migrate.c 76.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/mmu_notifier.h>
46
#include <linux/page_idle.h>
47
#include <linux/page_owner.h>
48
#include <linux/sched/mm.h>
49
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
50

51 52
#include <asm/tlbflush.h>

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
56 57 58
#include "internal.h"

/*
59
 * migrate_prep() needs to be called before we start compiling a list of pages
60 61
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

76 77 78 79 80 81 82 83
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

84
int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

135
	return 0;
136 137 138 139 140 141

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
142
	return -EBUSY;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

159 160 161 162
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
163 164 165
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
166 167 168 169 170 171
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
172
	list_for_each_entry_safe(page, page2, l, lru) {
173 174 175 176
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
177
		list_del(&page->lru);
178 179 180 181 182
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
183
		if (unlikely(__PageMovable(page))) {
184 185 186 187 188 189 190 191 192
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
193 194
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
195
			putback_lru_page(page);
196
		}
C
Christoph Lameter 已提交
197 198 199
	}
}

200 201 202
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
203
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204
				 unsigned long addr, void *old)
205
{
206 207 208 209 210 211 212 213
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
214 215
	swp_entry_t entry;

216 217
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
218 219 220 221 222
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
223

224 225 226 227 228 229 230 231 232
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

233 234 235 236
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
237

238 239 240 241 242 243
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
244

245 246 247 248 249 250 251 252
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			} else if (is_device_public_page(new)) {
				pte = pte_mkdevmap(pte);
				flush_dcache_page(new);
			}
253 254 255
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
256
#ifdef CONFIG_HUGETLB_PAGE
257 258 259
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
260
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 262 263 264
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
265 266 267 268
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269

270 271 272 273 274
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
275 276 277
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

278 279 280
		if (PageTransHuge(page) && PageMlocked(page))
			clear_page_mlock(page);

281 282 283
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
284

M
Minchan Kim 已提交
285
	return true;
286 287
}

288 289 290 291
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
292
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293
{
294 295 296 297 298
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

299 300 301 302
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
303 304
}

305 306 307 308 309
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
310
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311
				spinlock_t *ptl)
312
{
313
	pte_t pte;
314 315 316
	swp_entry_t entry;
	struct page *page;

317
	spin_lock(ptl);
318 319 320 321 322 323 324 325 326 327
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
328 329 330 331 332 333 334 335 336
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
337 338 339 340 341 342 343 344
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

345 346 347 348 349 350 351 352
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

353 354
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
355
{
356
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 358 359
	__migration_entry_wait(mm, pte, ptl);
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

381 382
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
383 384
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
385 386 387 388
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
389
	if (mode != MIGRATE_ASYNC) {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425
							enum migrate_mode mode)
426 427 428 429 430
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
431
/*
432
 * Replace the page in the mapping.
433 434 435 436
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
437
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
438
 */
439
int migrate_page_move_mapping(struct address_space *mapping,
440
		struct page *newpage, struct page *page,
441 442
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
443
{
444 445
	struct zone *oldzone, *newzone;
	int dirty;
446
	int expected_count = 1 + extra_count;
447
	void **pslot;
C
Christoph Lameter 已提交
448

449
	/*
450 451
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
452
	 */
453 454
	expected_count += is_device_private_page(page);
	expected_count += is_device_public_page(page);
455

456
	if (!mapping) {
457
		/* Anonymous page without mapping */
458
		if (page_count(page) != expected_count)
459
			return -EAGAIN;
460 461 462 463 464

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
465
			__SetPageSwapBacked(newpage);
466

467
		return MIGRATEPAGE_SUCCESS;
468 469
	}

470 471 472
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

M
Matthew Wilcox 已提交
473
	xa_lock_irq(&mapping->i_pages);
C
Christoph Lameter 已提交
474

M
Matthew Wilcox 已提交
475
	pslot = radix_tree_lookup_slot(&mapping->i_pages,
476
 					page_index(page));
C
Christoph Lameter 已提交
477

