e1000_i210.c 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Intel(R) Gigabit Ethernet Linux driver
 * Copyright(c) 2007-2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */
23 24 25 26 27 28 29 30 31 32 33

/* e1000_i210
 * e1000_i211
 */

#include <linux/types.h>
#include <linux/if_ether.h>

#include "e1000_hw.h"
#include "e1000_i210.h"

34 35
static s32 igb_update_flash_i210(struct e1000_hw *hw);

C
Carolyn Wyborny 已提交
36 37 38 39 40 41 42 43 44 45 46 47
/**
 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 */
static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = rd32(E1000_SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == timeout) {
		/* In rare circumstances, the SW semaphore may already be held
		 * unintentionally. Clear the semaphore once before giving up.
		 */
		if (hw->dev_spec._82575.clear_semaphore_once) {
			hw->dev_spec._82575.clear_semaphore_once = false;
			igb_put_hw_semaphore(hw);
			for (i = 0; i < timeout; i++) {
				swsm = rd32(E1000_SWSM);
				if (!(swsm & E1000_SWSM_SMBI))
					break;

				udelay(50);
			}
		}

		/* If we do not have the semaphore here, we have to give up. */
		if (i == timeout) {
			hw_dbg("Driver can't access device - SMBI bit is set.\n");
			return -E1000_ERR_NVM;
		}
	}

C
Carolyn Wyborny 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(E1000_SWSM);
		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		igb_put_hw_semaphore(hw);
		hw_dbg("Driver can't access the NVM\n");
97
		return -E1000_ERR_NVM;
C
Carolyn Wyborny 已提交
98 99
	}

T
Todd Fujinaka 已提交
100
	return 0;
C
Carolyn Wyborny 已提交
101
}
102 103 104 105 106 107 108 109 110 111

/**
 *  igb_acquire_nvm_i210 - Request for access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
112
static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
113 114 115 116 117 118 119 120 121 122 123
{
	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_release_nvm_i210 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
124
static void igb_release_nvm_i210(struct e1000_hw *hw)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
{
	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
T
Todd Fujinaka 已提交
142
	s32 ret_val = 0;
143 144 145 146 147 148 149 150 151
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore_i210(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
152
		if (!(swfw_sync & (fwmask | swmask)))
153 154
			break;

155
		/* Firmware currently using resource (fwmask) */
156
		igb_put_hw_semaphore(hw);
157 158 159 160 161 162 163 164 165 166 167 168 169
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

170
	igb_put_hw_semaphore(hw);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
out:
	return ret_val;
}

/**
 *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

T
Todd Fujinaka 已提交
187
	while (igb_get_hw_semaphore_i210(hw))
188 189 190 191 192 193
		; /* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

194
	igb_put_hw_semaphore(hw);
195 196 197 198 199 200 201 202 203 204 205 206
}

/**
 *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the Shadow Ram to read
 *  @words: number of words to read
 *  @data: word read from the Shadow Ram
 *
 *  Reads a 16 bit word from the Shadow Ram using the EERD register.
 *  Uses necessary synchronization semaphores.
 **/
207 208
static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
209
{
T
Todd Fujinaka 已提交
210
	s32 status = 0;
211 212 213 214
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
215 216
	 * to read in bursts than synchronizing access for each word.
	 */
217 218 219
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
T
Todd Fujinaka 已提交
220
		if (!(hw->nvm.ops.acquire(hw))) {
221 222 223 224 225 226 227
			status = igb_read_nvm_eerd(hw, offset, count,
						     data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

T
Todd Fujinaka 已提交
228
		if (status)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
			break;
	}

	return status;
}

/**
 *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow Ram to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow Ram
 *
 *  Writes data to Shadow Ram at offset using EEWR register.
 *
 *  If igb_update_nvm_checksum is not called after this function , the
 *  Shadow Ram will most likely contain an invalid checksum.
 **/
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
				u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, k, eewr = 0;
	u32 attempts = 100000;
T
Todd Fujinaka 已提交
253
	s32 ret_val = 0;
254

