e1000_i210.c 23.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2007 - 2018 Intel Corporation. */
3 4 5 6 7 8 9 10 11 12 13

/* e1000_i210
 * e1000_i211
 */

#include <linux/types.h>
#include <linux/if_ether.h>

#include "e1000_hw.h"
#include "e1000_i210.h"

14 15
static s32 igb_update_flash_i210(struct e1000_hw *hw);

C
Carolyn Wyborny 已提交
16 17 18 19 20 21 22 23 24 25 26 27
/**
 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 */
static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = rd32(E1000_SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == timeout) {
		/* In rare circumstances, the SW semaphore may already be held
		 * unintentionally. Clear the semaphore once before giving up.
		 */
		if (hw->dev_spec._82575.clear_semaphore_once) {
			hw->dev_spec._82575.clear_semaphore_once = false;
			igb_put_hw_semaphore(hw);
			for (i = 0; i < timeout; i++) {
				swsm = rd32(E1000_SWSM);
				if (!(swsm & E1000_SWSM_SMBI))
					break;

				udelay(50);
			}
		}

		/* If we do not have the semaphore here, we have to give up. */
		if (i == timeout) {
			hw_dbg("Driver can't access device - SMBI bit is set.\n");
			return -E1000_ERR_NVM;
		}
	}

C
Carolyn Wyborny 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(E1000_SWSM);
		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		igb_put_hw_semaphore(hw);
		hw_dbg("Driver can't access the NVM\n");
77
		return -E1000_ERR_NVM;
C
Carolyn Wyborny 已提交
78 79
	}

T
Todd Fujinaka 已提交
80
	return 0;
C
Carolyn Wyborny 已提交
81
}
82 83 84 85 86 87 88 89 90 91

/**
 *  igb_acquire_nvm_i210 - Request for access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
92
static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
93 94 95 96 97 98 99 100 101 102 103
{
	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_release_nvm_i210 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
104
static void igb_release_nvm_i210(struct e1000_hw *hw)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
{
	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
T
Todd Fujinaka 已提交
122
	s32 ret_val = 0;
123 124 125 126 127 128 129 130 131
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore_i210(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
132
		if (!(swfw_sync & (fwmask | swmask)))
133 134
			break;

135
		/* Firmware currently using resource (fwmask) */
136
		igb_put_hw_semaphore(hw);
137 138 139 140 141 142 143 144 145 146 147 148 149
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

150
	igb_put_hw_semaphore(hw);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
out:
	return ret_val;
}

/**
 *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

T
Todd Fujinaka 已提交
167
	while (igb_get_hw_semaphore_i210(hw))
168 169 170 171 172 173
		; /* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

174
	igb_put_hw_semaphore(hw);
175 176 177 178 179 180 181 182 183 184 185 186
}

/**
 *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the Shadow Ram to read
 *  @words: number of words to read
 *  @data: word read from the Shadow Ram
 *
 *  Reads a 16 bit word from the Shadow Ram using the EERD register.
 *  Uses necessary synchronization semaphores.
 **/
187 188
static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
189
{
T
Todd Fujinaka 已提交
190
	s32 status = 0;
191 192 193 194
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
195 196
	 * to read in bursts than synchronizing access for each word.
	 */
197 198 199
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
T
Todd Fujinaka 已提交
200
		if (!(hw->nvm.ops.acquire(hw))) {
201 202 203 204 205 206 207
			status = igb_read_nvm_eerd(hw, offset, count,
						     data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

T
Todd Fujinaka 已提交
208
		if (status)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
			break;
	}

	return status;
}

/**
 *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow Ram to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow Ram
 *
 *  Writes data to Shadow Ram at offset using EEWR register.
 *
 *  If igb_update_nvm_checksum is not called after this function , the
 *  Shadow Ram will most likely contain an invalid checksum.
 **/
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
				u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, k, eewr = 0;
	u32 attempts = 100000;
T
Todd Fujinaka 已提交
233
	s32 ret_val = 0;
234