478
	expected_count += hpage_nr_pages(page) + page_has_private(page);
N
Nick Piggin 已提交
479
	if (page_count(page) != expected_count ||
M
Matthew Wilcox 已提交
480 481 482
		radix_tree_deref_slot_protected(pslot,
					&mapping->i_pages.xa_lock) != page) {
		xa_unlock_irq(&mapping->i_pages);
483
		return -EAGAIN;
C
Christoph Lameter 已提交
484 485
	}

486
	if (!page_ref_freeze(page, expected_count)) {
M
Matthew Wilcox 已提交
487
		xa_unlock_irq(&mapping->i_pages);
N
Nick Piggin 已提交
488 489 490
		return -EAGAIN;
	}

491 492 493 494 495 496 497
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
498 499
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
500
		page_ref_unfreeze(page, expected_count);
M
Matthew Wilcox 已提交
501
		xa_unlock_irq(&mapping->i_pages);
502 503 504
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
505
	/*
506 507
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
508
	 */
509 510
	newpage->index = page->index;
	newpage->mapping = page->mapping;
511
	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512 513 514 515 516 517 518 519
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
520 521
	}

522 523 524 525 526 527 528
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

M
Matthew Wilcox 已提交
529
	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530 531 532 533
	if (PageTransHuge(page)) {
		int i;
		int index = page_index(page);

534
		for (i = 1; i < HPAGE_PMD_NR; i++) {
535 536 537 538 539 540
			pslot = radix_tree_lookup_slot(&mapping->i_pages,
						       index + i);
			radix_tree_replace_slot(&mapping->i_pages, pslot,
						newpage + i);
		}
	}
541 542

	/*
543 544
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
545 546
	 * We know this isn't the last reference.
	 */
547
	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548

M
Matthew Wilcox 已提交
549
	xa_unlock(&mapping->i_pages);
550 551
	/* Leave irq disabled to prevent preemption while updating stats */

552 553 554 555 556 557 558
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
559
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560 561
	 * are mapped to swap space.
	 */
562
	if (newzone != oldzone) {
563 564
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
566 567
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568 569
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
570
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
574
		}
575
	}
576
	local_irq_enable();
C
Christoph Lameter 已提交
577

578
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
579
}
580
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
581

N
Naoya Horiguchi 已提交
582 583 584 585 586 587 588 589 590 591
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

M
Matthew Wilcox 已提交
592
	xa_lock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
593

M
Matthew Wilcox 已提交
594
	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
595 596 597

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
M
Matthew Wilcox 已提交
598 599
		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
		xa_unlock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
600 601 602
		return -EAGAIN;
	}

603
	if (!page_ref_freeze(page, expected_count)) {
M
Matthew Wilcox 已提交
604
		xa_unlock_irq(&mapping->i_pages);
N
Naoya Horiguchi 已提交
605 606 607
		return -EAGAIN;
	}

608 609
	newpage->index = page->index;
	newpage->mapping = page->mapping;
610

N
Naoya Horiguchi 已提交
611 612
	get_page(newpage);

M
Matthew Wilcox 已提交
613
	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
N
Naoya Horiguchi 已提交
614

615
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
616

M
Matthew Wilcox 已提交
617
	xa_unlock_irq(&mapping->i_pages);
618

619
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
620 621
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
670 671 672
/*
 * Copy the page to its new location
 */
673
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
674
{
675 676
	int cpupid;

C
Christoph Lameter 已提交
677 678 679 680 681 682
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
683
	if (TestClearPageActive(page)) {
684
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
685
		SetPageActive(newpage);
686 687
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
688 689 690 691 692
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

693 694 695
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
696

697 698 699 700 701
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

702 703 704 705 706 707 708
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

709
	ksm_migrate_page(newpage, page);
710 711 712 713
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
714 715
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
716 717 718 719 720 721 722 723 724
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
725 726

	copy_page_owner(page, newpage);
727 728

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
729
}
730 731 732 733 734 735 736 737 738 739 740
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
741
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
742

743 744 745 746
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
747
/*
748
 * Common logic to directly migrate a single LRU page suitable for
749
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
750 751 752
 *
 * Pages are locked upon entry and exit.
 */
753
int migrate_page(struct address_space *mapping,
754 755
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
756 757 758 759 760
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

