timekeeping.c 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17 18 19 20 21
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34 35 36 37 38 39 40 41 42

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
43 44 45
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
46 47
	/* NTP adjusted clock multiplier */
	u32	mult;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
};

struct timekeeper timekeeper;

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
	u64 tmp;

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
73 74
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
75 76 77 78 79 80 81 82 83
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
	timekeeper.raw_interval =
84
		((u64) interval * clock->mult) >> clock->shift;
85 86

	timekeeper.xtime_nsec = 0;
87
	timekeeper.shift = clock->shift;
88 89

	timekeeper.ntp_error = 0;
90
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91 92 93 94 95 96 97

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
98
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

134 135
/*
 * This read-write spinlock protects us from races in SMP while
136
 * playing with xtime.
137
 */
A
Adrian Bunk 已提交
138
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139 140 141 142 143 144 145 146 147


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
148 149 150 151 152 153 154
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
155 156 157
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158
static struct timespec total_sleep_time;
159

160 161 162 163 164
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
struct timespec raw_time;

165 166 167
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

168 169 170 171 172
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
173 174
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
175
}
176 177

/**
178
 * timekeeping_forward_now - update clock to the current time
179
 *
180 181 182
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
183
 */
184
static void timekeeping_forward_now(void)
185 186
{
	cycle_t cycle_now, cycle_delta;
187
	struct clocksource *clock;
188
	s64 nsec;
189

190
	clock = timekeeper.clock;
191
	cycle_now = clock->read(clock);
192
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
193
	clock->cycle_last = cycle_now;
194

195 196
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
197 198 199 200

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

201
	timespec_add_ns(&xtime, nsec);
202

203
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
204
	timespec_add_ns(&raw_time, nsec);
205 206 207
}

/**
208
 * getnstimeofday - Returns the time of day in a timespec
209 210
 * @ts:		pointer to the timespec to be set
 *
211
 * Returns the time of day in a timespec.
212
 */
213
void getnstimeofday(struct timespec *ts)
214 215 216 217
{
	unsigned long seq;
	s64 nsecs;

218 219
	WARN_ON(timekeeping_suspended);

220 221 222 223
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
224
		nsecs = timekeeping_get_ns();
225

226 227 228
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

229 230 231 232 233 234 235
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

236 237 238 239 240 241 242 243 244 245 246
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
247
		nsecs += timekeeping_get_ns();
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
278
		nsecs = timekeeping_get_ns();
279 280 281 282 283 284 285 286

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

287 288 289 290
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
291
 * NOTE: Users should be converted to using getnstimeofday()
292 293 294 295 296
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

297
	getnstimeofday(&now);
298 299 300 301 302 303 304 305 306 307 308 309 310
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
311
	struct timespec ts_delta;
312 313 314 315 316 317 318
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

319
	timekeeping_forward_now();
320 321 322 323

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
324

325
	xtime = *tv;
326

327
	timekeeper.ntp_error = 0;
328 329
	ntp_clear();

330 331
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
348
static int change_clocksource(void *data)
349
{
350
	struct clocksource *new, *old;
351

352
	new = (struct clocksource *) data;
353

354
	timekeeping_forward_now();
355 356 357 358 359 360 361 362
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
363

364 365 366 367 368 369 370 371 372 373
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
374
		return;
375
	stop_machine(change_clocksource, clock, NULL);
376 377
	tick_clock_notify();
}
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
393

394 395 396 397 398 399 400 401 402 403 404 405 406
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
407
		nsecs = timekeeping_get_ns_raw();
408
		*ts = raw_time;
409 410 411 412 413 414 415 416

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


417
/**
418
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
419
 */
420
int timekeeping_valid_for_hres(void)
421 422 423 424 425 426 427
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

428
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
429 430 431 432 433 434

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

435 436 437 438 439 440 441 442 443 444 445
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

446
/**
447
 * read_persistent_clock -  Return time from the persistent clock.
448 449
 *
 * Weak dummy function for arches that do not yet support it.
450 451
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
452 453 454
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
455
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
456
{
457 458
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
459 460
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

476 477 478 479 480
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
481
	struct clocksource *clock;
482
	unsigned long flags;
483
	struct timespec now, boot;
484 485

	read_persistent_clock(&now);
486
	read_boot_clock(&boot);
487 488 489

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
490
	ntp_init();
491

492
	clock = clocksource_default_clock();
493 494
	if (clock->enable)
		clock->enable(clock);
495
	timekeeper_setup_internals(clock);
496

