netdev.c 181.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64 65 66 67
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

68 69
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

70 71 72 73
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
74
	[board_82574]		= &e1000_82574_info,
75
	[board_82583]		= &e1000_82583_info,
76 77 78
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
79
	[board_ich10lan]	= &e1000_ich10_info,
80
	[board_pchlan]		= &e1000_pch_info,
81
	[board_pch2lan]		= &e1000_pch2_info,
B
Bruce Allan 已提交
82
	[board_pch_lpt]		= &e1000_pch_lpt_info,
83 84
};

85 86 87 88 89
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

90 91 92 93 94 95 96 97 98 99 100
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
101 102 103 104 105 106 107 108 109 110 111

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

112
	/* Rx Registers */
113
	{E1000_RCTL, "RCTL"},
114 115 116
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
117 118 119
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
120 121
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},
122 123 124 125 126 127
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

128
	/* Tx Registers */
129
	{E1000_TCTL, "TCTL"},
130 131 132 133 134
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
135 136 137 138 139 140 141 142 143 144 145
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
146
	{0, NULL}
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
172 173
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
174 175 176 177
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 180 181
}

/*
182
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
183 184 185 186 187 188 189 190
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
191
	struct my_u0 {
192 193
		__le64 a;
		__le64 b;
194
	} *u0;
195 196 197
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
198
	union e1000_rx_desc_extended *rx_desc;
199
	struct my_u1 {
200 201 202 203
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
204
	} *u1;
205 206 207 208 209 210 211 212 213
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
214 215 216 217
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
218 219 220 221
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
222
	pr_info(" Register Name   Value\n");
223 224 225 226 227
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

228
	/* Print Tx Ring Summary */
229
	if (!netdev || !netif_running(netdev))
230
		return;
231

232
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
234
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235 236 237 238 239 240
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
241

242
	/* Print Tx Ring */
243 244 245
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

246
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
275 276 277
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
278
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279
		const char *next_desc;
280 281 282 283
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284
			next_desc = " NTC/U";
285
		else if (i == tx_ring->next_to_use)
286
			next_desc = " NTU";
287
		else if (i == tx_ring->next_to_clean)
288
			next_desc = " NTC";
289
		else
290 291 292 293 294 295 296 297 298 299 300
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
301 302 303

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 305
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
306 307
	}

308
	/* Print Rx Ring Summary */
309
rx_ring_summary:
310
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 312 313
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
314

315
	/* Print Rx Ring */
316
	if (!netif_msg_rx_status(adapter))
317
		return;
318

319
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
336
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
337 338 339 340 341 342 343 344 345 346 347
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
348
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349
		for (i = 0; i < rx_ring->count; i++) {
350
			const char *next_desc;
351 352 353 354
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
355
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356 357 358 359 360 361 362 363

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

364 365
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
366 367 368 369 370 371 372
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
373
			} else {
374 375 376 377 378 379 380 381
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
382 383 384 385 386 387 388 389 390 391 392

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
393
		/* Extended Receive Descriptor (Read) Format
394
		 *
395 396 397 398 399
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
400
		 */
401
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
402 403 404 405 406 407 408 409 410 411 412 413 414
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
415
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
416 417

		for (i = 0; i < rx_ring->count; i++) {
418 419
			const char *next_desc;

420
			buffer_info = &rx_ring->buffer_info[i];
421 422 423
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
424 425 426 427 428 429 430 431

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

432 433
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
434 435 436 437 438
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
439
			} else {
440 441 442 443 444 445
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
446 447 448 449 450 451 452 453 454 455

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
456 457 458 459
		}
	}
}

460 461 462 463 464 465 466 467 468 469 470 471
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
472
 * e1000_receive_skb - helper function to handle Rx indications
473 474 475 476 477 478
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
479
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
480
			      u8 status, __le16 vlan)
481
{
J
Jeff Kirsher 已提交
482
	u16 tag = le16_to_cpu(vlan);
483 484
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
485 486 487 488
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
489 490 491
}

/**
492
 * e1000_rx_checksum - Receive Checksum Offload
493 494 495 496
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
497 498
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
499
			      struct sk_buff *skb)
500 501 502
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
503 504

	skb_checksum_none_assert(skb);
505

506 507 508 509
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

510 511 512
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
513

514 515
	/* TCP/UDP checksum error bit or IP checksum error bit is set */
	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
516 517 518 519 520 521 522 523 524 525
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
526
	skb->ip_summed = CHECKSUM_UNNECESSARY;
527 528 529
	adapter->hw_csum_good++;
}

530
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
531
{
532
	struct e1000_adapter *adapter = rx_ring->adapter;
533
	struct e1000_hw *hw = &adapter->hw;
534 535 536
	s32 ret_val = __ew32_prepare(hw);

	writel(i, rx_ring->tail);
537

538
	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
539 540 541 542 543 544 545
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

546
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
547
{
548
	struct e1000_adapter *adapter = tx_ring->adapter;
549
	struct e1000_hw *hw = &adapter->hw;
550
	s32 ret_val = __ew32_prepare(hw);
551

552 553 554
	writel(i, tx_ring->tail);

	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
555 556 557 558 559 560 561
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

562
/**
563
 * e1000_alloc_rx_buffers - Replace used receive buffers
564
 * @rx_ring: Rx descriptor ring
565
 **/
566
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
567
				   int cleaned_count, gfp_t gfp)
568
{
569
	struct e1000_adapter *adapter = rx_ring->adapter;
570 571
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
572
	union e1000_rx_desc_extended *rx_desc;
573 574 575
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
576
	unsigned int bufsz = adapter->rx_buffer_len;
577 578 579 580 581 582 583 584 585 586 587

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

588
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
589 590 591 592 593 594 595 596
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
597
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
598
						  adapter->rx_buffer_len,
599 600
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
601
			dev_err(&pdev->dev, "Rx DMA map failed\n");
602 603 604 605
			adapter->rx_dma_failed++;
			break;
		}

606 607
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
608

609 610 611 612 613 614 615 616
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
617
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
618
				e1000e_update_rdt_wa(rx_ring, i);
619
			else
620
				writel(i, rx_ring->tail);
621
		}
622 623 624 625 626 627
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

628
	rx_ring->next_to_use = i;
629 630 631 632
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
633
 * @rx_ring: Rx descriptor ring
634
 **/
635
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
636
				      int cleaned_count, gfp_t gfp)
637
{
638
	struct e1000_adapter *adapter = rx_ring->adapter;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
654 655 656
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
657 658
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
659 660 661
				continue;
			}
			if (!ps_page->page) {
662
				ps_page->page = alloc_page(gfp);
663
				if (!ps_page->page) {
A
Auke Kok 已提交
664 665 666
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
667 668 669 670 671 672
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
673
					dev_err(&adapter->pdev->dev,
674
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
675 676
					adapter->rx_dma_failed++;
					goto no_buffers;
677 678
				}
			}
A
Auke Kok 已提交
679 680 681 682 683
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
684 685
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
686 687
		}

688 689 690
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
691 692 693 694 695 696 697

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
698
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
699
						  adapter->rx_ps_bsize0,
700 701
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
702
			dev_err(&pdev->dev, "Rx DMA map failed\n");
703 704 705 706 707 708 709 710 711
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

712 713 714 715 716 717 718 719
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
720
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
721
				e1000e_update_rdt_wa(rx_ring, i << 1);
722
			else
723
				writel(i << 1, rx_ring->tail);
724 725
		}

726 727 728 729 730 731 732
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
733
	rx_ring->next_to_use = i;
734 735
}

736 737
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
738
 * @rx_ring: Rx descriptor ring
739 740 741
 * @cleaned_count: number of buffers to allocate this pass
 **/

742
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
743
					 int cleaned_count, gfp_t gfp)
744
{
745
	struct e1000_adapter *adapter = rx_ring->adapter;
746 747
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
748
	union e1000_rx_desc_extended *rx_desc;
749 750 751
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
752
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
753 754 755 756 757 758 759 760 761 762 763

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

764
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
765 766 767 768 769 770 771 772 773 774
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
775
			buffer_info->page = alloc_page(gfp);
776 777 778 779 780 781 782
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
783
			buffer_info->dma = dma_map_page(&pdev->dev,
784 785
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
786
							DMA_FROM_DEVICE);
787

788 789
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
806
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
807
			e1000e_update_rdt_wa(rx_ring, i);
808
		else
809
			writel(i, rx_ring->tail);
810 811 812
	}
}

813 814 815 816 817 818 819
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

820
/**
821 822
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
823 824 825 826
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
827 828
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
829
{
830
	struct e1000_adapter *adapter = rx_ring->adapter;
831 832
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
833
	struct e1000_hw *hw = &adapter->hw;
834
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
835
	struct e1000_buffer *buffer_info, *next_buffer;
836
	u32 length, staterr;
837 838
	unsigned int i;
	int cleaned_count = 0;
839
	bool cleaned = false;
840 841 842
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
843 844
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
845 846
	buffer_info = &rx_ring->buffer_info[i];

