fs-writeback.c 67.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128 129 130
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
174 175
}

176 177
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
178
{
179
	trace_writeback_queue(wb, work);
180

181
	spin_lock_bh(&wb->work_lock);
182
	if (!test_bit(WB_registered, &wb->state))
J
Jan Kara 已提交
183
		goto out_unlock;
184 185
	if (work->done)
		atomic_inc(&work->done->cnt);
186 187
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
188
out_unlock:
189
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

210 211
#ifdef CONFIG_CGROUP_WRITEBACK

212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

283 284
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
		if (likely(wb == inode->i_wb))
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

307 308 309 310 311 312 313 314 315 316 317 318 319
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
320
	struct super_block *sb = inode->i_sb;
321 322
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
323
	struct bdi_writeback *new_wb = isw->new_wb;
324 325 326
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
327 328 329 330 331 332

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
333 334 335 336
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
337
	 */
338 339 340 341 342 343 344
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
345
	spin_lock(&inode->i_lock);
346 347 348 349
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
350
	 * the inode and we shouldn't modify ->i_io_list.
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
			__dec_wb_stat(old_wb, WB_WRITEBACK);
			__inc_wb_stat(new_wb, WB_WRITEBACK);
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
389
	if (!list_empty(&inode->i_io_list)) {
390 391
		struct inode *pos;

392
		inode_io_list_del_locked(inode, old_wb);
393
		inode->i_wb = new_wb;
394
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
395 396 397
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
398
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
399 400 401
	} else {
		inode->i_wb = new_wb;
	}
402

403
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
404 405 406
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
407 408
	switched = true;
skip_switch:
409 410 411 412 413 414
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

415
	spin_unlock_irq(&mapping->tree_lock);
416
	spin_unlock(&inode->i_lock);
417 418
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
419

420 421 422 423
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
424
	wb_put(new_wb);
425 426

	iput(inode);
427
	deactivate_super(sb);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	kfree(isw);
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
	schedule_work(&isw->work);
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
474

475
	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
476 477 478 479 480 481
	    inode_to_wb(inode) == isw->new_wb)
		goto out_unlock;

	if (!atomic_inc_not_zero(&inode->i_sb->s_active))
		goto out_unlock;

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	inode->i_state |= I_WB_SWITCH;
	spin_unlock(&inode->i_lock);

	ihold(inode);
	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

497 498
out_unlock:
	spin_unlock(&inode->i_lock);
499 500 501 502 503 504
out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

505 506 507 508 509 510 511 512 513 514 515 516 517
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
518 519 520 521 522
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

523
	wbc->wb = inode_to_wb(inode);
524 525 526 527 528 529 530 531 532
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

533 534
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
535 536 537 538 539 540 541

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
542 543 544
}

/**
545 546
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
547 548 549
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
580 581 582
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
583 584
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
585 586
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
587 588
	int max_id;

589 590 591 592 593 594
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
647 648
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
649 650 651 652 653 654 655 656 657 658
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

659 660 661 662
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
705
EXPORT_SYMBOL_GPL(wbc_account_io);
706

707 708
/**
 * inode_congested - test whether an inode is congested
709
 * @inode: inode to test for congestion (may be NULL)
710 711 712 713 714 715 716 717 718
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
719 720 721
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
722 723 724
 */
int inode_congested(struct inode *inode, int cong_bits)
{
725 726 727 728
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
729
	if (inode && inode_to_wb_is_valid(inode)) {
730 731 732 733 734 735 736
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
737 738 739 740 741 742
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
786
	struct bdi_writeback *last_wb = NULL;
787 788
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
789 790 791 792

	might_sleep();
restart:
	rcu_read_lock();
793
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
794 795 796 797 798
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

799 800 801 802 803
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

804 805 806 807 808 809
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
810 811
			continue;

812 813 814 815 816 817 818 819 820
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
821
		}
822 823 824 825 826 827 828 829 830 831