255
	/* A check for invalid values:  offset too large, too many words,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
			(data[i] << E1000_NVM_RW_REG_DATA) |
			E1000_NVM_RW_REG_START;

		wr32(E1000_SRWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (E1000_NVM_RW_REG_DONE &
			    rd32(E1000_SRWR)) {
T
Todd Fujinaka 已提交
275
				ret_val = 0;
276 277 278 279 280
				break;
			}
			udelay(5);
	}

T
Todd Fujinaka 已提交
281
		if (ret_val) {
282 283 284 285 286 287 288 289 290
			hw_dbg("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

C
Carolyn Wyborny 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/**
 *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow RAM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow RAM
 *
 *  Writes data to Shadow RAM at offset using EEWR register.
 *
 *  If e1000_update_nvm_checksum is not called after this function , the
 *  data will not be committed to FLASH and also Shadow RAM will most likely
 *  contain an invalid checksum.
 *
 *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
 *  partially written.
306
 **/
307 308
static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
C
Carolyn Wyborny 已提交
309
{
T
Todd Fujinaka 已提交
310
	s32 status = 0;
C
Carolyn Wyborny 已提交
311 312 313 314 315 316 317 318 319
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to write in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
T
Todd Fujinaka 已提交
320
		if (!(hw->nvm.ops.acquire(hw))) {
C
Carolyn Wyborny 已提交
321 322 323 324 325 326 327
			status = igb_write_nvm_srwr(hw, offset, count,
						      data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

T
Todd Fujinaka 已提交
328
		if (status)
C
Carolyn Wyborny 已提交
329 330 331 332 333 334
			break;
	}

	return status;
}

335
/**
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
 *  igb_read_invm_word_i210 - Reads OTP
 *  @hw: pointer to the HW structure
 *  @address: the word address (aka eeprom offset) to read
 *  @data: pointer to the data read
 *
 *  Reads 16-bit words from the OTP. Return error when the word is not
 *  stored in OTP.
 **/
static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
{
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u32 invm_dword;
	u16 i;
	u8 record_type, word_address;

	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		/* Get record type */
		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
			break;
		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
			if (word_address == address) {
				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
365
				hw_dbg("Read INVM Word 0x%02x = %x\n",
366
					  address, *data);
T
Todd Fujinaka 已提交
367
				status = 0;
368 369 370 371
				break;
			}
		}
	}
T
Todd Fujinaka 已提交
372
	if (status)
373 374 375 376 377 378
		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
	return status;
}

/**
 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
379
 *  @hw: pointer to the HW structure
380
 *  @words: number of words to read
381 382 383 384
 *  @data: pointer to the data read
 *
 *  Wrapper function to return data formerly found in the NVM.
 **/
385 386
static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
				u16 words __always_unused, u16 *data)
387
{
T
Todd Fujinaka 已提交
388
	s32 ret_val = 0;
389 390 391 392