847
	while (staterr & E1000_RXD_STAT_DD) {
848 849 850 851 852
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
853
		rmb();	/* read descriptor and rx_buffer_info after status DD */
854 855 856 857 858 859 860 861 862

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
863
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
864 865 866 867
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

868
		cleaned = true;
869
		cleaned_count++;
870
		dma_unmap_single(&pdev->dev,
871 872
				 buffer_info->dma,
				 adapter->rx_buffer_len,
873
				 DMA_FROM_DEVICE);
874 875
		buffer_info->dma = 0;

876
		length = le16_to_cpu(rx_desc->wb.upper.length);
877

878 879 880 881 882 883 884
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
885
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
886 887 888
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
889
			/* All receives must fit into a single buffer */
890
			e_dbg("Receive packet consumed multiple buffers\n");
891 892
			/* recycle */
			buffer_info->skb = skb;
893
			if (staterr & E1000_RXD_STAT_EOP)
894
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
895 896 897
			goto next_desc;
		}

B
Ben Greear 已提交
898 899
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
900 901 902 903 904
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
905
		/* adjust length to remove Ethernet CRC */
B
Ben Greear 已提交
906 907 908 909 910 911 912 913 914 915
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			/* If configured to store CRC, don't subtract FCS,
			 * but keep the FCS bytes out of the total_rx_bytes
			 * counter
			 */
			if (netdev->features & NETIF_F_RXFCS)
				total_rx_bytes -= 4;
			else
				length -= 4;
		}
J
Jeff Kirsher 已提交
916

917 918 919
		total_rx_bytes += length;
		total_rx_packets++;

920 921
		/*
		 * code added for copybreak, this should improve
922
		 * performance for small packets with large amounts
923 924
		 * of reassembly being done in the stack
		 */
925 926
		if (length < copybreak) {
			struct sk_buff *new_skb =
927
			    netdev_alloc_skb_ip_align(netdev, length);
928
			if (new_skb) {
929 930 931 932 933 934
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
935 936 937 938 939 940 941 942 943 944
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
945
		e1000_rx_checksum(adapter, staterr, skb);
946

947 948
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

949 950
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
951 952

next_desc:
953
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
954 955 956

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
957
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
958
					      GFP_ATOMIC);
959 960 961 962 963 964
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
965 966

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
967 968 969 970 971
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
972
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
973 974

	adapter->total_rx_bytes += total_rx_bytes;
975
	adapter->total_rx_packets += total_rx_packets;
976 977 978
	return cleaned;
}

979 980
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
981
{
982 983
	struct e1000_adapter *adapter = tx_ring->adapter;

984 985
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
986 987
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
988
		else
989 990
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
991 992
		buffer_info->dma = 0;
	}
993 994 995 996
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
997
	buffer_info->time_stamp = 0;
998 999
}

1000
static void e1000_print_hw_hang(struct work_struct *work)
1001
{
1002 1003 1004
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1005
	struct net_device *netdev = adapter->netdev;
1006 1007 1008 1009
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010 1011 1012 1013
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1014 1015 1016
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1017 1018
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
M
Matthew Vick 已提交
1019 1020
		/*
		 * May be block on write-back, flush and detect again
1021 1022 1023 1024 1025
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
1026 1027 1028 1029 1030 1031 1032
		/*
		 * Due to rare timing issues, write to TIDV again to ensure
		 * the write is successful
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
1033 1034 1035 1036 1037 1038 1039
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1040 1041 1042
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043

1044 1045 1046 1047
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1048 1049 1050 1051 1052 1053 1054 1055
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1056 1057 1058 1059 1060 1061
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1062 1063
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1064 1065 1066 1067 1068
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1069 1070 1071 1072 1073 1074
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1075 1076 1077 1078

	/* Suggest workaround for known h/w issue */
	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079 1080 1081 1082
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083
 * @tx_ring: Tx descriptor ring
1084 1085 1086 1087
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1088
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089
{
1090
	struct e1000_adapter *adapter = tx_ring->adapter;
1091 1092 1093 1094 1095 1096 1097
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098
	unsigned int bytes_compl = 0, pkts_compl = 0;
1099 1100 1101 1102 1103

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1104 1105
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1106
		bool cleaned = false;
1107
		rmb(); /* read buffer_info after eop_desc */
1108
		for (; !cleaned; count++) {
1109 1110 1111 1112 1113
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1114 1115
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1116 1117 1118 1119
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1120 1121
			}

1122
			e1000_put_txbuf(tx_ring, buffer_info);
1123 1124 1125 1126 1127 1128 1129
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1130 1131
		if (i == tx_ring->next_to_use)
			break;
1132 1133 1134 1135 1136 1137
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1138 1139
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1140
#define TX_WAKE_THRESHOLD 32
1141 1142
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1156 1157 1158 1159
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1160
		adapter->detect_tx_hung = false;
1161 1162
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163
			       + (adapter->tx_timeout_factor * HZ)) &&
1164
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165
			schedule_work(&adapter->print_hang_task);
1166 1167
		else
			adapter->tx_hang_recheck = false;
1168 1169 1170
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1171
	return count < tx_ring->count;
1172 1173 1174 1175
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176
 * @rx_ring: Rx descriptor ring
1177 1178 1179 1180
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1181 1182
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1183
{
1184
	struct e1000_adapter *adapter = rx_ring->adapter;
1185
	struct e1000_hw *hw = &adapter->hw;
1186 1187 1188 1189 1190 1191 1192 1193 1194
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1195
	bool cleaned = false;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1208
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1221
		cleaned = true;
1222
		cleaned_count++;
1223
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225 1226
		buffer_info->dma = 0;

1227
		/* see !EOP comment in other Rx routine */
1228 1229 1230 1231
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233
			dev_kfree_skb_irq(skb);
1234 1235
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236 1237 1238
			goto next_desc;
		}

B
Ben Greear 已提交
1239 1240
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
1241 1242 1243 1244 1245 1246 1247
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1248
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1249 1250 1251 1252 1253 1254 1255 1256
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1257 1258 1259 1260 1261
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262

1263
			/*
1264 1265 1266 1267
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1268
			 */
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
1284
				vaddr = kmap_atomic(ps_page->page);
1285
				memcpy(skb_tail_pointer(skb), vaddr, l1);
1286
				kunmap_atomic(vaddr);
1287 1288 1289 1290 1291 1292
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
B
Ben Greear 已提交
1293 1294 1295 1296
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
					if (!(netdev->features & NETIF_F_RXFCS))
						l1 -= 4;
				}
1297 1298 1299 1300

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1301 1302 1303 1304 1305 1306 1307
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1308
			ps_page = &buffer_info->ps_pages[j];
1309 1310
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1311 1312 1313 1314 1315
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1316
			skb->truesize += PAGE_SIZE;
1317 1318
		}

J
Jeff Kirsher 已提交
1319 1320 1321
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
B
Ben Greear 已提交
1322 1323 1324 1325
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			if (!(netdev->features & NETIF_F_RXFCS))
				pskb_trim(skb, skb->len - 4);
		}
J
Jeff Kirsher 已提交
1326

1327 1328 1329 1330
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1331
		e1000_rx_checksum(adapter, staterr, skb);
1332

1333 1334
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349
					      GFP_ATOMIC);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1363
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364 1365

	adapter->total_rx_bytes += total_rx_bytes;
1366
	adapter->total_rx_packets += total_rx_packets;
1367 1368 1369
	return cleaned;
}

1370 1371 1372 1373 1374 1375 1376 1377 1378
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1379
	skb->truesize += PAGE_SIZE;
1380 1381 1382 1383 1384 1385 1386 1387 1388
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1389 1390
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1391
{
1392
	struct e1000_adapter *adapter = rx_ring->adapter;
1393 1394
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1395
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396
	struct e1000_buffer *buffer_info, *next_buffer;
1397
	u32 length, staterr;
1398 1399 1400 1401 1402 1403
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1404 1405
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406 1407
	buffer_info = &rx_ring->buffer_info[i];

1408
	while (staterr & E1000_RXD_STAT_DD) {
1409 1410 1411 1412 1413
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1414
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1415 1416 1417 1418 1419 1420 1421

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1422
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423 1424 1425 1426 1427 1428
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1429 1430
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1431 1432
		buffer_info->dma = 0;

1433
		length = le16_to_cpu(rx_desc->wb.upper.length);
1434 1435

		/* errors is only valid for DD + EOP descriptors */
1436
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
B
Ben Greear 已提交
1437 1438
			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			      !(netdev->features & NETIF_F_RXALL)))) {
1439 1440 1441 1442 1443 1444 1445
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1446 1447
		}

1448
#define rxtop (rx_ring->rx_skb_top)
1449
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
1484
					vaddr = kmap_atomic(buffer_info->page);
1485 1486
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
1487
					kunmap_atomic(vaddr);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