761
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
762

763
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
764 765
		return rc;

766 767 768 769
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
770
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
771 772 773
}
EXPORT_SYMBOL(migrate_page);

774
#ifdef CONFIG_BLOCK
775 776 777 778 779
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
780
int buffer_migrate_page(struct address_space *mapping,
781
		struct page *newpage, struct page *page, enum migrate_mode mode)
782 783 784 785 786
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
787
		return migrate_page(mapping, newpage, page, mode);
788 789 790

	head = page_buffers(page);

791
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
792

793
	if (rc != MIGRATEPAGE_SUCCESS)
794 795
		return rc;

796 797 798 799 800
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
801 802
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

819 820 821 822
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
823 824 825 826

	bh = head;
	do {
		unlock_buffer(bh);
827
		put_bh(bh);
828 829 830 831
		bh = bh->b_this_page;

	} while (bh != head);

832
	return MIGRATEPAGE_SUCCESS;
833 834
}
EXPORT_SYMBOL(buffer_migrate_page);
835
#endif
836

837 838 839 840
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
841
{
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

859
	/*
860 861 862 863 864 865
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
866
	 */
867
	remove_migration_ptes(page, page, false);
868

869
	rc = mapping->a_ops->writepage(page, &wbc);
870

871 872 873 874
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
875
	return (rc < 0) ? -EIO : -EAGAIN;
876 877 878 879 880 881
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
882
	struct page *newpage, struct page *page, enum migrate_mode mode)
883
{
884
	if (PageDirty(page)) {
885
		/* Only writeback pages in full synchronous migration */
886 887 888 889 890
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
891
			return -EBUSY;
892
		}
893
		return writeout(mapping, page);
894
	}
895 896 897 898 899

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
900
	if (page_has_private(page) &&
901 902 903
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

904
	return migrate_page(mapping, newpage, page, mode);
905 906
}

907 908 909 910 911 912
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
913 914 915
 *
 * Return value:
 *   < 0 - error code
916
 *  MIGRATEPAGE_SUCCESS - success
917
 */
918
static int move_to_new_page(struct page *newpage, struct page *page,
919
				enum migrate_mode mode)
920 921
{
	struct address_space *mapping;
922 923
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
924

925 926
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927 928

	mapping = page_mapping(page);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
947
		/*
948 949
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
950
		 */
951 952 953 954 955 956 957 958 959 960 961 962
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
963

964 965 966 967 968
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
985
			page->mapping = NULL;
986
	}
987
out:
988 989 990
	return rc;
}

991
static int __unmap_and_move(struct page *page, struct page *newpage,
992
				int force, enum migrate_mode mode)
993
{
994
	int rc = -EAGAIN;
995
	int page_was_mapped = 0;
996
	struct anon_vma *anon_vma = NULL;
997
	bool is_lru = !__PageMovable(page);
998

N
Nick Piggin 已提交
999
	if (!trylock_page(page)) {
1000
		if (!force || mode == MIGRATE_ASYNC)
1001
			goto out;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1017
			goto out;
1018

1019 1020 1021 1022
		lock_page(page);
	}

	if (PageWriteback(page)) {
1023
		/*
1024
		 * Only in the case of a full synchronous migration is it
1025 1026 1027
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1028
		 */
1029 1030 1031 1032 1033
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1034
			rc = -EBUSY;
1035
			goto out_unlock;
1036 1037
		}
		if (!force)
1038
			goto out_unlock;
1039 1040
		wait_on_page_writeback(page);
	}
1041

1042
	/*
1043 1044
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1045
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1046
	 * of migration. File cache pages are no problem because of page_lock()
1047 1048
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1049 1050 1051 1052 1053 1054
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1055
	 */
1056
	if (PageAnon(page) && !PageKsm(page))
1057
		anon_vma = page_get_anon_vma(page);
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1070 1071 1072 1073 1074
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1075
	/*
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1086
	 */
1087
	if (!page->mapping) {
1088
		VM_BUG_ON_PAGE(PageAnon(page), page);
1089
		if (page_has_private(page)) {
1090
			try_to_free_buffers(page);
1091
			goto out_unlock_both;
1092
		}
1093 1094
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1095 1096
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1097
		try_to_unmap(page,
1098
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1099 1100
		page_was_mapped = 1;
	}
1101

