e1000_i210.c 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
  Copyright(c) 2007-2012 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************/

/* e1000_i210
 * e1000_i211
 */

#include <linux/types.h>
#include <linux/if_ether.h>

#include "e1000_hw.h"
#include "e1000_i210.h"

static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw);
static void igb_put_hw_semaphore_i210(struct e1000_hw *hw);
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
				u16 *data);
static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw);

/**
 *  igb_acquire_nvm_i210 - Request for access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
{
	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_release_nvm_i210 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
void igb_release_nvm_i210(struct e1000_hw *hw)
{
	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = E1000_SUCCESS;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore_i210(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
		if (!(swfw_sync & fwmask))
			break;

		/*
		 * Firmware currently using resource (fwmask)
		 */
		igb_put_hw_semaphore_i210(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore_i210(hw);
out:
	return ret_val;
}

/**
 *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
		; /* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore_i210(hw);
}

/**
 *  igb_get_hw_semaphore_i210 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
{
	u32 swsm;
	s32 ret_val = E1000_SUCCESS;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(E1000_SWSM);
		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		igb_put_hw_semaphore(hw);
		hw_dbg("Driver can't access the NVM\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_put_hw_semaphore_i210 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void igb_put_hw_semaphore_i210(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = rd32(E1000_SWSM);

	swsm &= ~E1000_SWSM_SWESMBI;

	wr32(E1000_SWSM, swsm);
}

/**
 *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the Shadow Ram to read
 *  @words: number of words to read
 *  @data: word read from the Shadow Ram
 *
 *  Reads a 16 bit word from the Shadow Ram using the EERD register.
 *  Uses necessary synchronization semaphores.
 **/
s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
			     u16 *data)
{
	s32 status = E1000_SUCCESS;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to read in bursts than synchronizing access for each word. */
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
			status = igb_read_nvm_eerd(hw, offset, count,
						     data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

		if (status != E1000_SUCCESS)
			break;
	}

	return status;
}

/**
 *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow RAM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow RAM
 *
 *  Writes data to Shadow RAM at offset using EEWR register.
 *
 *  If e1000_update_nvm_checksum is not called after this function , the
 *  data will not be committed to FLASH and also Shadow RAM will most likely
 *  contain an invalid checksum.
 *
 *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
 *  partially written.
 **/
s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
			      u16 *data)
{
	s32 status = E1000_SUCCESS;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to write in bursts than synchronizing access for each word. */
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
			status = igb_write_nvm_srwr(hw, offset, count,
						      data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

		if (status != E1000_SUCCESS)
			break;
	}

	return status;
}

/**
 *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow Ram to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow Ram
 *
 *  Writes data to Shadow Ram at offset using EEWR register.
 *
 *  If igb_update_nvm_checksum is not called after this function , the
 *  Shadow Ram will most likely contain an invalid checksum.
 **/
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
				u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, k, eewr = 0;
	u32 attempts = 100000;
	s32 ret_val = E1000_SUCCESS;

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
			(data[i] << E1000_NVM_RW_REG_DATA) |
			E1000_NVM_RW_REG_START;

		wr32(E1000_SRWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (E1000_NVM_RW_REG_DONE &
			    rd32(E1000_SRWR)) {
				ret_val = E1000_SUCCESS;
				break;
			}
			udelay(5);
	}

		if (ret_val != E1000_SUCCESS) {
			hw_dbg("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

/**
 *  igb_read_nvm_i211 - Read NVM wrapper function for I211
 *  @hw: pointer to the HW structure
 *  @address: the word address (aka eeprom offset) to read
 *  @data: pointer to the data read
 *
 *  Wrapper function to return data formerly found in the NVM.
 **/
s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
			       u16 *data)
{
	s32 ret_val = E1000_SUCCESS;

	/* Only the MAC addr is required to be present in the iNVM */
	switch (offset) {
	case NVM_MAC_ADDR:
		ret_val = igb_read_invm_i211(hw, offset, &data[0]);
		ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
		ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
		if (ret_val != E1000_SUCCESS)
			hw_dbg("MAC Addr not found in iNVM\n");
		break;
	case NVM_ID_LED_SETTINGS:
	case NVM_INIT_CTRL_2:
	case NVM_INIT_CTRL_4:
	case NVM_LED_1_CFG:
	case NVM_LED_0_2_CFG:
		igb_read_invm_i211(hw, offset, data);
		break;
	case NVM_COMPAT:
		*data = ID_LED_DEFAULT_I210;
		break;
	case NVM_SUB_DEV_ID:
		*data = hw->subsystem_device_id;
		break;
	case NVM_SUB_VEN_ID:
		*data = hw->subsystem_vendor_id;
		break;
	case NVM_DEV_ID:
		*data = hw->device_id;
		break;
	case NVM_VEN_ID:
		*data = hw->vendor_id;
		break;
	default:
		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
		*data = NVM_RESERVED_WORD;
		break;
	}
	return ret_val;
}