1501 1502
		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter, staterr, skb);
1503

1504 1505
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1506 1507 1508 1509 1510 1511
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1512
			e_err("pskb_may_pull failed.\n");
1513
			dev_kfree_skb_irq(skb);
1514 1515 1516
			goto next_desc;
		}

1517 1518
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1519 1520

next_desc:
1521
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522 1523 1524

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526
					      GFP_ATOMIC);
1527 1528 1529 1530 1531 1532
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1533 1534

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535 1536 1537 1538 1539
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1540
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541 1542 1543 1544 1545 1546

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1547 1548
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549
 * @rx_ring: Rx descriptor ring
1550
 **/
1551
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552
{
1553
	struct e1000_adapter *adapter = rx_ring->adapter;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1564
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1565
						 adapter->rx_buffer_len,
1566
						 DMA_FROM_DEVICE);
1567
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1569
				               PAGE_SIZE,
1570
					       DMA_FROM_DEVICE);
1571
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1573
						 adapter->rx_ps_bsize0,
1574
						 DMA_FROM_DEVICE);
1575 1576 1577
			buffer_info->dma = 0;
		}

1578 1579 1580 1581 1582
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1583 1584 1585 1586 1587 1588
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1589
			ps_page = &buffer_info->ps_pages[j];
1590 1591
			if (!ps_page->page)
				break;
1592 1593
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1611
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612

1613
	writel(0, rx_ring->head);
1614 1615 1616 1617
	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_rdt_wa(rx_ring, 0);
	else
		writel(0, rx_ring->tail);
1618 1619
}

1620 1621 1622 1623 1624
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1625 1626 1627
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1628 1629 1630
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1643 1644 1645
	/*
	 * read ICR disables interrupts using IAM
	 */
1646

1647
	if (icr & E1000_ICR_LSC) {
1648
		hw->mac.get_link_status = true;
1649 1650 1651 1652
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1653 1654
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1655
			schedule_work(&adapter->downshift_task);
1656

1657 1658
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1659
		 * link down event; disable receives here in the ISR and reset
1660 1661
		 * adapter in watchdog
		 */
1662 1663 1664 1665 1666
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667
			adapter->flags |= FLAG_RX_RESTART_NOW;
1668 1669 1670 1671 1672 1673
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1674
	if (napi_schedule_prep(&adapter->napi)) {
1675 1676 1677 1678
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1679
		__napi_schedule(&adapter->napi);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1696

1697
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698 1699
		return IRQ_NONE;  /* Not our interrupt */

1700 1701 1702 1703
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1704 1705 1706
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1707 1708 1709 1710 1711
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1712

1713
	if (icr & E1000_ICR_LSC) {
1714
		hw->mac.get_link_status = true;
1715 1716 1717 1718
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1719 1720
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1721
			schedule_work(&adapter->downshift_task);
1722

1723 1724
		/*
		 * 80003ES2LAN workaround--
1725 1726 1727 1728 1729 1730 1731 1732 1733
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734
			adapter->flags |= FLAG_RX_RESTART_NOW;
1735 1736 1737 1738 1739 1740
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1741
	if (napi_schedule_prep(&adapter->napi)) {
1742 1743 1744 1745
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1746
		__napi_schedule(&adapter->napi);
1747 1748 1749 1750 1751
	}

	return IRQ_HANDLED;
}

1752 1753 1754 1755 1756 1757 1758 1759
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760 1761
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1762 1763 1764 1765 1766 1767 1768 1769 1770
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
1771
		hw->mac.get_link_status = true;
1772 1773 1774 1775 1776 1777
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1778 1779
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1796
	if (!e1000_clean_tx_irq(tx_ring))
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1807
	struct e1000_ring *rx_ring = adapter->rx_ring;
1808 1809 1810 1811

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1812 1813 1814 1815
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1816 1817
	}

1818
	if (napi_schedule_prep(&adapter->napi)) {
1819 1820
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1821
		__napi_schedule(&adapter->napi);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1855
		       rx_ring->itr_register);
1856
	else
1857
		writel(1, rx_ring->itr_register);
1858 1859 1860 1861 1862 1863 1864
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1865
		       tx_ring->itr_register);
1866
	else
1867
		writel(1, tx_ring->itr_register);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1918
	int i;
1919 1920 1921 1922

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1923 1924
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1925 1926 1927
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1928
				for (i = 0; i < adapter->num_vectors; i++)
1929 1930 1931 1932
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1933
						      adapter->num_vectors);
B
Bruce Allan 已提交
1934
				if (err == 0)
1935 1936 1937
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1938
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939 1940 1941 1942 1943 1944 1945 1946 1947
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949 1950 1951 1952 1953 1954
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1955 1956 1957

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972 1973 1974
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1975 1976 1977
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1978
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979 1980
			  netdev);
	if (err)
1981
		return err;
1982 1983
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
1984 1985 1986 1987
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 1989 1990
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
1991 1992 1993
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1994
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995 1996
			  netdev);
	if (err)
1997
		return err;
1998 1999
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2000 2001 2002 2003
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2004
			  e1000_msix_other, 0, netdev->name, netdev);
2005
	if (err)
2006
		return err;
2007 2008

	e1000_configure_msix(adapter);
2009

2010 2011 2012
	return 0;
}

2013 2014 2015 2016 2017 2018
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2019 2020 2021 2022 2023
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2024 2025 2026 2027 2028 2029 2030 2031
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2032
	}
2033
	if (adapter->flags & FLAG_MSI_ENABLED) {
2034
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035 2036 2037
				  netdev->name, netdev);
		if (!err)
			return err;
2038

2039 2040 2041
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042 2043
	}

2044
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045 2046 2047 2048
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2049 2050 2051 2052 2053 2054 2055
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2068
	}
2069 2070

	free_irq(adapter->pdev->irq, netdev);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2081 2082
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2083
	e1e_flush();
2084 2085 2086 2087 2088 2089 2090 2091

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2092 2093 2094 2095 2096 2097 2098 2099 2100
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2101 2102 2103 2104 2105 2106
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2107
	e1e_flush();
2108 2109 2110
}

/**
2111
 * e1000e_get_hw_control - get control of the h/w from f/w
2112 2113
 * @adapter: address of board private structure
 *
2114
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 2116 2117 2118
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2119
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2131
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132 2133 2134 2135
	}
}

/**
2136
 * e1000e_release_hw_control - release control of the h/w to f/w
2137 2138
 * @adapter: address of board private structure
 *
2139
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 2141 2142 2143 2144
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2145
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2157
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158 2159 2160 2161
	}
}

/**
2162
 * e1000_alloc_ring_dma - allocate memory for a ring structure
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179
 * @tx_ring: Tx descriptor ring
2180 2181 2182
 *
 * Return 0 on success, negative on failure
 **/
2183
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184
{
2185
	struct e1000_adapter *adapter = tx_ring->adapter;
2186 2187 2188
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2189
	tx_ring->buffer_info = vzalloc(size);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2207
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208 2209 2210 2211 2212
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213
 * @rx_ring: Rx descriptor ring
2214 2215 2216
 *
 * Returns 0 on success, negative on failure
 **/
2217
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218
{
2219
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2220 2221
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2222 2223

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2224
	rx_ring->buffer_info = vzalloc(size);
2225 2226 2227
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2228 2229 2230 2231 2232 2233 2234 2235
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2236 2237 2238 2239 2240 2241 2242 2243 2244

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2245
		goto err_pages;
2246 2247 2248 2249 2250 2251

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2252 2253 2254 2255 2256 2257

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2258 2259
err:
	vfree(rx_ring->buffer_info);
2260
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2261 2262 2263 2264 2265
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2266
 * @tx_ring: Tx descriptor ring
2267
 **/
2268
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269
{
2270
	struct e1000_adapter *adapter = tx_ring->adapter;
2271 2272 2273 2274 2275 2276
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2277
		e1000_put_txbuf(tx_ring, buffer_info);
2278 2279
	}

2280
	netdev_reset_queue(adapter->netdev);
2281 2282 2283 2284 2285 2286 2287 2288
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2289
	writel(0, tx_ring->head);
2290 2291 2292 2293
	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_tdt_wa(tx_ring, 0);
	else
		writel(0, tx_ring->tail);
2294 2295 2296 2297
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298
 * @tx_ring: Tx descriptor ring
2299 2300 2301
 *
 * Free all transmit software resources
 **/
2302
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303
{
2304
	struct e1000_adapter *adapter = tx_ring->adapter;
2305 2306
	struct pci_dev *pdev = adapter->pdev;

2307
	e1000_clean_tx_ring(tx_ring);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2319
 * @rx_ring: Rx descriptor ring
2320 2321 2322
 *
 * Free all receive software resources
 **/
2323
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324
{
2325
	struct e1000_adapter *adapter = rx_ring->adapter;
2326
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2327
	int i;
2328