1102
	if (!page_mapped(page))
1103
		rc = move_to_new_page(newpage, page, mode);
1104

1105 1106
	if (page_was_mapped)
		remove_migration_ptes(page,
1107
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1108

1109 1110 1111
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1112
	/* Drop an anon_vma reference if we took one */
1113
	if (anon_vma)
1114
		put_anon_vma(anon_vma);
1115
	unlock_page(page);
1116
out:
1117 1118 1119 1120
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
1121 1122 1123 1124
	 * list in here. Use the old state of the isolated source page to
	 * determine if we migrated a LRU page. newpage was already unlocked
	 * and possibly modified by its owner - don't rely on the page
	 * state.
1125 1126
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1127
		if (unlikely(!is_lru))
1128 1129 1130 1131 1132
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1133 1134
	return rc;
}
1135

1136 1137 1138 1139
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
1140 1141
#if defined(CONFIG_ARM) && \
	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1142 1143 1144 1145 1146
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1147 1148 1149 1150
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1151 1152 1153
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1154 1155
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1156
{
1157 1158
	int rc = MIGRATEPAGE_SUCCESS;
	struct page *newpage;
1159

M
Michal Hocko 已提交
1160 1161 1162
	if (!thp_migration_supported() && PageTransHuge(page))
		return -ENOMEM;

1163
	newpage = get_new_page(page, private);
1164 1165 1166 1167 1168
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1169 1170
		ClearPageActive(page);
		ClearPageUnevictable(page);
1171 1172 1173 1174 1175 1176
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1177 1178 1179 1180
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1181 1182 1183
		goto out;
	}

1184
	rc = __unmap_and_move(page, newpage, force, mode);
1185
	if (rc == MIGRATEPAGE_SUCCESS)
1186
		set_page_owner_migrate_reason(newpage, reason);
1187

1188
out:
1189
	if (rc != -EAGAIN) {
1190 1191 1192 1193 1194 1195 1196
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1197 1198 1199 1200 1201 1202 1203

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1204 1205
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1216
			/*
1217 1218 1219
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1220
			 */
1221
			if (set_hwpoison_free_buddy_page(page))
1222
				num_poisoned_pages_inc();
1223 1224
		}
	} else {
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1240 1241 1242 1243
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1244
	}
1245

1246 1247 1248
	return rc;
}

N
Naoya Horiguchi 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1268 1269
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1270
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1271
{
1272
	int rc = -EAGAIN;
1273
	int page_was_mapped = 0;
1274
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1275 1276
	struct anon_vma *anon_vma = NULL;

1277 1278 1279 1280 1281 1282 1283
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1284
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1285
		putback_active_hugepage(hpage);
1286
		return -ENOSYS;
1287
	}
1288

1289
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1290 1291 1292 1293
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1294
		if (!force)
N
Naoya Horiguchi 已提交
1295
			goto out;
1296 1297 1298 1299 1300 1301 1302
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1303 1304 1305
		lock_page(hpage);
	}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * Check for pages which are in the process of being freed.  Without
	 * page_mapping() set, hugetlbfs specific move page routine will not
	 * be called and we could leak usage counts for subpools.
	 */
	if (page_private(hpage) && !page_mapping(hpage)) {
		rc = -EBUSY;
		goto out_unlock;
	}

1316 1317
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1318

1319 1320 1321
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1322 1323 1324 1325 1326
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1327 1328

	if (!page_mapped(hpage))
1329
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1330

1331 1332
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1333
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1334

1335 1336 1337
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1338
	if (anon_vma)
1339
		put_anon_vma(anon_vma);
1340

1341
	if (rc == MIGRATEPAGE_SUCCESS) {
1342
		move_hugetlb_state(hpage, new_hpage, reason);
1343 1344
		put_new_page = NULL;
	}
1345

1346
out_unlock:
N
Naoya Horiguchi 已提交
1347
	unlock_page(hpage);
1348
out:
1349 1350
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1351 1352 1353 1354 1355 1356