235
	/* A check for invalid values:  offset too large, too many words,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
			(data[i] << E1000_NVM_RW_REG_DATA) |
			E1000_NVM_RW_REG_START;

		wr32(E1000_SRWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (E1000_NVM_RW_REG_DONE &
			    rd32(E1000_SRWR)) {
T
Todd Fujinaka 已提交
255
				ret_val = 0;
256 257 258 259 260
				break;
			}
			udelay(5);
	}

T
Todd Fujinaka 已提交
261
		if (ret_val) {
262 263 264 265 266 267 268 269 270
			hw_dbg("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

C
Carolyn Wyborny 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/**
 *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow RAM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow RAM
 *
 *  Writes data to Shadow RAM at offset using EEWR register.
 *
 *  If e1000_update_nvm_checksum is not called after this function , the
 *  data will not be committed to FLASH and also Shadow RAM will most likely
 *  contain an invalid checksum.
 *
 *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
 *  partially written.
286
 **/
287 288
static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
C
Carolyn Wyborny 已提交
289
{
T
Todd Fujinaka 已提交
290
	s32 status = 0;
C
Carolyn Wyborny 已提交
291 292 293 294 295 296 297 298 299
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to write in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
T
Todd Fujinaka 已提交
300
		if (!(hw->nvm.ops.acquire(hw))) {
C
Carolyn Wyborny 已提交
301 302 303 304 305 306 307
			status = igb_write_nvm_srwr(hw, offset, count,
						      data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

T
Todd Fujinaka 已提交
308
		if (status)
C
Carolyn Wyborny 已提交
309 310 311 312 313 314
			break;
	}

	return status;
}

315
/**
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
 *  igb_read_invm_word_i210 - Reads OTP
 *  @hw: pointer to the HW structure
 *  @address: the word address (aka eeprom offset) to read
 *  @data: pointer to the data read
 *
 *  Reads 16-bit words from the OTP. Return error when the word is not
 *  stored in OTP.
 **/
static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
{
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u32 invm_dword;
	u16 i;
	u8 record_type, word_address;

	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		/* Get record type */
		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
			break;
		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
			if (word_address == address) {
				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
345
				hw_dbg("Read INVM Word 0x%02x = %x\n",
346
					  address, *data);
T
Todd Fujinaka 已提交
347
				status = 0;
348 349 350 351
				break;
			}
		}
	}
T
Todd Fujinaka 已提交
352
	if (status)
353 354 355 356 357 358
		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
	return status;
}

/**
 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
359
 *  @hw: pointer to the HW structure
360
 *  @words: number of words to read
361 362 363 364
 *  @data: pointer to the data read
 *
 *  Wrapper function to return data formerly found in the NVM.
 **/
365 366
static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
				u16 words __always_unused, u16 *data)
367
{
T
Todd Fujinaka 已提交
368
	s32 ret_val = 0;
369 370 371 372