2329
	e1000_clean_rx_ring(rx_ring);
2330

B
Bruce Allan 已提交
2331
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2332 2333
		kfree(rx_ring->buffer_info[i].ps_pages);

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 2345 2346 2347 2348
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2349 2350 2351 2352 2353 2354
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2355 2356
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2357 2358 2359 2360 2361 2362 2363 2364
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
2365
		return itr_setting;
2366 2367 2368 2369 2370 2371

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2372
		else if ((packets < 5) && (bytes > 512))
2373 2374 2375 2376 2377
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2378
			if (bytes/packets > 8000)
2379
				retval = bulk_latency;
B
Bruce Allan 已提交
2380
			else if ((packets < 10) || ((bytes/packets) > 1200))
2381
				retval = bulk_latency;
B
Bruce Allan 已提交
2382
			else if ((packets > 35))
2383 2384 2385 2386 2387 2388 2389 2390 2391
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2392
			if (packets > 35)
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2416 2417 2418 2419 2420
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2456 2457
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2458
		 * by adding intermediate steps when interrupt rate is
2459 2460
		 * increasing
		 */
2461 2462 2463 2464
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2465 2466 2467 2468
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2469 2470 2471 2472
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2473 2474 2475
	}
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * e1000e_write_itr - write the ITR value to the appropriate registers
 * @adapter: address of board private structure
 * @itr: new ITR value to program
 *
 * e1000e_write_itr determines if the adapter is in MSI-X mode
 * and, if so, writes the EITR registers with the ITR value.
 * Otherwise, it writes the ITR value into the ITR register.
 **/
void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;

	if (adapter->msix_entries) {
		int vector;

		for (vector = 0; vector < adapter->num_vectors; vector++)
			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
	} else {
		ew32(ITR, new_itr);
	}
}

2500 2501 2502 2503 2504 2505
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2506 2507 2508
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2509 2510
	if (!adapter->tx_ring)
		goto err;
2511 2512
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2513

2514
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2515 2516
	if (!adapter->rx_ring)
		goto err;
2517 2518
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2519 2520 2521 2522 2523 2524 2525 2526 2527

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2528
/**
B
Bruce Allan 已提交
2529
 * e1000e_poll - NAPI Rx polling callback
2530
 * @napi: struct associated with this polling callback
B
Bruce Allan 已提交
2531
 * @weight: number of packets driver is allowed to process this poll
2532
 **/
B
Bruce Allan 已提交
2533
static int e1000e_poll(struct napi_struct *napi, int weight)
2534
{
B
Bruce Allan 已提交
2535 2536
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
						     napi);
2537
	struct e1000_hw *hw = &adapter->hw;
2538
	struct net_device *poll_dev = adapter->netdev;
2539
	int tx_cleaned = 1, work_done = 0;
2540

2541
	adapter = netdev_priv(poll_dev);
2542

B
Bruce Allan 已提交
2543 2544 2545
	if (!adapter->msix_entries ||
	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2546

B
Bruce Allan 已提交
2547
	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2548

2549
	if (!tx_cleaned)
B
Bruce Allan 已提交
2550
		work_done = weight;
2551

B
Bruce Allan 已提交
2552 2553
	/* If weight not fully consumed, exit the polling mode */
	if (work_done < weight) {
2554 2555
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2556
		napi_complete(napi);
2557 2558 2559 2560 2561 2562
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2563 2564 2565 2566 2567
	}

	return work_done;
}

2568
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2569 2570 2571 2572 2573 2574 2575 2576 2577
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2578
		return 0;
2579

2580
	/* add VID to filter table */
2581 2582 2583 2584 2585 2586
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2587 2588

	set_bit(vid, adapter->active_vlans);
2589 2590

	return 0;
2591 2592
}

2593
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2594 2595 2596 2597 2598 2599 2600 2601 2602
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2603
		e1000e_release_hw_control(adapter);
2604
		return 0;
2605 2606 2607
	}

	/* remove VID from filter table */
2608 2609 2610 2611 2612 2613
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2614 2615

	clear_bit(vid, adapter->active_vlans);
2616 2617

	return 0;
2618 2619
}

J
Jeff Kirsher 已提交
2620 2621 2622 2623 2624
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2625 2626
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2627 2628
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2629

J
Jeff Kirsher 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2639 2640 2641 2642
		}
	}
}

J
Jeff Kirsher 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2660

J
Jeff Kirsher 已提交
2661 2662 2663 2664 2665
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2666 2667
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2668
	u32 ctrl;
2669

J
Jeff Kirsher 已提交
2670 2671 2672 2673 2674
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2675

J
Jeff Kirsher 已提交
2676 2677 2678 2679 2680 2681 2682 2683
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2684

J
Jeff Kirsher 已提交
2685 2686 2687 2688 2689
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2690

J
Jeff Kirsher 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2701 2702
	}

J
Jeff Kirsher 已提交
2703 2704
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2705 2706 2707 2708 2709 2710
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2711
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2712

J
Jeff Kirsher 已提交
2713
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2714 2715 2716
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2717
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2718 2719
{
	struct e1000_hw *hw = &adapter->hw;
2720
	u32 manc, manc2h, mdef, i, j;
2721 2722 2723 2724 2725 2726

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2727 2728
	/*
	 * enable receiving management packets to the host. this will probably
2729
	 * generate destination unreachable messages from the host OS, but
2730 2731
	 * the packets will be handled on SMBUS
	 */
2732 2733
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2749
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2777 2778 2779 2780 2781
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2782
 * e1000_configure_tx - Configure Transmit Unit after Reset
2783 2784 2785 2786 2787 2788 2789 2790 2791
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2792
	u32 tdlen, tarc;
2793 2794 2795 2796

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2797 2798 2799 2800 2801 2802 2803
	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
	ew32(TDBAH(0), (tdba >> 32));
	ew32(TDLEN(0), tdlen);
	ew32(TDH(0), 0);
	ew32(TDT(0), 0);
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2804 2805 2806

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2807
	/* Tx irq moderation */
2808 2809
	ew32(TADV, adapter->tx_abs_int_delay);

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2822
		 * there are Tx hangs or other Tx related bugs
2823 2824 2825 2826
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2827 2828
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2829

2830
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2831
		tarc = er32(TARC(0));
2832 2833 2834 2835
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2836 2837
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2838
		ew32(TARC(0), tarc);
2839 2840 2841 2842
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2843
		tarc = er32(TARC(0));
2844
		tarc |= 1;
2845 2846
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2847
		tarc |= 1;
2848
		ew32(TARC(1), tarc);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2861
	hw->mac.ops.config_collision_dist(hw);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

B
Bruce Allan 已提交
2876 2877
	/* Workaround Si errata on PCHx - configure jumbo frame flow */
	if (hw->mac.type >= e1000_pch2lan) {
2878 2879 2880 2881 2882 2883
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2884 2885 2886

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2887 2888
	}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2905 2906 2907 2908 2909 2910
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2911

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2949 2950 2951
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;
2952
	ew32(RFCTL, rfctl);
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2970
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2971
		adapter->rx_ps_pages = pages;
2972 2973
	else
		adapter->rx_ps_pages = 0;
2974 2975

	if (adapter->rx_ps_pages) {
2976 2977
		u32 psrctl = 0;

A
Auke Kok 已提交
2978 2979
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

B
Ben Greear 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3016
	ew32(RCTL, rctl);
3017 3018
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3037
		    sizeof(union e1000_rx_desc_packet_split);
3038 3039
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3040
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3041
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3042 3043
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3044
	} else {
3045
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3046 3047 3048 3049 3050 3051
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3052 3053
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3054
	e1e_flush();
3055
	usleep_range(10000, 20000);
3056

3057 3058 3059 3060
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3061
		 * enable prefetching of 0x20 Rx descriptors
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3080 3081 3082 3083 3084
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3085
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3086
		e1000e_write_itr(adapter, adapter->itr);
3087 3088 3089 3090 3091 3092 3093 3094

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3095 3096 3097 3098
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3099
	rdba = rx_ring->dma;
3100 3101 3102 3103 3104 3105 3106
	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
	ew32(RDBAH(0), (rdba >> 32));
	ew32(RDLEN(0), rdlen);
	ew32(RDH(0), 0);
	ew32(RDT(0), 0);
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3107 3108 3109

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3110
	if (adapter->netdev->features & NETIF_F_RXCSUM)
3111
		rxcsum |= E1000_RXCSUM_TUOFL;
3112
	else
3113 3114 3115
		rxcsum &= ~E1000_RXCSUM_TUOFL;
	ew32(RXCSUM, rxcsum);

3116 3117 3118 3119 3120
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3121 3122 3123
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3124
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3125
		} else {
3126 3127
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3128
		}
3129
	}
3130 3131 3132 3133 3134 3135

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3136 3137
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3138
 *
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3176
 *
3177 3178 3179 3180
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3181
 **/
3182
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3183
{
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
3210
			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3223 3224 3225
}