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

832 833 834 835 836 837 838 839
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

840 841 842
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
843 844
	}
	rcu_read_unlock();
845 846 847

	if (last_wb)
		wb_put(last_wb);
848 849
}

850 851
#else	/* CONFIG_CGROUP_WRITEBACK */

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

873 874 875 876 877
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

878 879 880 881 882 883
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

884
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
885 886 887 888 889
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

890 891
#endif	/* CONFIG_CGROUP_WRITEBACK */

892 893
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
894
{
895 896 897 898 899 900 901 902 903 904 905
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
906
		trace_writeback_nowork(wb);
907 908 909 910 911 912 913 914
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
915
	work->auto_free	= 1;
916 917

	wb_queue_work(wb, work);
918
}
919

920
/**
921 922
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
923 924
 *
 * Description:
925
 *   This makes sure WB_SYNC_NONE background writeback happens. When
926
 *   this function returns, it is only guaranteed that for given wb
927 928
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
929
 */
930
void wb_start_background_writeback(struct bdi_writeback *wb)
931
{
932 933 934 935
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
936
	trace_writeback_wake_background(wb);
937
	wb_wakeup(wb);
L
Linus Torvalds 已提交
938 939
}

940 941 942
/*
 * Remove the inode from the writeback list it is on.
 */
943
void inode_io_list_del(struct inode *inode)
944
{
945
	struct bdi_writeback *wb;
946

947
	wb = inode_to_wb_and_lock_list(inode);
948
	inode_io_list_del_locked(inode, wb);
949
	spin_unlock(&wb->list_lock);
950 951
}

952 953 954 955 956
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
957
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
958 959 960
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
961
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
962
{
963
	if (!list_empty(&wb->b_dirty)) {
964
		struct inode *tail;
965

N
Nick Piggin 已提交
966
		tail = wb_inode(wb->b_dirty.next);
967
		if (time_before(inode->dirtied_when, tail->dirtied_when))
968 969
			inode->dirtied_when = jiffies;
	}
970
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
971 972
}

973
/*
974
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
975
 */
976
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
977
{
978
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
979 980
}

J
Joern Engel 已提交
981 982
static void inode_sync_complete(struct inode *inode)
{
983
	inode->i_state &= ~I_SYNC;
984 985
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
986
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
987 988 989 990
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

991 992 993 994 995 996 997 998
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
999
	 * from permanently stopping the whole bdi writeback.
1000 1001 1002 1003 1004 1005
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1006 1007
#define EXPIRE_DIRTY_ATIME 0x0001

1008
/*
1009
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1010
 * @delaying_queue to @dispatch_queue.
1011
 */
1012
static int move_expired_inodes(struct list_head *delaying_queue,
1013
			       struct list_head *dispatch_queue,
1014
			       int flags,
1015
			       struct wb_writeback_work *work)
1016
{
1017 1018
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1019 1020
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1021
	struct super_block *sb = NULL;
1022
	struct inode *inode;
1023
	int do_sb_sort = 0;
1024
	int moved = 0;
1025

1026 1027
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1028 1029
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1030 1031
		older_than_this = &expire_time;
	}
1032
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1033
		inode = wb_inode(delaying_queue->prev);
1034 1035
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1036
			break;
1037
		list_move(&inode->i_io_list, &tmp);
1038
		moved++;
1039 1040
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1041 1042
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1043 1044 1045
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1046 1047
	}

1048 1049 1050
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1051
		goto out;
1052 1053
	}

1054 1055
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1056
		sb = wb_inode(tmp.prev)->i_sb;
1057
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1058
			inode = wb_inode(pos);
1059
			if (inode->i_sb == sb)
1060
				list_move(&inode->i_io_list, dispatch_queue);
1061
		}
1062
	}
1063 1064
out:
	return moved;
1065 1066 1067 1068
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1069 1070 1071 1072 1073 1074 1075 1076
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1077
 */
1078
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1079
{
1080
	int moved;
1081