497 498
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
499 500
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
501 502 503 504
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
505
	set_normalized_timespec(&wall_to_monotonic,
506
				-boot.tv_sec, -boot.tv_nsec);
507 508
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
509 510 511 512
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
513
static struct timespec timekeeping_suspend_time;
514 515 516 517 518 519 520 521 522 523 524 525

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
526 527 528
	struct timespec ts;

	read_persistent_clock(&ts);
529

530 531
	clocksource_resume();

532 533
	write_seqlock_irqsave(&xtime_lock, flags);

534 535
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
J
John Stultz 已提交
536
		xtime = timespec_add(xtime, ts);
537
		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
J
John Stultz 已提交
538
		total_sleep_time = timespec_add(total_sleep_time, ts);
539 540
	}
	/* re-base the last cycle value */
541 542
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
	hres_timers_resume();

	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

560
	read_persistent_clock(&timekeeping_suspend_time);
561

562
	write_seqlock_irqsave(&xtime_lock, flags);
563
	timekeeping_forward_now();
564 565 566 567
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
568
	clocksource_suspend();
569 570 571 572 573 574

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
575
	.name		= "timekeeping",
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
599
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
600 601 602 603 604 605 606 607 608 609 610 611
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
612
	 * here.  This is tuned so that an error of about 1 msec is adjusted
613 614
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
615
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
616 617 618 619 620 621 622 623
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
624
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
625
	tick_error -= timekeeper.xtime_interval >> 1;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
650
static void timekeeping_adjust(s64 offset)
651
{
652
	s64 error, interval = timekeeper.cycle_interval;
653 654
	int adj;

655
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
656 657 658 659 660
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
661
			adj = timekeeping_bigadjust(error, &interval, &offset);
662 663 664 665 666 667 668
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
669
			adj = timekeeping_bigadjust(error, &interval, &offset);
670 671 672
	} else
		return;

673
	timekeeper.mult += adj;
674 675 676
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
677
				timekeeper.ntp_error_shift;
678 679
}

L
Linus Torvalds 已提交
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

	/* Accumulate into raw time */
	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
		raw_time.tv_nsec -= NSEC_PER_SEC;
		raw_time.tv_sec++;
	}

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
	timekeeper.ntp_error -= timekeeper.xtime_interval <<
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
724

725 726 727 728 729 730 731
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
void update_wall_time(void)
{
732
	struct clocksource *clock;
733
	cycle_t offset;
734
	int shift = 0, maxshift;
735 736 737 738 739

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

740
	clock = timekeeper.clock;
J
John Stultz 已提交
741 742

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
743
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
744 745
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
746
#endif
747
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
748

749 750 751 752 753 754 755
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
756
	 */
757 758 759 760 761
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
762
	while (offset >= timekeeper.cycle_interval) {
763
		offset = logarithmic_accumulation(offset, shift);
764 765
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
766 767 768
	}

	/* correct the clock when NTP error is too big */
769
	timekeeping_adjust(offset);
770

771 772 773 774
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
775
	 * slightly speeding the clocksource up in timekeeping_adjust(),
776 777 778 779 780 781 782 783 784 785 786
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
787 788 789
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
790
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
791 792
	}

J
John Stultz 已提交
793 794 795

	/*
	 * Store full nanoseconds into xtime after rounding it up and
796 797
	 * add the remainder to the error difference.
	 */
798 799 800 801
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
802

J
John Stultz 已提交
803 804 805 806 807 808 809 810 811
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
812

813
	/* check to see if there is a new clocksource to use */
814 815
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
816
}
T
Tomas Janousek 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
831 832 833 834
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
835 836

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
837
}
838
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
839 840 841 842 843 844 845

/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
J
John Stultz 已提交
846
	*ts = timespec_add(*ts, total_sleep_time);
T
Tomas Janousek 已提交
847
}
848
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
849

850 851
unsigned long get_seconds(void)
{
J
John Stultz 已提交
852
	return xtime.tv_sec;
853 854 855
}
EXPORT_SYMBOL(get_seconds);

856 857
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
858
	return xtime;
859
}
860

861 862 863 864 865 866 867
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
868

J
John Stultz 已提交
869
		now = xtime;
870 871 872 873 874
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
875 876 877 878 879 880 881 882

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
883

J
John Stultz 已提交
884
		now = xtime;
885 886 887 888 889 890 891
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}