/**
3226
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3227 3228
 * @netdev: network interface device structure
 *
3229 3230 3231
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3232 3233
 * promiscuous mode, and all-multi behavior.
 **/
3234
static void e1000e_set_rx_mode(struct net_device *netdev)
3235 3236 3237 3238 3239 3240 3241 3242
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3243 3244 3245
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3246 3247
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3248 3249
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3250
	} else {
3251
		int count;
3252

3253 3254 3255
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3256 3257 3258 3259 3260 3261 3262 3263
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3264
		}
J
Jeff Kirsher 已提交
3265
		e1000e_vlan_filter_enable(adapter);
3266
		/*
3267 3268 3269
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3270
		 */
3271 3272 3273
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3274
	}
J
Jeff Kirsher 已提交
3275

3276 3277
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3278 3279 3280 3281
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3282 3283
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3320
/**
3321
 * e1000_configure - configure the hardware for Rx and Tx
3322 3323 3324 3325
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3326 3327
	struct e1000_ring *rx_ring = adapter->rx_ring;

3328
	e1000e_set_rx_mode(adapter->netdev);
3329 3330

	e1000_restore_vlan(adapter);
3331
	e1000_init_manageability_pt(adapter);
3332 3333

	e1000_configure_tx(adapter);
3334 3335 3336

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3337 3338
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3339
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3352 3353
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3354 3355 3356 3357 3358 3359 3360

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3361 3362
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3363 3364 3365 3366
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3367
	if (adapter->wol)
3368 3369
		return;

3370 3371
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3372 3373 3374 3375 3376 3377 3378 3379
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3380
 * properly configured for Rx, Tx etc.
3381 3382 3383 3384
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3385
	struct e1000_fc_info *fc = &adapter->hw.fc;
3386 3387
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3388
	u32 pba = adapter->pba;
3389 3390
	u16 hwm;

3391
	/* reset Packet Buffer Allocation to default */
3392
	ew32(PBA, pba);
3393

3394
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3395 3396
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3397 3398 3399 3400
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3401 3402
		 * expressed in KB.
		 */
3403
		pba = er32(PBA);
3404
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3405
		tx_space = pba >> 16;
3406
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3407
		pba &= 0xffff;
3408
		/*
3409
		 * the Tx fifo also stores 16 bytes of information about the Tx
3410
		 * but don't include ethernet FCS because hardware appends it
3411 3412
		 */
		min_tx_space = (adapter->max_frame_size +
3413 3414 3415 3416 3417
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3418
		min_rx_space = adapter->max_frame_size;
3419 3420 3421
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3422 3423
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3424
		 * and the min Tx FIFO size is less than the current Rx FIFO
3425 3426
		 * allocation, take space away from current Rx allocation
		 */
3427 3428 3429
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3430

3431
			/*
3432
			 * if short on Rx space, Rx wins and must trump Tx
3433 3434
			 * adjustment or use Early Receive if available
			 */
3435
			if (pba < min_rx_space)
3436
				pba = min_rx_space;
3437
		}
3438 3439

		ew32(PBA, pba);
3440 3441
	}

3442 3443 3444
	/*
	 * flow control settings
	 *
3445
	 * The high water mark must be low enough to fit one full frame
3446 3447 3448
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3449
	 * - the full Rx FIFO size minus one full frame
3450
	 */
3451 3452 3453 3454
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
3455
	fc->send_xon = true;
3456 3457 3458
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3469
	default:
3470 3471
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3472 3473 3474 3475 3476

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3488
		fc->refresh_time = 0x1000;
3489 3490
		break;
	case e1000_pch2lan:
B
Bruce Allan 已提交
3491
	case e1000_pch_lpt:
3492 3493 3494 3495
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3496 3497 3498 3499
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3500
		break;
3501
	}
3502

3503 3504
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3505
	 * fit in receive buffer.
3506 3507
	 */
	if (adapter->itr_setting & 0x3) {
3508
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3509 3510 3511 3512
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
3513
				e1000e_write_itr(adapter, 0);
3514 3515 3516 3517 3518 3519
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
3520
			e1000e_write_itr(adapter, adapter->itr);
3521 3522 3523
		}
	}

3524 3525
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3526 3527 3528 3529 3530

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3531
	if (adapter->flags & FLAG_HAS_AMT)
3532
		e1000e_get_hw_control(adapter);
3533

3534 3535 3536
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3537
		e_err("Hardware Error\n");
3538 3539 3540 3541 3542 3543 3544

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3545 3546 3547 3548 3549 3550 3551

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3552 3553
	e1000_get_phy_info(hw);

3554 3555
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3556
		u16 phy_data = 0;
3557 3558
		/*
		 * speed up time to link by disabling smart power down, ignore
3559
		 * the return value of this function because there is nothing
3560 3561
		 * different we would do if it failed
		 */
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3577 3578
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3579 3580
	e1000_irq_enable(adapter);

3581
	netif_start_queue(adapter->netdev);
3582

3583
	/* fire a link change interrupt to start the watchdog */
3584 3585 3586 3587 3588
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3589 3590 3591
	return 0;
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
3605 3606 3607 3608 3609 3610 3611

	/*
	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
	 * write is successful
	 */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3612 3613 3614 3615 3616

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3617 3618
static void e1000e_update_stats(struct e1000_adapter *adapter);

3619 3620 3621 3622 3623 3624
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3625 3626 3627 3628
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3629 3630 3631 3632
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3633 3634
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3635 3636
	/* flush and sleep below */

3637
	netif_stop_queue(netdev);
3638 3639 3640 3641 3642

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3643

3644 3645
	/* flush both disables and wait for them to finish */
	e1e_flush();
3646
	usleep_range(10000, 20000);
3647 3648 3649 3650 3651 3652 3653

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3654 3655 3656 3657 3658

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3659
	e1000e_flush_descriptors(adapter);
3660 3661
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3662

3663 3664 3665
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3666 3667
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3668

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3679
		usleep_range(1000, 2000);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3699 3700
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3701 3702
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3703

J
Jeff Kirsher 已提交
3704 3705
	spin_lock_init(&adapter->stats64_lock);

3706
	e1000e_set_interrupt_capability(adapter);
3707

3708 3709
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3710 3711 3712 3713 3714 3715 3716 3717

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3730
	e_dbg("icr is %08X\n", icr);
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3757
	e1000e_reset_interrupt_capability(adapter);
3758 3759 3760 3761 3762 3763 3764 3765 3766

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3767
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
3781
	msleep(100);
3782 3783 3784 3785 3786 3787

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3788
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3789
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3790
	} else {
3791
		e_dbg("MSI interrupt test succeeded!\n");
3792
	}
3793 3794 3795 3796 3797

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3798
	e1000e_set_interrupt_capability(adapter);
3799
	return e1000_request_irq(adapter);
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3818 3819 3820
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3821 3822 3823

	err = e1000_test_msi_interrupt(adapter);

3824 3825 3826 3827 3828 3829
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3830 3831 3832 3833

	return err;
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3850
	struct pci_dev *pdev = adapter->pdev;
3851 3852 3853 3854 3855 3856
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3857 3858
	pm_runtime_get_sync(&pdev->dev);

3859 3860
	netif_carrier_off(netdev);

3861
	/* allocate transmit descriptors */
3862
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3863 3864 3865 3866
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3867
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3868 3869 3870
	if (err)
		goto err_setup_rx;

3871 3872 3873 3874 3875
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3876
		e1000e_get_hw_control(adapter);
3877 3878 3879
		e1000e_reset(adapter);
	}

3880 3881 3882 3883 3884 3885 3886
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3887 3888
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3889 3890 3891
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3892

3893 3894
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3895 3896
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3897 3898
	 * clean_rx handler before we do so.
	 */
3899 3900 3901 3902 3903 3904
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3905 3906 3907 3908 3909
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3910
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3911 3912 3913 3914 3915 3916 3917
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3918 3919 3920 3921 3922 3923 3924
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3925
	adapter->tx_hang_recheck = false;
3926
	netif_start_queue(netdev);
3927

3928 3929 3930
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3931
	/* fire a link status change interrupt to start the watchdog */
3932 3933 3934 3935
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3936 3937 3938 3939

	return 0;

err_req_irq:
3940
	e1000e_release_hw_control(adapter);
3941
	e1000_power_down_phy(adapter);
3942
	e1000e_free_rx_resources(adapter->rx_ring);
3943
err_setup_rx:
3944
	e1000e_free_tx_resources(adapter->tx_ring);
3945 3946
err_setup_tx:
	e1000e_reset(adapter);
3947
	pm_runtime_put_sync(&pdev->dev);
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3966
	struct pci_dev *pdev = adapter->pdev;
3967 3968 3969 3970
	int count = E1000_CHECK_RESET_COUNT;

	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
		usleep_range(10000, 20000);
3971 3972

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3973 3974 3975

	pm_runtime_get_sync(&pdev->dev);

