netdev.c 181.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
166 167
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 174 175
}

/*
176
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
177 178 179 180 181 182 183 184
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
185 186 187 188
	struct my_u0 {
		u64 a;
		u64 b;
	} *u0;
189 190 191
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
192
	union e1000_rx_desc_extended *rx_desc;
193 194 195 196 197 198
	struct my_u1 {
		u64 a;
		u64 b;
		u64 c;
		u64 d;
	} *u1;
199 200 201 202 203 204 205 206 207
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
208 209 210 211
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
212 213 214 215
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
216
	pr_info(" Register Name   Value\n");
217 218 219 220 221
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

222
	/* Print Tx Ring Summary */
223 224 225
	if (!netdev || !netif_running(netdev))
		goto exit;

226
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229 230 231 232 233 234
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
235

236
	/* Print Tx Ring */
237 238 239
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

240
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
269 270 271
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273
		const char *next_desc;
274 275 276 277
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278
			next_desc = " NTC/U";
279
		else if (i == tx_ring->next_to_use)
280
			next_desc = " NTU";
281
		else if (i == tx_ring->next_to_clean)
282
			next_desc = " NTC";
283
		else
284 285 286 287 288 289 290 291 292 293 294
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
295 296 297

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298 299
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
300 301
	}

302
	/* Print Rx Ring Summary */
303
rx_ring_summary:
304
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305 306 307
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
308

309
	/* Print Rx Ring */
310 311 312
	if (!netif_msg_rx_status(adapter))
		goto exit;

313
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
330
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331 332 333 334 335 336 337 338 339 340 341
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
342
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343
		for (i = 0; i < rx_ring->count; i++) {
344
			const char *next_desc;
345 346 347 348
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
349
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350 351 352 353 354 355 356 357

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

358 359
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
360 361 362 363 364 365 366
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
367
			} else {
368 369 370 371 372 373 374 375
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
376 377 378 379 380 381 382 383 384 385 386

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
387
		/* Extended Receive Descriptor (Read) Format
388
		 *
389 390 391 392 393
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
394
		 */
395
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396 397 398 399 400 401 402 403 404 405 406 407 408
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
409
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410 411

		for (i = 0; i < rx_ring->count; i++) {
412 413
			const char *next_desc;

414
			buffer_info = &rx_ring->buffer_info[i];
415 416 417
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418 419 420 421 422 423 424 425

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

426 427
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
428 429 430 431 432
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
433
			} else {
434 435 436 437 438 439
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
440 441 442 443 444 445 446 447 448 449

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
450 451 452 453 454 455 456
		}
	}

exit:
	return;
}

457 458 459 460 461 462 463 464 465 466 467 468
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
469
 * e1000_receive_skb - helper function to handle Rx indications
470 471 472 473 474 475
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
476
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
477
			      u8 status, __le16 vlan)
478
{
J
Jeff Kirsher 已提交
479
	u16 tag = le16_to_cpu(vlan);
480 481
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
482 483 484 485
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
486 487 488
}

/**
489
 * e1000_rx_checksum - Receive Checksum Offload
490 491 492 493
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
494 495
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
496
			      __le16 csum, struct sk_buff *skb)
497 498 499
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
500 501

	skb_checksum_none_assert(skb);
502

503 504 505 506
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

507 508 509
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
527 528 529
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
530 531
		 * and then put the value in host order for further stack use.
		 */
532
		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
A
Al Viro 已提交
533
		skb->csum = csum_unfold(~sum);
534 535 536 537 538
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
553
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
	struct e1000_hw *hw = &adapter->hw;

574
	if (e1000e_update_tail_wa(hw, adapter->rx_ring->tail, i)) {
575 576 577 578 579 580 581 582 583 584 585
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
	struct e1000_hw *hw = &adapter->hw;

586
	if (e1000e_update_tail_wa(hw, adapter->tx_ring->tail, i)) {
587 588 589 590 591 592 593
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

594
/**
595
 * e1000_alloc_rx_buffers - Replace used receive buffers
596 597 598
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
599
				   int cleaned_count, gfp_t gfp)
600 601 602 603
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
604
	union e1000_rx_desc_extended *rx_desc;
605 606 607
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
608
	unsigned int bufsz = adapter->rx_buffer_len;
609 610 611 612 613 614 615 616 617 618 619

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

620
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
621 622 623 624 625 626 627 628
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
629
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
630
						  adapter->rx_buffer_len,
631 632
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
633
			dev_err(&pdev->dev, "Rx DMA map failed\n");
634 635 636 637
			adapter->rx_dma_failed++;
			break;
		}

638 639
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
640

641 642 643 644 645 646 647 648
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
649 650 651
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
				e1000e_update_rdt_wa(adapter, i);
			else
652
				writel(i, rx_ring->tail);
653
		}
654 655 656 657 658 659
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

