}

146
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
147
{
148 149 150 151 152 153 154 155 156 157 158 159 160 161
	int err;

	if (config_enabled(CONFIG_X86_32)) {
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	} else {
		if (config_enabled(CONFIG_AS_FXSAVEQ)) {
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
		} else {
			/* See comment in copy_fxregs_to_kernel() below. */
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
		}
	}
	/* Copying from a kernel buffer to FPU registers should never fail: */
	WARN_ON_FPU(err);
162 163
}

164
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
165 166 167 168 169 170
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

171
	/* See comment in copy_fxregs_to_kernel() below. */
172 173 174 175
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

176
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
177
{
178 179 180
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));

	WARN_ON_FPU(err);
181 182
}

183
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
184 185
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
186 187
}

188
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
189
{
190
	if (config_enabled(CONFIG_X86_32))
191
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
192
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
193
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
210
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
211 212 213 214 215 216
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
217 218
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
219
	}
220 221
}

222 223 224 225 226 227 228
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

229 230 231 232 233 234 235 236 237 238 239 240 241
#define XSTATE_OP(op, st, lmask, hmask, err)				\
	asm volatile("1:" op "\n\t"					\
		     "xor %[err], %[err]\n"				\
		     "2:\n\t"						\
		     ".pushsection .fixup,\"ax\"\n\t"			\
		     "3: movl $-2,%[err]\n\t"				\
		     "jmp 2b\n\t"					\
		     ".popsection\n\t"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
 * format and supervisor states in addition to modified optimization in
 * XSAVEOPT.
 *
 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
 * supports modified optimization which is not supported by XSAVE.
 *
 * We use XSAVE as a fallback.
 *
 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
 * original instruction which gets replaced. We need to use it here as the
 * address of the instruction where we might get an exception at.
 */
#define XSTATE_XSAVE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE_2(XSAVE,				\
				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
				   XSAVES,   X86_FEATURE_XSAVES)	\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")

/*
 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
 * XSAVE area format.
 */
#define XSTATE_XRESTORE(st, lmask, hmask, err)				\
	asm volatile(ALTERNATIVE(XRSTOR,				\
				 XRSTORS, X86_FEATURE_XSAVES)		\
		     "\n"						\
		     "xor %[err], %[err]\n"				\
		     "3:\n"						\
		     ".pushsection .fixup,\"ax\"\n"			\
		     "4: movl $-2, %[err]\n"				\
		     "jmp 3b\n"						\
		     ".popsection\n"					\
		     _ASM_EXTABLE(661b, 4b)				\
		     : [err] "=r" (err)					\
		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
		     : "memory")
290

291 292 293 294
/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
295
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
296 297 298 299
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
300
	int err;
301 302 303

	WARN_ON(system_state != SYSTEM_BOOTING);

304 305
	if (static_cpu_has_safe(X86_FEATURE_XSAVES))
		XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
306
	else
307
		XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
308 309 310

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
311 312 313 314 315 316
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
317
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
318
{
319
	u64 mask = -1;
320 321
	u32 lmask = mask;
	u32 hmask = mask >> 32;
322
	int err;
323 324 325

	WARN_ON(system_state != SYSTEM_BOOTING);

326 327
	if (static_cpu_has_safe(X86_FEATURE_XSAVES))
		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
328
	else
329
		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
330 331 332

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
333 334 335 336 337
}

/*
 * Save processor xstate to xsave area.
 */
338
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
339 340 341 342
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
343
	int err;
344 345 346

	WARN_ON(!alternatives_patched);

347
	XSTATE_XSAVE(xstate, lmask, hmask, err);
348

349 350
	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
351 352 353 354 355
}

/*
 * Restore processor xstate from xsave area.
 */
356
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
357 358 359
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
360
	int err;
361

362
	XSTATE_XRESTORE(xstate, lmask, hmask, err);
363

364 365
	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

390 391 392 393
	stac();
	XSTATE_OP(XSAVE, buf, -1, -1, err);
	clac();

394 395 396 397 398 399 400 401 402 403 404
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
405 406 407 408 409
	int err;

	stac();
	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
	clac();
410 411 412 413

	return err;
}

414 415
/*
 * These must be called with preempt disabled. Returns
416 417 418 419 420 421
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
422
 * no pending FP exceptions.
423
 */
424
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
425
{
426
	if (likely(use_xsave())) {
427
		copy_xregs_to_kernel(&fpu->state.xsave);
428 429
		return 1;
	}
430