3976 3977
	napi_disable(&adapter->napi);

3978 3979 3980 3981
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3982 3983
	e1000_power_down_phy(adapter);

3984 3985
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
3986

3987 3988 3989 3990
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3991 3992
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3993 3994
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3995 3996 3997 3998
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3999 4000 4001
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
4002

4003
	if (adapter->hw.mac.type == e1000_pch2lan)
4004
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4005

4006 4007
	pm_runtime_put_sync(&pdev->dev);

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
4020
	struct e1000_hw *hw = &adapter->hw;
4021 4022 4023 4024 4025 4026 4027 4028
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

4029
	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4030 4031 4032 4033 4034

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4035 4036
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4037 4038 4039 4040
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4041 4042
		 * RAR[14]
		 */
4043 4044
		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
				    adapter->hw.mac.rar_entry_count - 1);
4045 4046 4047 4048 4049
	}

	return 0;
}

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4062 4063 4064 4065

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4066 4067 4068
	e1000_get_phy_info(&adapter->hw);
}

4069 4070 4071 4072
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4073 4074 4075
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4076 4077 4078 4079

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4080
	schedule_work(&adapter->update_phy_task);
4081 4082
}

4083 4084 4085
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4086 4087
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4103
	hw->phy.addr = 1;
4104 4105 4106 4107
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4108 4109 4110
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4111 4112 4113 4114 4115
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4116 4117
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4118 4119 4120 4121
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4122 4123
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4124 4125 4126 4127
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4128 4129
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4130 4131 4132 4133
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4134 4135
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4136 4137 4138 4139
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4140 4141
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4142 4143 4144 4145
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4146 4147
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4148 4149 4150 4151
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4152 4153
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4154 4155 4156 4157 4158 4159 4160
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4161 4162 4163 4164
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4165
static void e1000e_update_stats(struct e1000_adapter *adapter)
4166
{
4167
	struct net_device *netdev = adapter->netdev;
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4182 4183
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4184 4185 4186 4187 4188
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4208
	}
4209

4210 4211 4212 4213 4214
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4215 4216
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4235 4236
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4237 4238 4239

	/* Rx Errors */

4240 4241 4242 4243
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4244
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4245 4246 4247
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4248
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4249
					      adapter->stats.roc;
4250 4251 4252
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4253 4254

	/* Tx Errors */
4255
	netdev->stats.tx_errors = adapter->stats.ecol +
4256
				       adapter->stats.latecol;
4257 4258 4259
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4260 4261 4262 4263 4264 4265 4266 4267 4268

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4280 4281
		int ret_val;

4282 4283 4284 4285 4286 4287 4288 4289 4290
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4291
			e_warn("Error reading PHY register\n");
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4311 4312 4313 4314 4315
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4316
	/* Link status message must follow this format for user tools */
4317 4318 4319 4320 4321 4322 4323
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4324 4325
}

4326
static bool e1000e_has_link(struct e1000_adapter *adapter)
4327 4328
{
	struct e1000_hw *hw = &adapter->hw;
4329
	bool link_active = false;
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4344
			link_active = true;
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4363
		e_info("Gigabit has been disabled, downgrading speed\n");
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4420
	struct e1000_phy_info *phy = &adapter->hw.phy;
4421 4422 4423 4424
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4425 4426 4427
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4428
	link = e1000e_has_link(adapter);
4429
	if ((netif_carrier_ok(netdev)) && link) {
4430 4431 4432
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4433
		e1000e_enable_receives(adapter);
4434 4435 4436 4437 4438 4439 4440 4441 4442
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4443
			bool txb2b = true;
4444 4445 4446 4447

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4448
			/* update snapshot of PHY registers on LSC */
4449
			e1000_phy_read_status(adapter);
4450 4451 4452 4453
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4469
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4470 4471
			}

4472
			/* adjust timeout factor according to speed/duplex */
4473 4474 4475
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4476
				txb2b = false;
4477
				adapter->tx_timeout_factor = 16;
4478 4479
				break;
			case SPEED_100:
4480
				txb2b = false;
4481
				adapter->tx_timeout_factor = 10;
4482 4483 4484
				break;
			}

4485 4486 4487 4488
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4489 4490 4491
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4492
				tarc0 = er32(TARC(0));
4493
				tarc0 &= ~SPEED_MODE_BIT;
4494
				ew32(TARC(0), tarc0);
4495 4496
			}

4497 4498 4499 4500
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4501 4502 4503 4504
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4505
					e_info("10/100 speed: disabling TSO\n");
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4519 4520 4521 4522
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4523 4524 4525 4526
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4527 4528 4529 4530 4531 4532 4533
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4544 4545 4546
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4547 4548 4549 4550 4551 4552 4553
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4554 4555 4556
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4557 4558 4559 4560
		}
	}

link_up:
J
Jeff Kirsher 已提交
4561
	spin_lock(&adapter->stats64_lock);
4562 4563 4564 4565 4566 4567 4568
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4569 4570 4571 4572
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4573
	spin_unlock(&adapter->stats64_lock);
4574 4575 4576

	e1000e_update_adaptive(&adapter->hw);

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4588 4589
	}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

4603
		e1000e_write_itr(adapter, itr);
4604 4605
	}

4606
	/* Cause software interrupt to ensure Rx ring is cleaned */
4607 4608 4609 4610
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4611

4612 4613 4614
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4615
	/* Force detection of hung controller every watchdog period */
4616
	adapter->detect_tx_hung = true;
4617

4618 4619 4620 4621
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4622
	if (e1000e_get_laa_state_82571(hw))
4623
		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4624

4625 4626 4627
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
4638
#define E1000_TX_FLAGS_NO_FCS		0x00000010
4639 4640 4641
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4642
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4643 4644 4645 4646 4647 4648 4649 4650
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4651 4652
	if (!skb_is_gso(skb))
		return 0;
4653

4654
	if (skb_header_cloned(skb)) {
4655 4656
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4657 4658
		if (err)
			return err;
4659 4660
	}

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4671
	} else if (skb_is_gso_v6(skb)) {
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4710 4711
}

4712
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4713
{
4714
	struct e1000_adapter *adapter = tx_ring->adapter;
4715 4716 4717 4718
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4719
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4720
	__be16 protocol;
4721

4722 4723
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4724

4725 4726 4727 4728 4729
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4730
	switch (protocol) {
4731
	case cpu_to_be16(ETH_P_IP):
4732 4733 4734
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4735
	case cpu_to_be16(ETH_P_IPV6):
4736 4737 4738 4739 4740 4741
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4742 4743
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4744
		break;
4745 4746
	}

4747
	css = skb_checksum_start_offset(skb);
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4770 4771 4772 4773 4774
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4775 4776 4777
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4778
{
4779
	struct e1000_adapter *adapter = tx_ring->adapter;
4780
	struct pci_dev *pdev = adapter->pdev;
4781
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4782
	unsigned int len = skb_headlen(skb);
4783
	unsigned int offset = 0, size, count = 0, i;
4784
	unsigned int f, bytecount, segs;
4785 4786 4787 4788

	i = tx_ring->next_to_use;

	while (len) {
4789
		buffer_info = &tx_ring->buffer_info[i];
4790 4791 4792 4793 4794
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4795 4796
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4797
						  size, DMA_TO_DEVICE);
4798
		buffer_info->mapped_as_page = false;
4799
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4800
			goto dma_error;
4801 4802 4803

		len -= size;
		offset += size;
4804
		count++;
4805 4806 4807 4808 4809 4810

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4811 4812 4813
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4814
		const struct skb_frag_struct *frag;
4815 4816

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4817
		len = skb_frag_size(frag);
4818
		offset = 0;
4819 4820

		while (len) {
4821 4822 4823 4824
			i++;
			if (i == tx_ring->count)
				i = 0;

4825 4826 4827 4828 4829 4830
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4831 4832
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4833
			buffer_info->mapped_as_page = true;
4834
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4835
				goto dma_error;
4836 4837 4838 4839 4840 4841 4842

			len -= size;
			offset += size;
			count++;
		}
	}

4843
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4844 4845 4846
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4847
	tx_ring->buffer_info[i].skb = skb;
4848 4849
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4850 4851 4852
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4853 4854

dma_error:
4855
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4856
	buffer_info->dma = 0;
4857
	if (count)
4858
		count--;
4859 4860

	while (count--) {
4861
		if (i == 0)
4862
			i += tx_ring->count;
4863
		i--;
4864
		buffer_info = &tx_ring->buffer_info[i];
4865
		e1000_put_txbuf(tx_ring, buffer_info);
4866 4867 4868
	}

	return 0;
4869 4870
}

4871
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4872
{
4873
	struct e1000_adapter *adapter = tx_ring->adapter;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

4898 4899 4900
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		txd_lower &= ~(E1000_TXD_CMD_IFCS);

4901 4902
	i = tx_ring->next_to_use;

