ntp.c 24.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18

19 20
#include "tick-internal.h"

21
/*
22
 * NTP timekeeping variables:
23 24
 */

25 26 27 28 29
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

/* ACTHZ period (nsecs): */
unsigned long			tick_nsec;
R
Roman Zippel 已提交
30

31 32 33 34 35
u64				tick_length;
static u64			tick_length_base;

static struct hrtimer		leap_timer;

36
#define MAX_TICKADJ		500LL		/* usecs */
37
#define MAX_TICKADJ_SCALED \
38
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39 40 41 42

/*
 * phase-lock loop variables
 */
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
int				time_status = STA_UNSYNC;

/* TAI offset (secs):							*/
static long			time_tai;

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
64
static long			time_maxerror = NTP_PHASE_LIMIT;
65 66

/* estimated error (usecs):						*/
67
static long			time_esterror = NTP_PHASE_LIMIT;
68 69 70 71 72 73 74

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
75
static long			time_adjust;
76

77 78
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 *
 * Must be called while holding a write on the xtime_lock
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 *
 * Must be called while holding a write on the xtime_lock
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(time_status & STA_PPSSIGNAL))
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & STA_PPSFREQ)
			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

236 237 238
/*
 * NTP methods:
 */
239

240 241 242 243
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
244 245
static void ntp_update_frequency(void)
{
246
	u64 second_length;
247
	u64 new_base;
248 249 250 251

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

252
	second_length		+= ntp_tick_adj;
253
	second_length		+= time_freq;
254

255
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
256
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
257 258 259

	/*
	 * Don't wait for the next second_overflow, apply
260
	 * the change to the tick length immediately:
261
	 */
262 263
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
264 265
}

266
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
267 268 269 270
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
271
		return 0;
272 273

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
274
		return 0;
275 276 277

	time_status |= STA_MODE;

278
	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
279 280
}

R
Roman Zippel 已提交
281 282 283
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
284 285
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
286 287 288 289

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
290
	if (!(time_status & STA_NANO))
291
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
292 293 294 295 296

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
297 298
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
299 300 301 302 303

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
304
	secs = get_seconds() - time_reftime;
305
	if (unlikely(time_status & STA_FREQHOLD))
306 307
		secs = 0;

308
	time_reftime = get_seconds();
R
Roman Zippel 已提交
309

310
	offset64    = offset;
311
	freq_adj    = ntp_update_offset_fll(offset64, secs);
312

313 314 315 316 317 318 319 320 321 322
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
323 324 325 326 327 328

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
329 330
}

331 332 333 334 335 336 337
/**
 * ntp_clear - Clears the NTP state variables
 *
 * Must be called while holding a write on the xtime_lock
 */
void ntp_clear(void)
{
338 339 340 341
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
342 343 344

	ntp_update_frequency();

345 346
	tick_length	= tick_length_base;
	time_offset	= 0;
347 348 349

	/* Clear PPS state variables */
	pps_clear();
350 351
}

352
/*
R
Roman Zippel 已提交
353 354 355
 * Leap second processing. If in leap-insert state at the end of the
 * day, the system clock is set back one second; if in leap-delete
 * state, the system clock is set ahead one second.
356
 */
R
Roman Zippel 已提交
357
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
358
{
R
Roman Zippel 已提交
359
	enum hrtimer_restart res = HRTIMER_NORESTART;
360

361
	write_seqlock(&xtime_lock);
362 363 364 365 366

	switch (time_state) {
	case TIME_OK:
		break;
	case TIME_INS:
367
		timekeeping_leap_insert(-1);
R
Roman Zippel 已提交
368
		time_state = TIME_OOP;
369 370
		printk(KERN_NOTICE
			"Clock: inserting leap second 23:59:60 UTC\n");
371
		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
R
Roman Zippel 已提交
372
		res = HRTIMER_RESTART;
373 374
		break;
	case TIME_DEL:
375
		timekeeping_leap_insert(1);
R
Roman Zippel 已提交
376 377
		time_tai--;
		time_state = TIME_WAIT;
378 379
		printk(KERN_NOTICE
			"Clock: deleting leap second 23:59:59 UTC\n");
380 381
		break;
	case TIME_OOP:
R
Roman Zippel 已提交
382
		time_tai++;
383
		time_state = TIME_WAIT;
R
Roman Zippel 已提交
384
		/* fall through */
385 386
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
387
			time_state = TIME_OK;
R
Roman Zippel 已提交
388 389 390
		break;
	}

391
	write_sequnlock(&xtime_lock);
R
Roman Zippel 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405

	return res;
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 */
void second_overflow(void)
{
406
	s64 delta;
R
Roman Zippel 已提交
407 408 409 410 411 412

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
413 414
	}

415
	/* Compute the phase adjustment for the next second */
416 417
	tick_length	 = tick_length_base;

418
	delta		 = ntp_offset_chunk(time_offset);
419 420
	time_offset	-= delta;
	tick_length	+= delta;
421

422 423 424
	/* Check PPS signal */
	pps_dec_valid();

425 426 427 428 429 430 431
	if (!time_adjust)
		return;

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
		return;
432
	}
433 434 435 436 437 438 439 440 441 442

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
		return;
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
443 444
}

445
#ifdef CONFIG_GENERIC_CMOS_UPDATE
446

447 448 449
/* Disable the cmos update - used by virtualization and embedded */
int no_sync_cmos_clock  __read_mostly;