1082
	assert_spin_locked(&wb->list_lock);
1083
	list_splice_init(&wb->b_more_io, &wb->b_io);
1084 1085 1086
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1087 1088
	if (moved)
		wb_io_lists_populated(wb);
1089
	trace_writeback_queue_io(wb, work, moved);
1090 1091
}

1092
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1093
{
T
Tejun Heo 已提交
1094 1095 1096 1097 1098 1099 1100 1101
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1102
	return 0;
1103 1104
}

L
Linus Torvalds 已提交
1105
/*
1106 1107
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1108
 */
1109 1110 1111
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1112 1113 1114 1115 1116
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1117 1118
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1119 1120
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1121
		spin_lock(&inode->i_lock);
1122
	}
1123 1124
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1212
	} else if (inode->i_state & I_DIRTY_TIME) {
1213
		inode->dirtied_when = jiffies;
1214
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1215 1216
	} else {
		/* The inode is clean. Remove from writeback lists. */
1217
		inode_io_list_del_locked(inode, wb);
1218 1219 1220
	}
}

1221
/*
1222 1223 1224
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1225 1226
 */
static int
1227
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1228 1229
{
	struct address_space *mapping = inode->i_mapping;
1230
	long nr_to_write = wbc->nr_to_write;
1231
	unsigned dirty;
L
Linus Torvalds 已提交
1232 1233
	int ret;

1234
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1235

T
Tejun Heo 已提交
1236 1237
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1238 1239
	ret = do_writepages(mapping, wbc);

1240 1241 1242
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1243 1244 1245
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1246
	 */
1247
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1248
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1249 1250 1251 1252
		if (ret == 0)
			ret = err;
	}

1253 1254 1255 1256 1257
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1258
	spin_lock(&inode->i_lock);
1259

1260
	dirty = inode->i_state & I_DIRTY;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1272
	inode->i_state &= ~dirty;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1290
	spin_unlock(&inode->i_lock);
1291

1292 1293
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1294
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1295
	if (dirty & ~I_DIRTY_PAGES) {
1296
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1297 1298 1299
		if (ret == 0)
			ret = err;
	}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1328 1329 1330
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1331
		 */
1332
		__inode_wait_for_writeback(inode);
1333 1334 1335
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1336 1337 1338 1339 1340 1341
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1342
	 */
1343
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1344 1345
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1346 1347
		goto out;
	inode->i_state |= I_SYNC;
1348
	wbc_attach_and_unlock_inode(wbc, inode);
1349

1350
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1351

1352
	wbc_detach_inode(wbc);
1353
	spin_lock(&wb->list_lock);
1354
	spin_lock(&inode->i_lock);
1355 1356 1357 1358
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1359
	if (!(inode->i_state & I_DIRTY_ALL))
1360
		inode_io_list_del_locked(inode, wb);
1361
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1362
	inode_sync_complete(inode);
1363 1364
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1365 1366 1367
	return ret;
}

1368
static long writeback_chunk_size(struct bdi_writeback *wb,
1369
				 struct wb_writeback_work *work)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1388
	else {
1389
		pages = min(wb->avg_write_bandwidth / 2,
1390
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1391 1392 1393 1394
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1395 1396 1397 1398

	return pages;
}

1399 1400
/*
 * Write a portion of b_io inodes which belong to @sb.
1401
 *
1402
 * Return the number of pages and/or inodes written.
1403 1404 1405 1406
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1407
 */
1408 1409 1410
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1411
{
1412 1413 1414 1415 1416
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1417
		.for_sync		= work->for_sync,
1418 1419 1420 1421 1422 1423 1424 1425
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1426
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1427
		struct inode *inode = wb_inode(wb->b_io.prev);
1428 1429

		if (inode->i_sb != sb) {
1430
			if (work->sb) {
1431 1432 1433 1434 1435
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1436
				redirty_tail(inode, wb);
1437 1438 1439 1440 1441 1442 1443 1444
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1445
			break;
1446 1447
		}