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1357
	if (put_new_page)
1358 1359
		put_new_page(new_hpage, private);
	else
1360
		putback_active_hugepage(new_hpage);
1361

N
Naoya Horiguchi 已提交
1362 1363 1364
	return rc;
}

C
Christoph Lameter 已提交
1365
/*
1366 1367
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1368
 *
1369 1370 1371
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1372 1373
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1374 1375 1376 1377
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1378
 *
1379 1380
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1381
 * The caller should call putback_movable_pages() to return pages to the LRU
1382
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1383
 *
1384
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1385
 */
1386
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1387 1388
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1389
{
1390
	int retry = 1;
C
Christoph Lameter 已提交
1391
	int nr_failed = 0;
1392
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1402 1403
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1404

1405
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1406
retry:
1407
			cond_resched();
1408

1409 1410
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1411
						put_new_page, private, page,
1412
						pass > 2, mode, reason);
1413
			else
1414
				rc = unmap_and_move(get_new_page, put_new_page,
1415 1416
						private, page, pass > 2, mode,
						reason);
1417

1418
			switch(rc) {
1419
			case -ENOMEM:
M
Michal Hocko 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
				/*
				 * THP migration might be unsupported or the
				 * allocation could've failed so we should
				 * retry on the same page with the THP split
				 * to base pages.
				 *
				 * Head page is retried immediately and tail
				 * pages are added to the tail of the list so
				 * we encounter them after the rest of the list
				 * is processed.
				 */
1431
				if (PageTransHuge(page) && !PageHuge(page)) {
M
Michal Hocko 已提交
1432 1433 1434 1435 1436 1437 1438 1439
					lock_page(page);
					rc = split_huge_page_to_list(page, from);
					unlock_page(page);
					if (!rc) {
						list_safe_reset_next(page, page2, lru);
						goto retry;
					}
				}
1440
				nr_failed++;
1441
				goto out;
1442
			case -EAGAIN:
1443
				retry++;
1444
				break;
1445
			case MIGRATEPAGE_SUCCESS:
1446
				nr_succeeded++;
1447 1448
				break;
			default:
1449 1450 1451 1452 1453 1454
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1455
				nr_failed++;
1456
				break;
1457
			}
C
Christoph Lameter 已提交
1458 1459
		}
	}
1460 1461
	nr_failed += retry;
	rc = nr_failed;
1462
out:
1463 1464 1465 1466
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1467 1468
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1469 1470 1471
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1472
	return rc;
C
Christoph Lameter 已提交
1473
}
1474

1475 1476
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1477
static int store_status(int __user *status, int start, int value, int nr)
1478
{
M
Michal Hocko 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;

	if (list_empty(pagelist))
		return 0;

	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
			MIGRATE_SYNC, MR_SYSCALL);
	if (err)
		putback_movable_pages(pagelist);
	return err;
1501 1502 1503
}

/*
M
Michal Hocko 已提交
1504 1505 1506 1507 1508
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
 * Returns -errno if the page cannot be found/isolated or 0 when it has been
 * queued or the page doesn't need to be migrated because it is already on
 * the target node
1509
 */
M
Michal Hocko 已提交
1510 1511
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1512
{
M
Michal Hocko 已提交
1513 1514 1515
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1516 1517 1518
	int err;

	down_read(&mm->mmap_sem);
M
Michal Hocko 已提交
1519 1520 1521 1522
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1523

M
Michal Hocko 已提交
1524 1525 1526
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1527

M
Michal Hocko 已提交
1528 1529 1530
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1531

M
Michal Hocko 已提交
1532 1533 1534
	err = -ENOENT;
	if (!page)
		goto out;
1535

M
Michal Hocko 已提交
1536 1537 1538
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1539

M
Michal Hocko 已提交
1540 1541 1542
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1543

M
Michal Hocko 已提交
1544 1545 1546 1547
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
			err = 0;
1548
		}
M
Michal Hocko 已提交
1549 1550
	} else {
		struct page *head;
1551