450
static void sync_cmos_clock(struct work_struct *work);
451

452
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
453

454
static void sync_cmos_clock(struct work_struct *work)
455 456 457 458 459 460 461 462 463 464 465
{
	struct timespec now, next;
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
	 */
466
	if (!ntp_synced()) {
467 468 469 470 471
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
472
	}
473 474

	getnstimeofday(&now);
475
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
476 477
		fail = update_persistent_clock(now);

478
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
479 480 481 482 483 484 485 486 487 488 489 490
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

	if (!fail)
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
491
	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
492 493 494
}

static void notify_cmos_timer(void)
495
{
496
	if (!no_sync_cmos_clock)
497
		schedule_delayed_work(&sync_cmos_work, 0);
498 499
}

500 501 502 503
#else
static inline void notify_cmos_timer(void) { }
#endif

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * Start the leap seconds timer:
 */
static inline void ntp_start_leap_timer(struct timespec *ts)
{
	long now = ts->tv_sec;

	if (time_status & STA_INS) {
		time_state = TIME_INS;
		now += 86400 - now % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);

		return;
	}

	if (time_status & STA_DEL) {
		time_state = TIME_DEL;
		now += 86400 - (now + 1) % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
	}
}
I
Ingo Molnar 已提交
525 526 527 528 529 530 531 532 533

/*
 * Propagate a new txc->status value into the NTP state:
 */
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
534 535
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
536 537 538 539 540 541 542
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
543
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
544

545 546
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
547 548 549 550
	time_status |= txc->status & ~STA_RONLY;

	switch (time_state) {
	case TIME_OK:
551
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
552 553 554 555
		break;
	case TIME_INS:
	case TIME_DEL:
		time_state = TIME_OK;
556
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
			time_state = TIME_OK;
		break;
	case TIME_OOP:
		hrtimer_restart(&leap_timer);
		break;
	}
}
/*
 * Called with the xtime lock held, so we can access and modify
 * all the global NTP state:
 */
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
577

I
Ingo Molnar 已提交
578 579 580 581
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
582
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
583 584
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
585 586
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
587 588 589 590
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
591

I
Ingo Molnar 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
		time_tai = txc->constant;

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
608

I
Ingo Molnar 已提交
609 610 611 612 613 614 615
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

616 617
/*
 * adjtimex mainly allows reading (and writing, if superuser) of
618 619 620 621
 * kernel time-keeping variables. used by xntpd.
 */
int do_adjtimex(struct timex *txc)
{
R
Roman Zippel 已提交
622
	struct timespec ts;
623 624
	int result;

625 626
	/* Validate the data before disabling interrupts */
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
627
		/* singleshot must not be used with any other mode bits */
628
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629
			return -EINVAL;
630 631 632 633 634 635 636 637
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;

638 639 640 641
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
642 643 644
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
645
			return -EINVAL;
646 647 648

		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
			hrtimer_cancel(&leap_timer);
J
John Stultz 已提交
649
	}
650

651 652 653 654 655 656 657 658 659 660 661
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		if ((unsigned long)txc->time.tv_usec >= NSEC_PER_SEC)
			return -EINVAL;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		timekeeping_inject_offset(&delta);
	}

R
Roman Zippel 已提交
662 663
	getnstimeofday(&ts);

664 665
	write_seqlock_irq(&xtime_lock);

666 667 668 669 670 671 672 673 674
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
675
	} else {
R
Roman Zippel 已提交
676

677 678 679
		/* If there are input parameters, then process them: */
		if (txc->modes)
			process_adjtimex_modes(txc, &ts);
R
Roman Zippel 已提交
680

681
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
682
				  NTP_SCALE_SHIFT);
683 684 685
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
686

R
Roman Zippel 已提交
687
	result = time_state;	/* mostly `TIME_OK' */
688 689
	/* check for errors */
	if (is_error_status(time_status))
690 691
		result = TIME_ERROR;

692
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
693
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
694 695 696 697
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
698
	txc->precision	   = 1;
699
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
700
	txc->tick	   = tick_usec;
R
Roman Zippel 已提交
701
	txc->tai	   = time_tai;
702

703 704
	/* fill PPS status fields */
	pps_fill_timex(txc);
705

706
	write_sequnlock_irq(&xtime_lock);
R
Roman Zippel 已提交
707

R
Roman Zippel 已提交
708 709 710 711
	txc->time.tv_sec = ts.tv_sec;
	txc->time.tv_usec = ts.tv_nsec;
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
712

713
	notify_cmos_timer();
R
Roman Zippel 已提交
714 715

	return result;
716
}
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
	__kernel_time_t	sec;	/* seconds */
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
				freq_norm.sec);
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
		       jitter, (pps_jitter << PPS_POPCORN));
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
 * hardpps() - discipline CPU clock oscillator to external PPS signal
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
	struct pps_normtime pts_norm, freq_norm;
	unsigned long flags;

	pts_norm = pps_normalize_ts(*phase_ts);

	write_seqlock_irqsave(&xtime_lock, flags);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		write_sequnlock_irqrestore(&xtime_lock, flags);
		return;
	}

	/* ok, now we have a base for frequency calculation */
	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		write_sequnlock_irqrestore(&xtime_lock, flags);
		pr_err("hardpps: PPSJITTER: bad pulse\n");
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

	write_sequnlock_irqrestore(&xtime_lock, flags);
}
EXPORT_SYMBOL(hardpps);

#endif	/* CONFIG_NTP_PPS */

955 956 957
static int __init ntp_tick_adj_setup(char *str)
{
	ntp_tick_adj = simple_strtol(str, NULL, 0);
958 959
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

960 961 962 963
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
964 965 966 967 968 969 970

void __init ntp_init(void)
{
	ntp_clear();
	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	leap_timer.function = ntp_leap_second;
}