1448
		/*
W
Wanpeng Li 已提交
1449 1450
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1451 1452
		 * kind writeout is handled by the freer.
		 */
1453
		spin_lock(&inode->i_lock);
1454
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1455
			spin_unlock(&inode->i_lock);
1456
			redirty_tail(inode, wb);
1457 1458
			continue;
		}
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1474 1475
		spin_unlock(&wb->list_lock);

1476 1477 1478 1479 1480
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1481 1482 1483 1484
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1485
			spin_lock(&wb->list_lock);
1486 1487
			continue;
		}
1488
		inode->i_state |= I_SYNC;
1489
		wbc_attach_and_unlock_inode(&wbc, inode);
1490

1491
		write_chunk = writeback_chunk_size(wb, work);
1492 1493
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1494

1495 1496 1497 1498
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1499
		__writeback_single_inode(inode, &wbc);
1500

1501
		wbc_detach_inode(&wbc);
1502 1503
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}


1519 1520
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1521
		if (!(inode->i_state & I_DIRTY_ALL))
1522
			wrote++;
1523 1524
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1525
		spin_unlock(&inode->i_lock);
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1536
		}
L
Linus Torvalds 已提交
1537
	}
1538
	return wrote;
1539 1540
}

1541 1542
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1543
{
1544 1545
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1546

1547
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1548
		struct inode *inode = wb_inode(wb->b_io.prev);
1549
		struct super_block *sb = inode->i_sb;
1550

1551
		if (!trylock_super(sb)) {
1552
			/*
1553
			 * trylock_super() may fail consistently due to
1554 1555 1556 1557
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1558
			continue;
1559
		}
1560
		wrote += writeback_sb_inodes(sb, wb, work);
1561
		up_read(&sb->s_umount);
1562

1563 1564 1565 1566 1567 1568 1569
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1570
	}
1571
	/* Leave any unwritten inodes on b_io */
1572
	return wrote;
1573 1574
}

1575
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1576
				enum wb_reason reason)
1577
{
1578 1579 1580 1581
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1582
		.reason		= reason,
1583
	};
1584
	struct blk_plug plug;
1585

1586
	blk_start_plug(&plug);
1587
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1588
	if (list_empty(&wb->b_io))
1589
		queue_io(wb, &work);
1590
	__writeback_inodes_wb(wb, &work);
1591
	spin_unlock(&wb->list_lock);
1592
	blk_finish_plug(&plug);
1593

1594 1595
	return nr_pages - work.nr_pages;
}
1596 1597 1598

/*
 * Explicit flushing or periodic writeback of "old" data.
1599
 *
1600 1601 1602 1603
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1604
 *
1605 1606 1607
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1608
 *
1609 1610
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1611
 */
1612
static long wb_writeback(struct bdi_writeback *wb,
1613
			 struct wb_writeback_work *work)
1614
{
1615
	unsigned long wb_start = jiffies;
1616
	long nr_pages = work->nr_pages;
1617
	unsigned long oldest_jif;
J
Jan Kara 已提交
1618
	struct inode *inode;
1619
	long progress;
1620
	struct blk_plug plug;
1621

1622 1623
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1624

1625
	blk_start_plug(&plug);
1626
	spin_lock(&wb->list_lock);
1627 1628
	for (;;) {
		/*
1629
		 * Stop writeback when nr_pages has been consumed
1630
		 */
1631
		if (work->nr_pages <= 0)
1632
			break;
1633

1634 1635 1636 1637 1638 1639 1640
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1641
		    !list_empty(&wb->work_list))
1642 1643
			break;

N
Nick Piggin 已提交
1644
		/*
1645 1646
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1647
		 */
1648
		if (work->for_background && !wb_over_bg_thresh(wb))
1649
			break;
N
Nick Piggin 已提交
1650