1552 1553
		head = compound_head(page);
		err = isolate_lru_page(head);
1554
		if (err)
M
Michal Hocko 已提交
1555
			goto out_putpage;
1556

M
Michal Hocko 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		err = 0;
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
			NR_ISOLATED_ANON + page_is_file_cache(head),
			hpage_nr_pages(head));
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1571 1572 1573 1574
	up_read(&mm->mmap_sem);
	return err;
}

1575 1576 1577 1578
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1579
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1580 1581 1582 1583 1584
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1585 1586 1587 1588
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1589 1590 1591

	migrate_prep();

M
Michal Hocko 已提交
1592 1593 1594 1595
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1596

M
Michal Hocko 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
		addr = (unsigned long)p;

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1609

M
Michal Hocko 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
			err = do_move_pages_to_node(mm, &pagelist, current_node);
			if (err)
				goto out;
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
			start = i;
			current_node = node;
1626 1627
		}

M
Michal Hocko 已提交
1628 1629 1630 1631 1632 1633 1634 1635
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
		if (!err)
			continue;
1636

M
Michal Hocko 已提交
1637 1638 1639
		err = store_status(status, i, err, 1);
		if (err)
			goto out_flush;
1640

M
Michal Hocko 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649
		err = do_move_pages_to_node(mm, &pagelist, current_node);
		if (err)
			goto out;
		if (i > start) {
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
		}
		current_node = NUMA_NO_NODE;
1650
	}
M
Michal Hocko 已提交
1651
out_flush:
1652 1653 1654
	if (list_empty(&pagelist))
		return err;

M
Michal Hocko 已提交
1655 1656 1657 1658 1659 1660
	/* Make sure we do not overwrite the existing error */
	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
	if (!err1)
		err1 = store_status(status, start, current_node, i - start);
	if (!err)
		err = err1;
1661 1662 1663 1664
out:
	return err;
}

1665
/*
1666
 * Determine the nodes of an array of pages and store it in an array of status.
1667
 */
1668 1669
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1670
{
1671 1672
	unsigned long i;

1673 1674
	down_read(&mm->mmap_sem);

1675
	for (i = 0; i < nr_pages; i++) {
1676
		unsigned long addr = (unsigned long)(*pages);
1677 1678
		struct vm_area_struct *vma;
		struct page *page;
1679
		int err = -EFAULT;
1680 1681

		vma = find_vma(mm, addr);
1682
		if (!vma || addr < vma->vm_start)
1683 1684
			goto set_status;

1685 1686
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1687 1688 1689 1690 1691

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1692
		err = page ? page_to_nid(page) : -ENOENT;
1693
set_status:
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1715 1716
	while (nr_pages) {
		unsigned long chunk_nr;
1717

1718 1719 1720 1721 1722 1723
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1724 1725 1726

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1727 1728
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1729

1730 1731 1732 1733 1734
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1735 1736 1737 1738 1739 1740
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1741 1742 1743 1744
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
1745 1746 1747
{
	struct task_struct *task;
	struct mm_struct *mm;
1748
	int err;
1749
	nodemask_t task_nodes;
1750 1751 1752 1753 1754 1755 1756 1757 1758

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1759
	rcu_read_lock();
1760
	task = pid ? find_task_by_vpid(pid) : current;
1761
	if (!task) {
1762
		rcu_read_unlock();
1763 1764
		return -ESRCH;
	}
1765
	get_task_struct(task);
1766 1767 1768

	/*
	 * Check if this process has the right to modify the specified
1769
	 * process. Use the regular "ptrace_may_access()" checks.
1770
	 */
1771
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1772
		rcu_read_unlock();
1773
		err = -EPERM;
1774
		goto out;
1775
	}
1776
	rcu_read_unlock();
1777

1778 1779
 	err = security_task_movememory(task);
 	if (err)
1780
		goto out;
1781

1782 1783 1784 1785
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1786 1787 1788 1789 1790 1791 1792 1793
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1794 1795 1796

	mmput(mm);
	return err;
1797 1798 1799 1800

out:
	put_task_struct(task);
	return err;
1801 1802
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