	/* Only the MAC addr is required to be present in the iNVM */
	switch (offset) {
	case NVM_MAC_ADDR:
373 374 375 376 377
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
						     &data[1]);
		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
						     &data[2]);
T
Todd Fujinaka 已提交
378
		if (ret_val)
379 380 381
			hw_dbg("MAC Addr not found in iNVM\n");
		break;
	case NVM_INIT_CTRL_2:
382
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
383
		if (ret_val) {
384
			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
T
Todd Fujinaka 已提交
385
			ret_val = 0;
386 387
		}
		break;
388
	case NVM_INIT_CTRL_4:
389
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
390
		if (ret_val) {
391
			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
T
Todd Fujinaka 已提交
392
			ret_val = 0;
393 394
		}
		break;
395
	case NVM_LED_1_CFG:
396
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
397
		if (ret_val) {
398
			*data = NVM_LED_1_CFG_DEFAULT_I211;
T
Todd Fujinaka 已提交
399
			ret_val = 0;
400 401
		}
		break;
402
	case NVM_LED_0_2_CFG:
403
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
404
		if (ret_val) {
405
			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
T
Todd Fujinaka 已提交
406
			ret_val = 0;
407
		}
408
		break;
409
	case NVM_ID_LED_SETTINGS:
410
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
411
		if (ret_val) {
412
			*data = ID_LED_RESERVED_FFFF;
T
Todd Fujinaka 已提交
413
			ret_val = 0;
414
		}
415
		break;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	case NVM_SUB_DEV_ID:
		*data = hw->subsystem_device_id;
		break;
	case NVM_SUB_VEN_ID:
		*data = hw->subsystem_vendor_id;
		break;
	case NVM_DEV_ID:
		*data = hw->device_id;
		break;
	case NVM_VEN_ID:
		*data = hw->vendor_id;
		break;
	default:
		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
		*data = NVM_RESERVED_WORD;
		break;
	}
	return ret_val;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/**
 *  igb_read_invm_version - Reads iNVM version and image type
 *  @hw: pointer to the HW structure
 *  @invm_ver: version structure for the version read
 *
 *  Reads iNVM version and image type.
 **/
s32 igb_read_invm_version(struct e1000_hw *hw,
			  struct e1000_fw_version *invm_ver) {
	u32 *record = NULL;
	u32 *next_record = NULL;
	u32 i = 0;
	u32 invm_dword = 0;
	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
					     E1000_INVM_RECORD_SIZE_IN_BYTES);
	u32 buffer[E1000_INVM_SIZE];
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u16 version = 0;

	/* Read iNVM memory */
	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		buffer[i] = invm_dword;
	}

	/* Read version number */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have first version location used */
		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
			version = 0;
T
Todd Fujinaka 已提交
469
			status = 0;
470 471 472 473 474 475
			break;
		}
		/* Check if we have second version location used */
		else if ((i == 1) &&
			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
T
Todd Fujinaka 已提交
476
			status = 0;
477 478 479 480 481 482 483 484 485 486
			break;
		}
		/* Check if we have odd version location
		 * used and it is the last one used
		 */
		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
			 (i != 1))) {
			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
				  >> 13;
T
Todd Fujinaka 已提交
487
			status = 0;
488 489 490 491 492 493 494 495
			break;
		}
		/* Check if we have even version location
		 * used and it is the last one used
		 */
		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
			 ((*record & 0x3) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
T
Todd Fujinaka 已提交
496
			status = 0;
497 498 499 500
			break;
		}
	}

T
Todd Fujinaka 已提交
501
	if (!status) {
502 503 504 505 506 507 508 509 510 511 512 513
		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
					>> E1000_INVM_MAJOR_SHIFT;
		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
	}
	/* Read Image Type */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have image type in first location used */
		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
			invm_ver->invm_img_type = 0;
T
Todd Fujinaka 已提交
514
			status = 0;
515 516 517 518 519 520 521 522
			break;
		}
		/* Check if we have image type in first location used */
		else if ((((*record & 0x3) == 0) &&
			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
			 ((((*record & 0x3) != 0) && (i != 1)))) {
			invm_ver->invm_img_type =
				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
T
Todd Fujinaka 已提交
523
			status = 0;
524 525 526 527 528 529
			break;
		}
	}
	return status;
}

530 531 532 533 534 535 536
/**
 *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
537
static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
538
{
T
Todd Fujinaka 已提交
539
	s32 status = 0;
540 541
	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);

T
Todd Fujinaka 已提交
542
	if (!(hw->nvm.ops.acquire(hw))) {
543

544
		/* Replace the read function with semaphore grabbing with
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		 * the one that skips this for a while.
		 * We have semaphore taken already here.
		 */
		read_op_ptr = hw->nvm.ops.read;
		hw->nvm.ops.read = igb_read_nvm_eerd;

		status = igb_validate_nvm_checksum(hw);

		/* Revert original read operation. */
		hw->nvm.ops.read = read_op_ptr;

		hw->nvm.ops.release(hw);
	} else {
		status = E1000_ERR_SWFW_SYNC;
	}

	return status;
}

/**
 *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
 **/
572
static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
573
{
T
Todd Fujinaka 已提交
574
	s32 ret_val = 0;
575 576 577
	u16 checksum = 0;
	u16 i, nvm_data;