	/* Only the MAC addr is required to be present in the iNVM */
	switch (offset) {
	case NVM_MAC_ADDR:
393 394 395 396 397
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
						     &data[1]);
		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
						     &data[2]);
T
Todd Fujinaka 已提交
398
		if (ret_val)
399 400 401
			hw_dbg("MAC Addr not found in iNVM\n");
		break;
	case NVM_INIT_CTRL_2:
402
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
403
		if (ret_val) {
404
			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
T
Todd Fujinaka 已提交
405
			ret_val = 0;
406 407
		}
		break;
408
	case NVM_INIT_CTRL_4:
409
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
410
		if (ret_val) {
411
			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
T
Todd Fujinaka 已提交
412
			ret_val = 0;
413 414
		}
		break;
415
	case NVM_LED_1_CFG:
416
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
417
		if (ret_val) {
418
			*data = NVM_LED_1_CFG_DEFAULT_I211;
T
Todd Fujinaka 已提交
419
			ret_val = 0;
420 421
		}
		break;
422
	case NVM_LED_0_2_CFG:
423
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
424
		if (ret_val) {
425
			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
T
Todd Fujinaka 已提交
426
			ret_val = 0;
427
		}
428
		break;
429
	case NVM_ID_LED_SETTINGS:
430
		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
T
Todd Fujinaka 已提交
431
		if (ret_val) {
432
			*data = ID_LED_RESERVED_FFFF;
T
Todd Fujinaka 已提交
433
			ret_val = 0;
434
		}
435
		break;
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	case NVM_SUB_DEV_ID:
		*data = hw->subsystem_device_id;
		break;
	case NVM_SUB_VEN_ID:
		*data = hw->subsystem_vendor_id;
		break;
	case NVM_DEV_ID:
		*data = hw->device_id;
		break;
	case NVM_VEN_ID:
		*data = hw->vendor_id;
		break;
	default:
		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
		*data = NVM_RESERVED_WORD;
		break;
	}
	return ret_val;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 *  igb_read_invm_version - Reads iNVM version and image type
 *  @hw: pointer to the HW structure
 *  @invm_ver: version structure for the version read
 *
 *  Reads iNVM version and image type.
 **/
s32 igb_read_invm_version(struct e1000_hw *hw,
			  struct e1000_fw_version *invm_ver) {
	u32 *record = NULL;
	u32 *next_record = NULL;
	u32 i = 0;
	u32 invm_dword = 0;
	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
					     E1000_INVM_RECORD_SIZE_IN_BYTES);
	u32 buffer[E1000_INVM_SIZE];
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u16 version = 0;

	/* Read iNVM memory */
	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		buffer[i] = invm_dword;
	}

	/* Read version number */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have first version location used */
		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
			version = 0;
T
Todd Fujinaka 已提交
489
			status = 0;
490 491 492 493 494 495
			break;
		}
		/* Check if we have second version location used */
		else if ((i == 1) &&
			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
T
Todd Fujinaka 已提交
496
			status = 0;
497 498 499 500 501 502 503 504 505 506
			break;
		}
		/* Check if we have odd version location
		 * used and it is the last one used
		 */
		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
			 (i != 1))) {
			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
				  >> 13;
T
Todd Fujinaka 已提交
507
			status = 0;
508 509 510 511 512 513 514 515
			break;
		}
		/* Check if we have even version location
		 * used and it is the last one used
		 */
		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
			 ((*record & 0x3) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
T
Todd Fujinaka 已提交
516
			status = 0;
517 518 519 520
			break;
		}
	}

T
Todd Fujinaka 已提交
521
	if (!status) {
522 523 524 525 526 527 528 529 530 531 532 533
		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
					>> E1000_INVM_MAJOR_SHIFT;
		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
	}
	/* Read Image Type */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have image type in first location used */
		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
			invm_ver->invm_img_type = 0;
T
Todd Fujinaka 已提交
534
			status = 0;
535 536 537 538 539 540 541 542
			break;
		}
		/* Check if we have image type in first location used */
		else if ((((*record & 0x3) == 0) &&
			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
			 ((((*record & 0x3) != 0) && (i != 1)))) {
			invm_ver->invm_img_type =
				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
T
Todd Fujinaka 已提交
543
			status = 0;
544 545 546 547 548 549
			break;
		}
	}
	return status;
}

550 551 552 553 554 555 556
/**
 *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
557
static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
558
{
T
Todd Fujinaka 已提交
559
	s32 status = 0;
560 561
	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);

T
Todd Fujinaka 已提交
562
	if (!(hw->nvm.ops.acquire(hw))) {
563

564
		/* Replace the read function with semaphore grabbing with
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		 * the one that skips this for a while.
		 * We have semaphore taken already here.
		 */
		read_op_ptr = hw->nvm.ops.read;
		hw->nvm.ops.read = igb_read_nvm_eerd;

		status = igb_validate_nvm_checksum(hw);

		/* Revert original read operation. */
		hw->nvm.ops.read = read_op_ptr;

		hw->nvm.ops.release(hw);
	} else {
		status = E1000_ERR_SWFW_SYNC;
	}

	return status;
}

/**
 *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
 **/
592
static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
593
{
T
Todd Fujinaka 已提交
594
	s32 ret_val = 0;
595 596 597
	u16 checksum = 0;
	u16 i, nvm_data;