1651 1652 1653 1654 1655 1656
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1657
		if (work->for_kupdate) {
1658
			oldest_jif = jiffies -
1659
				msecs_to_jiffies(dirty_expire_interval * 10);
1660
		} else if (work->for_background)
1661
			oldest_jif = jiffies;
1662

1663
		trace_writeback_start(wb, work);
1664
		if (list_empty(&wb->b_io))
1665
			queue_io(wb, work);
1666
		if (work->sb)
1667
			progress = writeback_sb_inodes(work->sb, wb, work);
1668
		else
1669
			progress = __writeback_inodes_wb(wb, work);
1670
		trace_writeback_written(wb, work);
1671

1672
		wb_update_bandwidth(wb, wb_start);
1673 1674

		/*
1675 1676 1677 1678 1679 1680
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1681
		 */
1682
		if (progress)
1683 1684
			continue;
		/*
1685
		 * No more inodes for IO, bail
1686
		 */
1687
		if (list_empty(&wb->b_more_io))
1688
			break;
1689 1690 1691 1692 1693 1694
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1695
			trace_writeback_wait(wb, work);
N
Nick Piggin 已提交
1696
			inode = wb_inode(wb->b_more_io.prev);
1697
			spin_lock(&inode->i_lock);
1698
			spin_unlock(&wb->list_lock);
1699 1700
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1701
			spin_lock(&wb->list_lock);
1702 1703
		}
	}
1704
	spin_unlock(&wb->list_lock);
1705
	blk_finish_plug(&plug);
1706

1707
	return nr_pages - work->nr_pages;
1708 1709 1710
}

/*
1711
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1712
 */
1713
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1714
{
1715
	struct wb_writeback_work *work = NULL;
1716

1717 1718 1719
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1720 1721
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1722
	}
1723
	spin_unlock_bh(&wb->work_lock);
1724
	return work;
1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1738 1739
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1740
	if (wb_over_bg_thresh(wb)) {
1741 1742 1743 1744 1745 1746

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1747
			.reason		= WB_REASON_BACKGROUND,
1748 1749 1750 1751 1752 1753 1754 1755
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1756 1757 1758 1759 1760
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1761 1762 1763 1764 1765 1766
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1767 1768 1769 1770 1771 1772
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1773
	nr_pages = get_nr_dirty_pages();
1774

1775
	if (nr_pages) {
1776
		struct wb_writeback_work work = {
1777 1778 1779 1780
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1781
			.reason		= WB_REASON_PERIODIC,
1782 1783
		};

1784
		return wb_writeback(wb, &work);
1785
	}
1786 1787 1788 1789 1790 1791 1792

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1793
static long wb_do_writeback(struct bdi_writeback *wb)
1794
{
1795
	struct wb_writeback_work *work;
1796
	long wrote = 0;
1797

1798
	set_bit(WB_writeback_running, &wb->state);
1799
	while ((work = get_next_work_item(wb)) != NULL) {
1800
		struct wb_completion *done = work->done;
1801

1802
		trace_writeback_exec(wb, work);
1803

1804
		wrote += wb_writeback(wb, work);
1805

1806
		if (work->auto_free)
1807
			kfree(work);
1808 1809
		if (done && atomic_dec_and_test(&done->cnt))
			wake_up_all(&wb->bdi->wb_waitq);
1810 1811 1812 1813 1814 1815
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1816
	wrote += wb_check_background_flush(wb);
1817
	clear_bit(WB_writeback_running, &wb->state);
1818 1819 1820 1821 1822 1823

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1824
 * reschedules periodically and does kupdated style flushing.
1825
 */
1826
void wb_workfn(struct work_struct *work)
1827
{
1828 1829
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1830 1831
	long pages_written;

1832
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1833
	current->flags |= PF_SWAPWRITE;
1834