/**
 *  igb_read_invm_i211 - Reads OTP
 *  @hw: pointer to the HW structure
 *  @address: the word address (aka eeprom offset) to read
 *  @data: pointer to the data read
 *
 *  Reads 16-bit words from the OTP. Return error when the word is not
 *  stored in OTP.
 **/
s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
{
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u32 invm_dword;
	u16 i;
	u8 record_type, word_address;

	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		/* Get record type */
		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
			break;
		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
			if (word_address == (u8)address) {
				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
				hw_dbg("Read INVM Word 0x%02x = %x",
					  address, *data);
				status = E1000_SUCCESS;
				break;
			}
		}
	}
	if (status != E1000_SUCCESS)
		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
	return status;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/**
 *  igb_read_invm_version - Reads iNVM version and image type
 *  @hw: pointer to the HW structure
 *  @invm_ver: version structure for the version read
 *
 *  Reads iNVM version and image type.
 **/
s32 igb_read_invm_version(struct e1000_hw *hw,
			  struct e1000_fw_version *invm_ver) {
	u32 *record = NULL;
	u32 *next_record = NULL;
	u32 i = 0;
	u32 invm_dword = 0;
	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
					     E1000_INVM_RECORD_SIZE_IN_BYTES);
	u32 buffer[E1000_INVM_SIZE];
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u16 version = 0;

	/* Read iNVM memory */
	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		buffer[i] = invm_dword;
	}

	/* Read version number */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have first version location used */
		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
			version = 0;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have second version location used */
		else if ((i == 1) &&
			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have odd version location
		 * used and it is the last one used
		 */
		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
			 (i != 1))) {
			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
				  >> 13;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have even version location
		 * used and it is the last one used
		 */
		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
			 ((*record & 0x3) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
			status = E1000_SUCCESS;
			break;
		}
	}

	if (status == E1000_SUCCESS) {
		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
					>> E1000_INVM_MAJOR_SHIFT;
		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
	}
	/* Read Image Type */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have image type in first location used */
		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
			invm_ver->invm_img_type = 0;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have image type in first location used */
		else if ((((*record & 0x3) == 0) &&
			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
			 ((((*record & 0x3) != 0) && (i != 1)))) {
			invm_ver->invm_img_type =
				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
			status = E1000_SUCCESS;
			break;
		}
	}
	return status;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/**
 *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
{
	s32 status = E1000_SUCCESS;
	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);

	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {

		/*
		 * Replace the read function with semaphore grabbing with
		 * the one that skips this for a while.
		 * We have semaphore taken already here.
		 */
		read_op_ptr = hw->nvm.ops.read;
		hw->nvm.ops.read = igb_read_nvm_eerd;

		status = igb_validate_nvm_checksum(hw);

		/* Revert original read operation. */
		hw->nvm.ops.read = read_op_ptr;

		hw->nvm.ops.release(hw);
	} else {
		status = E1000_ERR_SWFW_SYNC;
	}

	return status;
}


/**
 *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
 **/
s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 checksum = 0;
	u16 i, nvm_data;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
	if (ret_val != E1000_SUCCESS) {
		hw_dbg("EEPROM read failed\n");
		goto out;
	}

	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
		/*
		 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
		 * because we do not want to take the synchronization
		 * semaphores twice here.
		 */

		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
			if (ret_val) {
				hw->nvm.ops.release(hw);
				hw_dbg("NVM Read Error while updating checksum.\n");
				goto out;
			}
			checksum += nvm_data;
		}
		checksum = (u16) NVM_SUM - checksum;
		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
						&checksum);
		if (ret_val != E1000_SUCCESS) {
			hw->nvm.ops.release(hw);
			hw_dbg("NVM Write Error while updating checksum.\n");
			goto out;
		}

		hw->nvm.ops.release(hw);

		ret_val = igb_update_flash_i210(hw);
	} else {
		ret_val = -E1000_ERR_SWFW_SYNC;
	}
out:
	return ret_val;
}

/**
 *  igb_update_flash_i210 - Commit EEPROM to the flash
 *  @hw: pointer to the HW structure
 *
 **/
s32 igb_update_flash_i210(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u32 flup;

	ret_val = igb_pool_flash_update_done_i210(hw);
	if (ret_val == -E1000_ERR_NVM) {
		hw_dbg("Flash update time out\n");
		goto out;
	}

	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
	wr32(E1000_EECD, flup);

	ret_val = igb_pool_flash_update_done_i210(hw);
	if (ret_val == E1000_SUCCESS)
		hw_dbg("Flash update complete\n");
	else
		hw_dbg("Flash update time out\n");

out:
	return ret_val;
}

/**
 *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
 *  @hw: pointer to the HW structure
 *
 **/
s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_NVM;
	u32 i, reg;

	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
		reg = rd32(E1000_EECD);
		if (reg & E1000_EECD_FLUDONE_I210) {
			ret_val = E1000_SUCCESS;
			break;
		}
		udelay(5);
	}

	return ret_val;
}

/**
 *  igb_valid_led_default_i210 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
		switch (hw->phy.media_type) {
		case e1000_media_type_internal_serdes:
			*data = ID_LED_DEFAULT_I210_SERDES;
			break;
		case e1000_media_type_copper:
		default:
			*data = ID_LED_DEFAULT_I210;
			break;
		}
	}
out:
	return ret_val;
}