431
	if (likely(use_fxsr())) {
432
		copy_fxregs_to_kernel(fpu);
433
		return 1;
434 435 436
	}

	/*
437 438
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
439
	 */
440
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
441 442

	return 0;
443 444
}

445
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
446
{
447
	if (use_xsave()) {
448
		copy_kernel_to_xregs(&fpstate->xsave, -1);
449 450
	} else {
		if (use_fxsr())
451
			copy_kernel_to_fxregs(&fpstate->fxsave);
452
		else
453
			copy_kernel_to_fregs(&fpstate->fsave);
454
	}
455 456
}

457
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
458
{
459 460 461 462 463
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
464
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
465 466 467 468
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
469
			: : [addr] "m" (fpstate));
470
	}
471

472
	__copy_kernel_to_fpregs(fpstate);
473 474
}

475
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
I
Ingo Molnar 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
}

static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
 */

static inline void __fpregs_activate_hw(void)
{
	if (!use_eager_fpu())
		clts();
}

static inline void __fpregs_deactivate_hw(void)
{
	if (!use_eager_fpu())
		stts();
}

/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
519
static inline void __fpregs_deactivate(struct fpu *fpu)
520
{
521 522
	WARN_ON_FPU(!fpu->fpregs_active);

523
	fpu->fpregs_active = 0;
524
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
525 526
}

527
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
528
static inline void __fpregs_activate(struct fpu *fpu)
529
{
530 531
	WARN_ON_FPU(fpu->fpregs_active);

532
	fpu->fpregs_active = 1;
533
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
534 535
}

536 537 538 539 540 541 542 543 544 545
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
546
static inline int fpregs_active(void)
547 548 549 550
{
	return current->thread.fpu.fpregs_active;
}

551 552 553 554 555 556 557
/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
558
static inline void fpregs_activate(struct fpu *fpu)
559
{
560
	__fpregs_activate_hw();
561
	__fpregs_activate(fpu);
562 563
}

564
static inline void fpregs_deactivate(struct fpu *fpu)
565
{
566
	__fpregs_deactivate(fpu);
567
	__fpregs_deactivate_hw();
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
}

/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

584 585
static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
586 587 588
{
	fpu_switch_t fpu;

589 590 591 592
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
593
	fpu.preload = new_fpu->fpstate_active &&
594
		      (use_eager_fpu() || new_fpu->counter > 5);
595

596
	if (old_fpu->fpregs_active) {
597
		if (!copy_fpregs_to_fpstate(old_fpu))
598
			old_fpu->last_cpu = -1;
599
		else
600
			old_fpu->last_cpu = cpu;
601

602
		/* But leave fpu_fpregs_owner_ctx! */
603
		old_fpu->fpregs_active = 0;
604 605 606

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
607
			new_fpu->counter++;
608
			__fpregs_activate(new_fpu);
609
			prefetch(&new_fpu->state);
610 611 612
		} else {
			__fpregs_deactivate_hw();
		}
613
	} else {
614 615
		old_fpu->counter = 0;
		old_fpu->last_cpu = -1;
616
		if (fpu.preload) {
617
			new_fpu->counter++;
618
			if (fpu_want_lazy_restore(new_fpu, cpu))
619 620
				fpu.preload = 0;
			else
621
				prefetch(&new_fpu->state);
622
			fpregs_activate(new_fpu);
623 624 625 626 627
		}
	}
	return fpu;
}

I
Ingo Molnar 已提交
628 629 630 631
/*
 * Misc helper functions:
 */

632 633 634 635 636 637
/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
638
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
639
{
640
	if (fpu_switch.preload)
641
		copy_kernel_to_fpregs(&new_fpu->state);
642 643 644
}

/*
645
 * Needs to be preemption-safe.
646
 *
647
 * NOTE! user_fpu_begin() must be used only immediately before restoring
648 649 650
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
651 652 653
 */
static inline void user_fpu_begin(void)
{
654 655
	struct fpu *fpu = &current->thread.fpu;

656
	preempt_disable();
657
	if (!fpregs_active())
658
		fpregs_activate(fpu);
659 660 661
	preempt_enable();
}

I
Ingo Molnar 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

689
#endif /* _ASM_X86_FPU_INTERNAL_H */