4903
	do {
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4914
	} while (--count > 0);
4915 4916 4917

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4918 4919 4920 4921
	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));

4922 4923
	/*
	 * Force memory writes to complete before letting h/w
4924 4925
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4926 4927
	 * such as IA-64).
	 */
4928 4929 4930
	wmb();

	tx_ring->next_to_use = i;
4931 4932

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4933
		e1000e_update_tdt_wa(tx_ring, i);
4934
	else
4935
		writel(i, tx_ring->tail);
4936

4937 4938 4939 4940
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4952 4953
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

4983
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4984
{
4985
	struct e1000_adapter *adapter = tx_ring->adapter;
4986

4987
	netif_stop_queue(adapter->netdev);
4988 4989
	/*
	 * Herbert's original patch had:
4990
	 *  smp_mb__after_netif_stop_queue();
4991 4992
	 * but since that doesn't exist yet, just open code it.
	 */
4993 4994
	smp_mb();

4995 4996 4997 4998
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4999
	if (e1000_desc_unused(tx_ring) < size)
5000 5001 5002
		return -EBUSY;

	/* A reprieve! */
5003
	netif_start_queue(adapter->netdev);
5004 5005 5006 5007
	++adapter->restart_queue;
	return 0;
}

5008
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5009
{
5010
	if (e1000_desc_unused(tx_ring) >= size)
5011
		return 0;
5012
	return __e1000_maybe_stop_tx(tx_ring, size);
5013 5014
}

5015
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5016 5017
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
5018 5019 5020 5021 5022 5023 5024
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
5025
	unsigned int len = skb_headlen(skb);
5026 5027
	unsigned int nr_frags;
	unsigned int mss;
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5043 5044
	/*
	 * The controller does a simple calculation to
5045 5046 5047 5048
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5049 5050
	 * drops.
	 */
5051 5052 5053 5054 5055
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5056 5057 5058 5059 5060
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5061
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5062 5063 5064 5065
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5066
		if (skb->data_len && (hdr_len == len)) {
5067 5068
			unsigned int pull_size;

5069
			pull_size = min_t(unsigned int, 4, skb->data_len);
5070
			if (!__pskb_pull_tail(skb, pull_size)) {
5071
				e_err("__pskb_pull_tail failed.\n");
5072 5073 5074
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5075
			len = skb_headlen(skb);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5088
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5089 5090 5091 5092 5093
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5094 5095 5096 5097
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5098
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5099 5100
		return NETDEV_TX_BUSY;

5101
	if (vlan_tx_tag_present(skb)) {
5102 5103 5104 5105 5106 5107
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5108
	tso = e1000_tso(tx_ring, skb);
5109 5110 5111 5112 5113 5114 5115
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5116
	else if (e1000_tx_csum(tx_ring, skb))
5117 5118
		tx_flags |= E1000_TX_FLAGS_CSUM;

5119 5120
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5121
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5122 5123
	 * no longer assume, we must.
	 */
5124 5125 5126
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

5127 5128 5129
	if (unlikely(skb->no_fcs))
		tx_flags |= E1000_TX_FLAGS_NO_FCS;

L
Lucas De Marchi 已提交
5130
	/* if count is 0 then mapping error has occurred */
5131
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5132
	if (count) {
5133 5134
		skb_tx_timestamp(skb);

5135
		netdev_sent_queue(netdev, skb->len);
5136
		e1000_tx_queue(tx_ring, tx_flags, count);
5137
		/* Make sure there is space in the ring for the next send. */
5138
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5139 5140

	} else {
5141
		dev_kfree_skb_any(skb);
5142 5143
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5167 5168 5169 5170
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5171 5172 5173 5174 5175
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5176 5177 5178 5179
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5180
 * e1000_get_stats64 - Get System Network Statistics
5181
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5182
 * @stats: rtnl_link_stats64 pointer
5183 5184 5185
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5186 5187
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5188
{
J
Jeff Kirsher 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5243
	/* Jumbo frame support */
5244 5245 5246 5247
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
		return -EINVAL;
5248 5249
	}

5250 5251 5252 5253
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5254 5255 5256
		return -EINVAL;
	}

B
Bruce Allan 已提交
5257 5258
	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5259 5260
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
B
Bruce Allan 已提交
5261
		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5262 5263 5264
		return -EINVAL;
	}

5265
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5266
		usleep_range(1000, 2000);
5267
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5268
	adapter->max_frame_size = max_frame;
5269 5270
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5271 5272 5273
	if (netif_running(netdev))
		e1000e_down(adapter);

5274 5275
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5276 5277
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5278
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5279 5280
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5281
	 */
5282

5283
	if (max_frame <= 2048)
5284 5285 5286 5287 5288 5289 5290 5291
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5292
					 + ETH_FCS_LEN;
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5310
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5311 5312 5313 5314 5315 5316 5317
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5318 5319
		e1000_phy_read_status(adapter);

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5374 5375 5376 5377
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5378
	u16 phy_reg, wuc_enable;
5379 5380 5381
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5382
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5383

5384 5385 5386 5387 5388 5389 5390 5391 5392
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
5393
		goto release;
5394 5395

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5396 5397
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5398 5399 5400 5401
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5402 5403 5404
	}

	/* configure PHY Rx Control register */
5405
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5422
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5423 5424 5425 5426 5427 5428

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5429 5430
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5431 5432

	/* activate PHY wakeup */
5433 5434
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5435 5436
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
5437
release:
5438
	hw->phy.ops.release(hw);
5439 5440 5441 5442

	return retval;
}

5443 5444
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5445 5446 5447 5448 5449
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5450 5451
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5452 5453 5454 5455 5456
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
5457 5458 5459 5460 5461
		int count = E1000_CHECK_RESET_COUNT;

		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
			usleep_range(10000, 20000);

5462 5463 5464 5465
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5466
	e1000e_reset_interrupt_capability(adapter);
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5478
		e1000e_set_rx_mode(netdev);
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5492 5493 5494
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5495 5496
		ew32(CTRL, ctrl);

5497 5498 5499
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5500 5501
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5502
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5503 5504 5505
			ew32(CTRL_EXT, ctrl_ext);
		}

5506
		if (adapter->flags & FLAG_IS_ICH)
5507
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5508

5509 5510 5511
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5512
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5513 5514 5515 5516 5517 5518 5519 5520 5521
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5522 5523 5524 5525 5526
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5527 5528
	*enable_wake = !!wufc;

5529
	/* make sure adapter isn't asleep if manageability is enabled */
5530 5531
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5532
		*enable_wake = true;
5533 5534 5535 5536

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5537 5538 5539 5540
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5541
	e1000e_release_hw_control(adapter);
5542 5543 5544

	pci_disable_device(pdev);

5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5565 5566 5567 5568 5569 5570 5571 5572
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5573
		int pos = pci_pcie_cap(us_dev);
5574 5575 5576 5577 5578 5579
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5580
		e1000_power_off(pdev, sleep, wake);
5581 5582 5583

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5584
		e1000_power_off(pdev, sleep, wake);
5585
	}
5586 5587
}

5588 5589 5590
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5591
	pci_disable_link_state_locked(pdev, state);
5592 5593 5594
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5595 5596
{
	int pos;
5597
	u16 reg16;
5598 5599

	/*
5600 5601
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5602
	 */
5603 5604 5605 5606 5607
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5608 5609 5610
	if (!pdev->bus->self)
		return;

5611 5612 5613 5614 5615 5616
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5617
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5618 5619 5620 5621 5622 5623
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5624 5625
}

R
Rafael J. Wysocki 已提交
5626
#ifdef CONFIG_PM
5627
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5628
{
5629
	return !!adapter->tx_ring->buffer_info;
5630 5631
}

5632
static int __e1000_resume(struct pci_dev *pdev)
5633 5634 5635 5636
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5637
	u16 aspm_disable_flag = 0;
5638 5639
	u32 err;

5640 5641 5642 5643 5644 5645 5646
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5647 5648
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5649
	pci_save_state(pdev);
T
Taku Izumi 已提交
5650

5651
	e1000e_set_interrupt_capability(adapter);
5652 5653 5654 5655 5656 5657
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

B
Bruce Allan 已提交
5658
	if (hw->mac.type >= e1000_pch2lan)
5659 5660
		e1000_resume_workarounds_pchlan(&adapter->hw);

5661
	e1000e_power_up_phy(adapter);
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5674 5675
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5692 5693
	e1000e_reset(adapter);

5694
	e1000_init_manageability_pt(adapter);
5695 5696 5697 5698 5699 5700

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5701 5702
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5703
	 * is up.  For all other cases, let the f/w know that the h/w is now
5704 5705
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5706
	if (!(adapter->flags & FLAG_HAS_AMT))
5707
		e1000e_get_hw_control(adapter);
5708 5709 5710

	return 0;
}
5711

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5785
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5786
#endif /* CONFIG_PM */
5787 5788 5789

static void e1000_shutdown(struct pci_dev *pdev)
{
5790 5791
	bool wake = false;