598
	/* Read the first word from the EEPROM. If this times out or fails, do
599 600 601 602
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
T
Todd Fujinaka 已提交
603
	if (ret_val) {
604 605 606 607
		hw_dbg("EEPROM read failed\n");
		goto out;
	}

T
Todd Fujinaka 已提交
608
	if (!(hw->nvm.ops.acquire(hw))) {
609
		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
		 * because we do not want to take the synchronization
		 * semaphores twice here.
		 */

		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
			if (ret_val) {
				hw->nvm.ops.release(hw);
				hw_dbg("NVM Read Error while updating checksum.\n");
				goto out;
			}
			checksum += nvm_data;
		}
		checksum = (u16) NVM_SUM - checksum;
		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
						&checksum);
T
Todd Fujinaka 已提交
626
		if (ret_val) {
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
			hw->nvm.ops.release(hw);
			hw_dbg("NVM Write Error while updating checksum.\n");
			goto out;
		}

		hw->nvm.ops.release(hw);

		ret_val = igb_update_flash_i210(hw);
	} else {
		ret_val = -E1000_ERR_SWFW_SYNC;
	}
out:
	return ret_val;
}

C
Carolyn Wyborny 已提交
642 643 644 645
/**
 *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
 *  @hw: pointer to the HW structure
 *
646
 **/
C
Carolyn Wyborny 已提交
647 648 649 650 651 652 653 654
static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_NVM;
	u32 i, reg;

	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
		reg = rd32(E1000_EECD);
		if (reg & E1000_EECD_FLUDONE_I210) {
T
Todd Fujinaka 已提交
655
			ret_val = 0;
C
Carolyn Wyborny 已提交
656 657 658 659 660 661 662 663
			break;
		}
		udelay(5);
	}

	return ret_val;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 *  igb_get_flash_presence_i210 - Check if flash device is detected.
 *  @hw: pointer to the HW structure
 *
 **/
bool igb_get_flash_presence_i210(struct e1000_hw *hw)
{
	u32 eec = 0;
	bool ret_val = false;

	eec = rd32(E1000_EECD);
	if (eec & E1000_EECD_FLASH_DETECTED_I210)
		ret_val = true;

	return ret_val;
}

681 682 683 684 685
/**
 *  igb_update_flash_i210 - Commit EEPROM to the flash
 *  @hw: pointer to the HW structure
 *
 **/
686
static s32 igb_update_flash_i210(struct e1000_hw *hw)
687
{
T
Todd Fujinaka 已提交
688
	s32 ret_val = 0;
689 690 691 692 693 694 695 696 697 698 699 700
	u32 flup;

	ret_val = igb_pool_flash_update_done_i210(hw);
	if (ret_val == -E1000_ERR_NVM) {
		hw_dbg("Flash update time out\n");
		goto out;
	}

	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
	wr32(E1000_EECD, flup);

	ret_val = igb_pool_flash_update_done_i210(hw);
T
Todd Fujinaka 已提交
701
	if (ret_val)
702
		hw_dbg("Flash update time out\n");
703 704
	else
		hw_dbg("Flash update complete\n");
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

out:
	return ret_val;
}

/**
 *  igb_valid_led_default_i210 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
		switch (hw->phy.media_type) {
		case e1000_media_type_internal_serdes:
			*data = ID_LED_DEFAULT_I210_SERDES;
			break;
		case e1000_media_type_copper:
		default:
			*data = ID_LED_DEFAULT_I210;
			break;
		}
	}
out:
	return ret_val;
}
M
Matthew Vick 已提交
742 743 744 745 746 747 748 749 750 751 752 753

/**
 *  __igb_access_xmdio_reg - Read/write XMDIO register
 *  @hw: pointer to the HW structure
 *  @address: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: pointer to value to read/write from/to the XMDIO address
 *  @read: boolean flag to indicate read or write
 **/
static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
				  u8 dev_addr, u16 *data, bool read)
{
T
Todd Fujinaka 已提交
754
	s32 ret_val = 0;
M
Matthew Vick 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
							 dev_addr);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
	if (ret_val)
		return ret_val;