578
	/* Read the first word from the EEPROM. If this times out or fails, do
579 580 581 582
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
T
Todd Fujinaka 已提交
583
	if (ret_val) {
584 585 586 587
		hw_dbg("EEPROM read failed\n");
		goto out;
	}

T
Todd Fujinaka 已提交
588
	if (!(hw->nvm.ops.acquire(hw))) {
589
		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
		 * because we do not want to take the synchronization
		 * semaphores twice here.
		 */

		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
			if (ret_val) {
				hw->nvm.ops.release(hw);
				hw_dbg("NVM Read Error while updating checksum.\n");
				goto out;
			}
			checksum += nvm_data;
		}
		checksum = (u16) NVM_SUM - checksum;
		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
						&checksum);
T
Todd Fujinaka 已提交
606
		if (ret_val) {
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
			hw->nvm.ops.release(hw);
			hw_dbg("NVM Write Error while updating checksum.\n");
			goto out;
		}

		hw->nvm.ops.release(hw);

		ret_val = igb_update_flash_i210(hw);
	} else {
		ret_val = -E1000_ERR_SWFW_SYNC;
	}
out:
	return ret_val;
}

C
Carolyn Wyborny 已提交
622 623 624 625
/**
 *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
 *  @hw: pointer to the HW structure
 *
626
 **/
C
Carolyn Wyborny 已提交
627 628 629 630 631 632 633 634
static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_NVM;
	u32 i, reg;

	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
		reg = rd32(E1000_EECD);
		if (reg & E1000_EECD_FLUDONE_I210) {
T
Todd Fujinaka 已提交
635
			ret_val = 0;
C
Carolyn Wyborny 已提交
636 637 638 639 640 641 642 643
			break;
		}
		udelay(5);
	}

	return ret_val;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/**
 *  igb_get_flash_presence_i210 - Check if flash device is detected.
 *  @hw: pointer to the HW structure
 *
 **/
bool igb_get_flash_presence_i210(struct e1000_hw *hw)
{
	u32 eec = 0;
	bool ret_val = false;

	eec = rd32(E1000_EECD);
	if (eec & E1000_EECD_FLASH_DETECTED_I210)
		ret_val = true;

	return ret_val;
}

661 662 663 664 665
/**
 *  igb_update_flash_i210 - Commit EEPROM to the flash
 *  @hw: pointer to the HW structure
 *
 **/
666
static s32 igb_update_flash_i210(struct e1000_hw *hw)
667
{
T
Todd Fujinaka 已提交
668
	s32 ret_val = 0;
669 670 671 672 673 674 675 676 677 678 679 680
	u32 flup;

	ret_val = igb_pool_flash_update_done_i210(hw);
	if (ret_val == -E1000_ERR_NVM) {
		hw_dbg("Flash update time out\n");
		goto out;
	}

	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
	wr32(E1000_EECD, flup);

	ret_val = igb_pool_flash_update_done_i210(hw);
T
Todd Fujinaka 已提交
681
	if (ret_val)
682
		hw_dbg("Flash update time out\n");
683 684
	else
		hw_dbg("Flash update complete\n");
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

out:
	return ret_val;
}

/**
 *  igb_valid_led_default_i210 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
		switch (hw->phy.media_type) {
		case e1000_media_type_internal_serdes:
			*data = ID_LED_DEFAULT_I210_SERDES;
			break;
		case e1000_media_type_copper:
		default:
			*data = ID_LED_DEFAULT_I210;
			break;
		}
	}
out:
	return ret_val;
}
M
Matthew Vick 已提交
722 723 724 725 726 727 728 729 730 731 732 733

/**
 *  __igb_access_xmdio_reg - Read/write XMDIO register
 *  @hw: pointer to the HW structure
 *  @address: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: pointer to value to read/write from/to the XMDIO address
 *  @read: boolean flag to indicate read or write
 **/
static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
				  u8 dev_addr, u16 *data, bool read)
{
T
Todd Fujinaka 已提交
734
	s32 ret_val = 0;
M
Matthew Vick 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
							 dev_addr);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
	if (ret_val)
		return ret_val;