1833 1834 1835 1836 1837 1838
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1839
				   unsigned long nr_migrate_pages)
1840 1841
{
	int z;
M
Mel Gorman 已提交
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1861
					   unsigned long data)
1862 1863 1864 1865
{
	int nid = (int) data;
	struct page *newpage;

1866
	newpage = __alloc_pages_node(nid,
1867 1868 1869
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1870
					 ~__GFP_RECLAIM, 0);
1871

1872 1873 1874
	return newpage;
}

1875
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1876
{
1877
	int page_lru;
1878

1879
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1880

1881
	/* Avoid migrating to a node that is nearly full */
1882 1883
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1884

1885 1886
	if (isolate_lru_page(page))
		return 0;
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1898 1899
	}

1900
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1901
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1902 1903
				hpage_nr_pages(page));

1904
	/*
1905 1906 1907
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1908 1909
	 */
	put_page(page);
1910
	return 1;
1911 1912
}

1913 1914 1915 1916 1917 1918
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1919 1920 1921 1922 1923
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1924 1925
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1926 1927
{
	pg_data_t *pgdat = NODE_DATA(node);
1928
	int isolated;
1929 1930 1931 1932
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1933 1934
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1935
	 */
1936 1937
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1938 1939
		goto out;

1940 1941 1942 1943 1944 1945 1946
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
	if (page_is_file_cache(page) && PageDirty(page))
		goto out;

1947 1948 1949 1950 1951
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1952
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1953 1954
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1955
	if (nr_remaining) {
1956 1957
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1958
			dec_node_page_state(page, NR_ISOLATED_ANON +
1959 1960 1961
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1962 1963 1964
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1965 1966
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1967 1968 1969 1970

out:
	put_page(page);
	return 0;
1971
}
1972
#endif /* CONFIG_NUMA_BALANCING */
1973

1974
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1975 1976 1977 1978
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1979 1980 1981 1982 1983 1984
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1985
	spinlock_t *ptl;
1986 1987 1988 1989
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1990 1991
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1992 1993

	new_page = alloc_pages_node(node,
1994
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1995
		HPAGE_PMD_ORDER);
1996 1997
	if (!new_page)
		goto out_fail;
1998
	prep_transhuge_page(new_page);
1999

2000
	isolated = numamigrate_isolate_page(pgdat, page);
2001
	if (!isolated) {
2002
		put_page(new_page);
2003
		goto out_fail;
2004
	}
2005

2006
	/* Prepare a page as a migration target */
2007
	__SetPageLocked(new_page);
2008 2009
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2010 2011 2012 2013 2014 2015 2016 2017

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2018
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2019
	ptl = pmd_lock(mm, pmd);
2020
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2021
		spin_unlock(ptl);
2022
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2033 2034
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2035
		putback_lru_page(page);
M
Mel Gorman 已提交
2036
		mod_node_page_state(page_pgdat(page),
2037
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2038 2039

		goto out_unlock;
2040 2041
	}

K
Kirill A. Shutemov 已提交
2042
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2043
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2044

2045 2046 2047 2048 2049 2050 2051
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2052
	flush_cache_range(vma, mmun_start, mmun_end);
2053
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2054
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2055
	set_pmd_at(mm, mmun_start, pmd, entry);
2056
	update_mmu_cache_pmd(vma, address, &entry);
2057

2058
	page_ref_unfreeze(page, 2);
2059
	mlock_migrate_page(new_page, page);
2060
	page_remove_rmap(page, true);
2061
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2062

2063
	spin_unlock(ptl);
2064 2065 2066 2067 2068
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2069

2070 2071 2072 2073
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2074 2075 2076 2077 2078 2079 2080 2081
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2082
	mod_node_page_state(page_pgdat(page),
2083 2084 2085 2086
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2087 2088
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2089 2090
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2091
		entry = pmd_modify(entry, vma->vm_page_prot);
2092
		set_pmd_at(mm, mmun_start, pmd, entry);
2093 2094 2095
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2096

2097
out_unlock:
2098
	unlock_page(page);
2099 2100 2101
	put_page(page);
	return 0;
}
2102 2103 2104
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2105