5792
	__e1000_shutdown(pdev, &wake, false);
5793 5794 5795

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5796 5797 5798
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5799 5800 5801 5802 5803 5804 5805

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5806 5807
		int vector, msix_irq;

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5830 5831 5832 5833 5834 5835 5836 5837 5838
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5873 5874 5875
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5896
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5897
	int err;
J
Jesse Brandeburg 已提交
5898
	pci_ers_result_t result;
5899

5900 5901
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5902
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5903 5904 5905 5906
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5907
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5908
	if (err) {
5909 5910
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5911 5912 5913
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5914
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5915
		pci_restore_state(pdev);
5916

J
Jesse Brandeburg 已提交
5917 5918
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5919

J
Jesse Brandeburg 已提交
5920 5921 5922 5923
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5924

J
Jesse Brandeburg 已提交
5925 5926 5927
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5943
	e1000_init_manageability_pt(adapter);
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5955 5956
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5957
	 * is up.  For all other cases, let the f/w know that the h/w is now
5958 5959
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5960
	if (!(adapter->flags & FLAG_HAS_AMT))
5961
		e1000e_get_hw_control(adapter);
5962 5963 5964 5965 5966 5967 5968

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5969 5970
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5971 5972

	/* print bus type/speed/width info */
5973
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5974 5975 5976 5977
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5978
	       netdev->dev_addr);
5979 5980
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5981 5982 5983
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5984
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5985 5986
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5987 5988
}

5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5999 6000
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
6001
		/* Deep Smart Power Down (DSPD) */
6002 6003
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
6004 6005 6006
	}
}

6007
static int e1000_set_features(struct net_device *netdev,
6008
			      netdev_features_t features)
6009 6010
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
6011
	netdev_features_t changed = features ^ netdev->features;
6012 6013 6014 6015 6016

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
B
Ben Greear 已提交
6017 6018
			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
			 NETIF_F_RXALL)))
6019 6020
		return 0;

B
Ben Greear 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
	if (changed & NETIF_F_RXFCS) {
		if (features & NETIF_F_RXFCS) {
			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		} else {
			/* We need to take it back to defaults, which might mean
			 * stripping is still disabled at the adapter level.
			 */
			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
				adapter->flags2 |= FLAG2_CRC_STRIPPING;
			else
				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		}
	}

6035 6036
	netdev->features = features;

6037 6038 6039 6040 6041 6042 6043 6044
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6045 6046 6047
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6048
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6049
	.ndo_get_stats64	= e1000e_get_stats64,
6050
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6062
	.ndo_set_features = e1000_set_features,
6063 6064
};

6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6083 6084
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6085
	static int cards_found;
6086
	u16 aspm_disable_flag = 0;
6087 6088 6089 6090
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6091 6092
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6093
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6094 6095 6096
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6097

6098
	err = pci_enable_device_mem(pdev);
6099 6100 6101 6102
	if (err)
		return err;

	pci_using_dac = 0;
6103
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6104
	if (!err) {
6105
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6106 6107 6108
		if (!err)
			pci_using_dac = 1;
	} else {
6109
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6110
		if (err) {
6111 6112
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6113
			if (err) {
6114
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6115 6116 6117 6118 6119
				goto err_dma;
			}
		}
	}

6120
	err = pci_request_selected_regions_exclusive(pdev,
6121 6122
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6123 6124 6125
	if (err)
		goto err_pci_reg;

6126
	/* AER (Advanced Error Reporting) hooks */
6127
	pci_enable_pcie_error_reporting(pdev);
6128

6129
	pci_set_master(pdev);
6130 6131 6132 6133
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6134 6135 6136 6137 6138 6139 6140 6141

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6142 6143
	netdev->irq = pdev->irq;

6144 6145 6146 6147 6148 6149 6150 6151
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6152
	adapter->flags2 = ei->flags2;
6153 6154
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6155
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6156
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6176
	netdev->netdev_ops		= &e1000e_netdev_ops;
6177 6178
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
B
Bruce Allan 已提交
6179
	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6180
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6181 6182 6183 6184 6185 6186

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6187 6188
	e1000e_check_options(adapter);

6189 6190 6191 6192 6193 6194 6195 6196 6197
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6198
	err = ei->get_variants(adapter);
6199 6200 6201
	if (err)
		goto err_hw_init;

6202 6203 6204 6205
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6206 6207
	hw->mac.ops.get_bus_info(&adapter->hw);

6208
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6209 6210

	/* Copper options */
6211
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6212 6213 6214 6215 6216
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

6217
	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6218 6219
		dev_info(&pdev->dev,
			 "PHY reset is blocked due to SOL/IDER session.\n");
6220

6221 6222 6223 6224 6225 6226
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6227
			    NETIF_F_RXHASH |
6228 6229 6230 6231 6232
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
B
Ben Greear 已提交
6233
	netdev->hw_features |= NETIF_F_RXFCS;
6234
	netdev->priv_flags |= IFF_SUPP_NOFCS;
B
Ben Greear 已提交
6235
	netdev->hw_features |= NETIF_F_RXALL;
6236 6237 6238 6239

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6240 6241 6242 6243
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6244

6245 6246
	netdev->priv_flags |= IFF_UNICAST_FLT;

6247
	if (pci_using_dac) {
6248
		netdev->features |= NETIF_F_HIGHDMA;
6249 6250
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6251 6252 6253 6254

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6255 6256 6257 6258
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6269
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6270 6271 6272 6273 6274
			err = -EIO;
			goto err_eeprom;
		}
	}

6275 6276
	e1000_eeprom_checks(adapter);

6277
	/* copy the MAC address */
6278
	if (e1000e_read_mac_addr(&adapter->hw))
6279 6280
		dev_err(&pdev->dev,
			"NVM Read Error while reading MAC address\n");
6281 6282 6283 6284 6285

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
6286 6287
		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
			netdev->perm_addr);
6288 6289 6290 6291 6292
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6293
	adapter->watchdog_timer.function = e1000_watchdog;
6294 6295 6296
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6297
	adapter->phy_info_timer.function = e1000_update_phy_info;
6298 6299 6300 6301
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6302 6303
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6304
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6305 6306 6307

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6308
	adapter->fc_autoneg = true;
6309 6310
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6325 6326
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6327
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6328 6329 6330
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
6331 6332
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
				       1, &eeprom_data);
6333
		else
6334 6335
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
				       1, &eeprom_data);
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6352
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6353

6354 6355 6356
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6357 6358 6359
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6360 6361
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6362
	 * is up.  For all other cases, let the f/w know that the h/w is now
6363 6364
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6365
	if (!(adapter->flags & FLAG_HAS_AMT))
6366
		e1000e_get_hw_control(adapter);
6367

6368
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6369 6370 6371 6372
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6373 6374 6375
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6376 6377
	e1000_print_device_info(adapter);

6378 6379
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6380

6381 6382 6383
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6384
	if (!(adapter->flags & FLAG_HAS_AMT))
6385
		e1000e_release_hw_control(adapter);
6386
err_eeprom:
6387
	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6388
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6389
err_hw_init:
6390 6391 6392
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6393 6394
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6395
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6396
err_flashmap:
6397 6398 6399 6400
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6401 6402
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6422 6423
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6424
	/*
6425 6426
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6427
	 */
6428 6429
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6430 6431 6432
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6433 6434 6435 6436 6437
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6438

6439 6440 6441
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6442 6443 6444
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6445 6446
	unregister_netdev(netdev);

6447 6448
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6449

6450 6451 6452 6453
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6454
	e1000e_release_hw_control(adapter);
6455

6456
	e1000e_reset_interrupt_capability(adapter);
6457 6458 6459 6460 6461 6462
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6463 6464
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6465 6466 6467

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6468
	/* AER disable */
6469
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6470

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6481
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6482 6483 6484 6485 6486 6487
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6488 6489 6490
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6491

6492 6493 6494 6495
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6496

6497 6498 6499
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6500

6501
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6502
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6503
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6504

6505 6506 6507 6508 6509 6510 6511 6512
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6513

6514 6515 6516 6517 6518 6519 6520
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6521
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6522

6523 6524 6525 6526 6527
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6528
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6529 6530 6531 6532 6533 6534 6535
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6536

6537 6538
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6539
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6540

6541 6542 6543 6544 6545
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6546 6547 6548
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

B
Bruce Allan 已提交
6549 6550 6551
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },

6552
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6553 6554 6555
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6556
#ifdef CONFIG_PM
6557
static const struct dev_pm_ops e1000_pm_ops = {
6558 6559 6560
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6561
};
6562
#endif
6563

6564 6565 6566 6567 6568 6569
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6570
#ifdef CONFIG_PM
6571 6572 6573
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6588 6589
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6590
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6591
	ret = pci_register_driver(&e1000_driver);
6592

6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

6615
/* netdev.c */