	/* Recalibrate the device back to 0 */
	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
	if (ret_val)
		return ret_val;

	return ret_val;
}

/**
 *  igb_read_xmdio_reg - Read XMDIO register
 *  @hw: pointer to the HW structure
 *  @addr: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: value to be read from the EMI address
 **/
s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
{
	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
}

/**
 *  igb_write_xmdio_reg - Write XMDIO register
 *  @hw: pointer to the HW structure
 *  @addr: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: value to be written to the XMDIO address
 **/
s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
{
	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
}
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

/**
 *  igb_init_nvm_params_i210 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	struct e1000_nvm_info *nvm = &hw->nvm;

	nvm->ops.acquire = igb_acquire_nvm_i210;
	nvm->ops.release = igb_release_nvm_i210;
	nvm->ops.valid_led_default = igb_valid_led_default_i210;

	/* NVM Function Pointers */
	if (igb_get_flash_presence_i210(hw)) {
		hw->nvm.type = e1000_nvm_flash_hw;
		nvm->ops.read    = igb_read_nvm_srrd_i210;
		nvm->ops.write   = igb_write_nvm_srwr_i210;
		nvm->ops.validate = igb_validate_nvm_checksum_i210;
		nvm->ops.update   = igb_update_nvm_checksum_i210;
	} else {
		hw->nvm.type = e1000_nvm_invm;
810
		nvm->ops.read     = igb_read_invm_i210;
811 812 813 814 815 816
		nvm->ops.write    = NULL;
		nvm->ops.validate = NULL;
		nvm->ops.update   = NULL;
	}
	return ret_val;
}
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

/**
 * igb_pll_workaround_i210
 * @hw: pointer to the HW structure
 *
 * Works around an errata in the PLL circuit where it occasionally
 * provides the wrong clock frequency after power up.
 **/
s32 igb_pll_workaround_i210(struct e1000_hw *hw)
{
	s32 ret_val;
	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
	u16 nvm_word, phy_word, pci_word, tmp_nvm;
	int i;

	/* Get and set needed register values */
	wuc = rd32(E1000_WUC);
	mdicnfg = rd32(E1000_MDICNFG);
	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
	wr32(E1000_MDICNFG, reg_val);

	/* Get data from NVM, or set default */
	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
					  &nvm_word);
	if (ret_val)
		nvm_word = E1000_INVM_DEFAULT_AL;
	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
844
	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
Y
Yunjian Wang 已提交
845
	phy_word = E1000_PHY_PLL_UNCONF;
846 847
	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
		/* check current state directly from internal PHY */
848
		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		if ((phy_word & E1000_PHY_PLL_UNCONF)
		    != E1000_PHY_PLL_UNCONF) {
			ret_val = 0;
			break;
		} else {
			ret_val = -E1000_ERR_PHY;
		}
		/* directly reset the internal PHY */
		ctrl = rd32(E1000_CTRL);
		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);

		ctrl_ext = rd32(E1000_CTRL_EXT);
		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
		wr32(E1000_CTRL_EXT, ctrl_ext);

		wr32(E1000_WUC, 0);
		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
		wr32(E1000_EEARBC_I210, reg_val);

		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
		pci_word |= E1000_PCI_PMCSR_D3;
		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
		usleep_range(1000, 2000);
		pci_word &= ~E1000_PCI_PMCSR_D3;
		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
		wr32(E1000_EEARBC_I210, reg_val);

		/* restore WUC register */
		wr32(E1000_WUC, wuc);
	}
880
	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
881 882 883 884
	/* restore MDICNFG setting */
	wr32(E1000_MDICNFG, mdicnfg);
	return ret_val;
}
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

/**
 *  igb_get_cfg_done_i210 - Read config done bit
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  0.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	while (timeout) {
		if (rd32(E1000_EEMNGCTL_I210) & mask)
			break;
		usleep_range(1000, 2000);
		timeout--;
	}
	if (!timeout)
		hw_dbg("MNG configuration cycle has not completed.\n");

	return 0;
}