2106
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2124
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2125
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2126
		migrate->dst[migrate->npages] = 0;
2127
		migrate->npages++;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2157
	unsigned long addr = start, unmapped = 0;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2179
				return migrate_vma_collect_skip(start, end,
2180 2181 2182 2183 2184 2185 2186
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2187
				return migrate_vma_collect_skip(start, end,
2188 2189 2190 2191
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2192 2193 2194 2195
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2196 2197 2198 2199 2200 2201
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2202
		return migrate_vma_collect_skip(start, end, walk);
2203 2204

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2205 2206
	arch_enter_lazy_mmu_mode();

2207 2208 2209
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2210
		swp_entry_t entry;
2211 2212 2213 2214 2215
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2216
		if (pte_none(pte)) {
2217 2218 2219
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2220 2221 2222
			goto next;
		}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2241 2242 2243 2244 2245 2246
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2247
			page = _vm_normal_page(migrate->vma, addr, pte, true);
2248 2249 2250 2251
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2252 2253 2254 2255 2256
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2257
		pfn = page_to_pfn(page);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2283 2284
			entry = make_migration_entry(page, mpfn &
						     MIGRATE_PFN_WRITE);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2297 2298 2299

			if (pte_present(pte))
				unmapped++;
2300 2301
		}

2302
next:
2303
		migrate->dst[migrate->npages] = 0;
2304 2305
		migrate->src[migrate->npages++] = mpfn;
	}
2306
	arch_leave_lazy_mmu_mode();
2307 2308
	pte_unmap_unlock(ptep - 1, ptl);

2309 2310 2311 2312
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2337 2338 2339
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2340
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2341 2342 2343
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

2391 2392 2393 2394 2395 2396 2397
		/*
		 * Only allow device public page to be migrated and account for
		 * the extra reference count imply by ZONE_DEVICE pages.
		 */
		if (!is_device_public_page(page))
			return false;
		extra++;
2398 2399
	}

2400 2401 2402 2403
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2422 2423
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2424 2425 2426 2427 2428 2429
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2430
		bool remap = true;
2431 2432 2433 2434

		if (!page)
			continue;

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2452 2453
		}

2454 2455 2456 2457 2458 2459 2460
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2461

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2474
			}
2475 2476 2477

			/* Drop the reference we took in collect */
			put_page(page);
2478 2479 2480
		}

		if (!migrate_vma_check_page(page)) {
2481 2482 2483 2484
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2485

2486 2487 2488 2489
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2490 2491 2492 2493 2494
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2495 2496 2497 2498
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2499
			}
2500 2501
		}
	}
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2542 2543 2544 2545
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2546
		}
2547 2548 2549 2550 2551 2552 2553 2554

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2569 2570 2571 2572
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2573 2574 2575
	}
}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
	if (pte_alloc(mm, pmdp, addr))
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		} else if (is_device_public_page(page)) {
			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
			if (vma->vm_flags & VM_WRITE)
				entry = pte_mkwrite(pte_mkdirty(entry));
			entry = pte_mkdevmap(entry);
		}
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2724 2725 2726 2727
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr, i, mmu_start;
	bool notified = false;
2728 2729 2730 2731 2732 2733 2734

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2735 2736
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2737
			continue;
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				mmu_start = addr;
				notified = true;
				mmu_notifier_invalidate_range_start(mm,
								mmu_start,
								migrate->end);
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2754
			continue;
2755
		}
2756 2757 2758

		mapping = page_mapping(page);

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2769
			} else if (!is_device_public_page(newpage)) {
2770 2771 2772 2773 2774 2775 2776 2777 2778
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2779 2780 2781 2782
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2783

2784 2785 2786 2787 2788
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
2789
	if (notified)
2790 2791
		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
						       migrate->end);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2814 2815 2816 2817 2818
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2819
			continue;
2820 2821
		}

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2834 2835 2836 2837
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2838 2839 2840

		if (newpage != page) {
			unlock_page(newpage);
2841 2842 2843 2844
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
2913 2914
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
			vma_is_dax(vma))
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);
2968
#endif /* defined(MIGRATE_VMA_HELPER) */