	/* Recalibrate the device back to 0 */
	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
	if (ret_val)
		return ret_val;

	return ret_val;
}

/**
 *  igb_read_xmdio_reg - Read XMDIO register
 *  @hw: pointer to the HW structure
 *  @addr: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: value to be read from the EMI address
 **/
s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
{
	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
}

/**
 *  igb_write_xmdio_reg - Write XMDIO register
 *  @hw: pointer to the HW structure
 *  @addr: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: value to be written to the XMDIO address
 **/
s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
{
	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
}
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

/**
 *  igb_init_nvm_params_i210 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	struct e1000_nvm_info *nvm = &hw->nvm;

	nvm->ops.acquire = igb_acquire_nvm_i210;
	nvm->ops.release = igb_release_nvm_i210;
	nvm->ops.valid_led_default = igb_valid_led_default_i210;

	/* NVM Function Pointers */
	if (igb_get_flash_presence_i210(hw)) {
		hw->nvm.type = e1000_nvm_flash_hw;
		nvm->ops.read    = igb_read_nvm_srrd_i210;
		nvm->ops.write   = igb_write_nvm_srwr_i210;
		nvm->ops.validate = igb_validate_nvm_checksum_i210;
		nvm->ops.update   = igb_update_nvm_checksum_i210;
	} else {
		hw->nvm.type = e1000_nvm_invm;
830
		nvm->ops.read     = igb_read_invm_i210;
831 832 833 834 835 836
		nvm->ops.write    = NULL;
		nvm->ops.validate = NULL;
		nvm->ops.update   = NULL;
	}
	return ret_val;
}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

/**
 * igb_pll_workaround_i210
 * @hw: pointer to the HW structure
 *
 * Works around an errata in the PLL circuit where it occasionally
 * provides the wrong clock frequency after power up.
 **/
s32 igb_pll_workaround_i210(struct e1000_hw *hw)
{
	s32 ret_val;
	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
	u16 nvm_word, phy_word, pci_word, tmp_nvm;
	int i;

	/* Get and set needed register values */
	wuc = rd32(E1000_WUC);
	mdicnfg = rd32(E1000_MDICNFG);
	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
	wr32(E1000_MDICNFG, reg_val);

	/* Get data from NVM, or set default */
	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
					  &nvm_word);
	if (ret_val)
		nvm_word = E1000_INVM_DEFAULT_AL;
	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
864
	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
865 866
	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
		/* check current state directly from internal PHY */
867
		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		if ((phy_word & E1000_PHY_PLL_UNCONF)
		    != E1000_PHY_PLL_UNCONF) {
			ret_val = 0;
			break;
		} else {
			ret_val = -E1000_ERR_PHY;
		}
		/* directly reset the internal PHY */
		ctrl = rd32(E1000_CTRL);
		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);

		ctrl_ext = rd32(E1000_CTRL_EXT);
		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
		wr32(E1000_CTRL_EXT, ctrl_ext);

		wr32(E1000_WUC, 0);
		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
		wr32(E1000_EEARBC_I210, reg_val);

		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
		pci_word |= E1000_PCI_PMCSR_D3;
		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
		usleep_range(1000, 2000);
		pci_word &= ~E1000_PCI_PMCSR_D3;
		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
		wr32(E1000_EEARBC_I210, reg_val);

		/* restore WUC register */
		wr32(E1000_WUC, wuc);
	}
899
	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
900 901 902 903
	/* restore MDICNFG setting */
	wr32(E1000_MDICNFG, mdicnfg);
	return ret_val;
}
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

/**
 *  igb_get_cfg_done_i210 - Read config done bit
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  0.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	while (timeout) {
		if (rd32(E1000_EEMNGCTL_I210) & mask)
			break;
		usleep_range(1000, 2000);
		timeout--;
	}
	if (!timeout)
		hw_dbg("MNG configuration cycle has not completed.\n");

	return 0;
}