1835
	if (likely(!current_is_workqueue_rescuer() ||
1836
		   !test_bit(WB_registered, &wb->state))) {
1837
		/*
1838
		 * The normal path.  Keep writing back @wb until its
1839
		 * work_list is empty.  Note that this path is also taken
1840
		 * if @wb is shutting down even when we're running off the
1841
		 * rescuer as work_list needs to be drained.
1842
		 */
1843
		do {
1844
			pages_written = wb_do_writeback(wb);
1845
			trace_writeback_pages_written(pages_written);
1846
		} while (!list_empty(&wb->work_list));
1847 1848 1849 1850 1851 1852
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1853
		pages_written = writeback_inodes_wb(wb, 1024,
1854
						    WB_REASON_FORKER_THREAD);
1855
		trace_writeback_pages_written(pages_written);
1856 1857
	}

1858
	if (!list_empty(&wb->work_list))
1859 1860
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1861
		wb_wakeup_delayed(wb);
1862

1863
	current->flags &= ~PF_SWAPWRITE;
1864 1865 1866
}

/*
1867 1868
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1869
 */
1870
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1871
{
1872
	struct backing_dev_info *bdi;
1873

1874 1875
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1876

1877
	rcu_read_lock();
1878 1879 1880 1881 1882 1883
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;

		if (!bdi_has_dirty_io(bdi))
			continue;

1884
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1885 1886 1887
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1888
	rcu_read_unlock();
L
Linus Torvalds 已提交
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1915 1916
		struct bdi_writeback *wb;

1917
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1918 1919
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1971
 *
1972 1973 1974 1975 1976 1977 1978 1979 1980
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1981
 *
1982 1983 1984 1985 1986 1987
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1988
 */
1989
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1990
{
1991
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1992
	struct super_block *sb = inode->i_sb;
1993 1994 1995
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1996

1997 1998 1999 2000
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2001
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2002 2003
		trace_writeback_dirty_inode_start(inode, flags);

2004
		if (sb->s_op->dirty_inode)
2005
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2006 2007

		trace_writeback_dirty_inode(inode, flags);
2008
	}
2009 2010 2011
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2012 2013

	/*
2014 2015
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2016 2017 2018
	 */
	smp_mb();

2019 2020
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2021 2022 2023 2024 2025
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2026
	spin_lock(&inode->i_lock);
2027 2028
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2029 2030 2031
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2032 2033
		inode_attach_wb(inode, NULL);

2034 2035
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2036 2037 2038 2039 2040 2041 2042 2043
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2044
			goto out_unlock_inode;
2045 2046 2047 2048 2049 2050

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2051
			if (inode_unhashed(inode))
2052
				goto out_unlock_inode;
2053
		}
A
Al Viro 已提交
2054
		if (inode->i_state & I_FREEING)
2055
			goto out_unlock_inode;
2056 2057 2058 2059 2060 2061

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2062
			struct bdi_writeback *wb;
2063
			struct list_head *dirty_list;
2064
			bool wakeup_bdi = false;
2065

2066
			wb = locked_inode_to_wb_and_lock_list(inode);
2067

2068 2069 2070
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2071 2072

			inode->dirtied_when = jiffies;
2073 2074
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2075

2076
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2077
				dirty_list = &wb->b_dirty;
2078
			else
2079
				dirty_list = &wb->b_dirty_time;
2080

2081
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2082 2083
							       dirty_list);

2084
			spin_unlock(&wb->list_lock);
2085
			trace_writeback_dirty_inode_enqueue(inode);
2086

2087 2088 2089 2090 2091 2092
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2093 2094
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2095
			return;
L
Linus Torvalds 已提交
2096 2097
		}
	}
2098 2099
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2100

2101
#undef I_DIRTY_INODE
2102 2103 2104
}
EXPORT_SYMBOL(__mark_inode_dirty);

2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2114
static void wait_sb_inodes(struct super_block *sb)
2115 2116 2117 2118 2119 2120 2121
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2122
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2123

2124
	mutex_lock(&sb->s_sync_lock);
2125
	spin_lock(&sb->s_inode_list_lock);
2126 2127 2128 2129 2130 2131 2132 2133

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
2134
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2135
		struct address_space *mapping = inode->i_mapping;
2136

2137 2138 2139 2140
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
2141
			continue;
2142
		}
2143
		__iget(inode);
2144
		spin_unlock(&inode->i_lock);
2145
		spin_unlock(&sb->s_inode_list_lock);
2146

2147
		/*
2148 2149
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
2150
		 * s_inode_list_lock.  We cannot iput the inode now as we can
2151
		 * be holding the last reference and we cannot iput it under
2152
		 * s_inode_list_lock. So we keep the reference and iput it
2153
		 * later.
2154 2155 2156 2157
		 */
		iput(old_inode);
		old_inode = inode;

2158 2159 2160 2161 2162 2163
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2164 2165 2166

		cond_resched();

2167
		spin_lock(&sb->s_inode_list_lock);
2168
	}
2169
	spin_unlock(&sb->s_inode_list_lock);
2170
	iput(old_inode);
2171
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2172 2173
}

2174 2175
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2176
{
2177
	DEFINE_WB_COMPLETION_ONSTACK(done);
2178
	struct wb_writeback_work work = {
2179 2180 2181 2182 2183
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2184
		.reason			= reason,
2185
	};
2186
	struct backing_dev_info *bdi = sb->s_bdi;
2187

2188
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2189
		return;
2190
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2191

2192
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2193
	wb_wait_for_completion(bdi, &done);
2194
}
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2212 2213 2214 2215 2216
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2217
 * @reason: reason why some writeback work was initiated
2218 2219 2220 2221 2222
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2223
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2224
{
2225
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2226
}
2227
EXPORT_SYMBOL(writeback_inodes_sb);
2228

2229
/**
2230
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2231
 * @sb: the superblock
2232 2233
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2234
 *
2235
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2236 2237
 * Returns 1 if writeback was started, 0 if not.
 */
2238 2239
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2240
{
2241
	if (!down_read_trylock(&sb->s_umount))
2242
		return false;
2243

2244
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2245
	up_read(&sb->s_umount);
2246
	return true;
2247
}
2248
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2249

2250
/**
2251
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2252
 * @sb: the superblock
2253
 * @reason: reason why some writeback work was initiated
2254
 *
2255
 * Implement by try_to_writeback_inodes_sb_nr()
2256 2257
 * Returns 1 if writeback was started, 0 if not.
 */
2258
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2259
{
2260
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2261
}
2262
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2263

2264 2265
/**
 * sync_inodes_sb	-	sync sb inode pages
2266
 * @sb: the superblock
2267 2268
 *
 * This function writes and waits on any dirty inode belonging to this
2269
 * super_block.
2270
 */
2271
void sync_inodes_sb(struct super_block *sb)
2272
{
2273
	DEFINE_WB_COMPLETION_ONSTACK(done);
2274
	struct wb_writeback_work work = {
2275 2276 2277 2278
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2279
		.done		= &done,
2280
		.reason		= WB_REASON_SYNC,
2281
		.for_sync	= 1,
2282
	};
2283
	struct backing_dev_info *bdi = sb->s_bdi;
2284

2285 2286 2287 2288 2289 2290
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2291
		return;
2292 2293
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2294
	bdi_split_work_to_wbs(bdi, &work, false);
2295
	wb_wait_for_completion(bdi, &done);
2296

2297
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2298
}
2299
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2300 2301

/**
2302 2303 2304 2305 2306 2307
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2308
 *
2309
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2310 2311 2312
 */
int write_inode_now(struct inode *inode, int sync)
{
2313
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2314 2315
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2316
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2317 2318
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2319 2320 2321
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2322
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2323 2324

	might_sleep();
2325
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2342
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2343 2344
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2345 2346

/**
A
Andrew Morton 已提交
2347
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2348 2349 2350
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2351
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);