660
	rx_ring->next_to_use = i;
661 662 663 664 665 666 667
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
668
				      int cleaned_count, gfp_t gfp)
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
686 687 688
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
689 690
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
691 692 693
				continue;
			}
			if (!ps_page->page) {
694
				ps_page->page = alloc_page(gfp);
695
				if (!ps_page->page) {
A
Auke Kok 已提交
696 697 698
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
699 700 701 702 703 704
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
705
					dev_err(&adapter->pdev->dev,
706
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
707 708
					adapter->rx_dma_failed++;
					goto no_buffers;
709 710
				}
			}
A
Auke Kok 已提交
711 712 713 714 715
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
716 717
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
718 719
		}

720 721 722
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
723 724 725 726 727 728 729

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
730
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
731
						  adapter->rx_ps_bsize0,
732 733
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
734
			dev_err(&pdev->dev, "Rx DMA map failed\n");
735 736 737 738 739 740 741 742 743
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

744 745 746 747 748 749 750 751
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
752 753 754
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
				e1000e_update_rdt_wa(adapter, i << 1);
			else
755
				writel(i << 1, rx_ring->tail);
756 757
		}

758 759 760 761 762 763 764
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
765
	rx_ring->next_to_use = i;
766 767
}

768 769 770 771 772 773 774
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
775
					 int cleaned_count, gfp_t gfp)
776 777 778
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
779
	union e1000_rx_desc_extended *rx_desc;
780 781 782 783
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
784
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
785 786 787 788 789 790 791 792 793 794 795

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

796
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
797 798 799 800 801 802 803 804 805 806
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
807
			buffer_info->page = alloc_page(gfp);
808 809 810 811 812 813 814
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
815
			buffer_info->dma = dma_map_page(&pdev->dev,
816 817
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
818
							DMA_FROM_DEVICE);
819

820 821
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
838 839 840
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
			e1000e_update_rdt_wa(adapter, i);
		else
841
			writel(i, rx_ring->tail);
842 843 844
	}
}

845 846 847 848 849 850 851
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

852 853 854 855 856 857 858 859 860 861 862 863
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
864
	struct e1000_hw *hw = &adapter->hw;
865
	struct e1000_ring *rx_ring = adapter->rx_ring;
866
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
867
	struct e1000_buffer *buffer_info, *next_buffer;
868
	u32 length, staterr;
869 870
	unsigned int i;
	int cleaned_count = 0;
871
	bool cleaned = false;
872 873 874
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
875 876
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
877 878
	buffer_info = &rx_ring->buffer_info[i];

879
	while (staterr & E1000_RXD_STAT_DD) {
880 881 882 883 884
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
885
		rmb();	/* read descriptor and rx_buffer_info after status DD */
886 887 888 889 890 891 892 893 894

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
895
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
896 897 898 899
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

900
		cleaned = true;
901
		cleaned_count++;
902
		dma_unmap_single(&pdev->dev,
903 904
				 buffer_info->dma,
				 adapter->rx_buffer_len,
905
				 DMA_FROM_DEVICE);
906 907
		buffer_info->dma = 0;

908
		length = le16_to_cpu(rx_desc->wb.upper.length);
909

910 911 912 913 914 915 916
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
917
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
918 919 920
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
921
			/* All receives must fit into a single buffer */
922
			e_dbg("Receive packet consumed multiple buffers\n");
923 924
			/* recycle */
			buffer_info->skb = skb;
925
			if (staterr & E1000_RXD_STAT_EOP)
926
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
927 928 929
			goto next_desc;
		}

930
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
931 932 933 934 935
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
936 937 938 939
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

940 941 942
		total_rx_bytes += length;
		total_rx_packets++;

943 944
		/*
		 * code added for copybreak, this should improve
945
		 * performance for small packets with large amounts
946 947
		 * of reassembly being done in the stack
		 */
948 949
		if (length < copybreak) {
			struct sk_buff *new_skb =
950
			    netdev_alloc_skb_ip_align(netdev, length);
951
			if (new_skb) {
952 953 954 955 956 957
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
958 959 960 961 962 963 964 965 966 967
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
968
		e1000_rx_checksum(adapter, staterr,
969
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
970

971 972
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

973 974
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
975 976

next_desc:
977
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
978 979 980

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
981 982
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
983 984 985 986 987 988
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
989 990

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
991 992 993 994 995
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
996
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
997 998

	adapter->total_rx_bytes += total_rx_bytes;
999
	adapter->total_rx_packets += total_rx_packets;
1000 1001 1002 1003 1004 1005
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
1006 1007
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1008 1009
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1010
		else
1011 1012
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1013 1014
		buffer_info->dma = 0;
	}
1015 1016 1017 1018
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1019
	buffer_info->time_stamp = 0;
1020 1021
}

1022
static void e1000_print_hw_hang(struct work_struct *work)
1023
{
1024 1025 1026
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1027
	struct net_device *netdev = adapter->netdev;
1028 1029 1030 1031
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1032 1033 1034 1035
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1036 1037 1038
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
		/* May be block on write-back, flush and detect again
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1054 1055 1056
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1057

1058 1059 1060 1061
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1062 1063 1064 1065 1066 1067 1068 1069
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1070 1071 1072 1073 1074 1075
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1076 1077
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1078 1079 1080 1081 1082
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1083 1084 1085 1086 1087 1088
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1108
	unsigned int bytes_compl = 0, pkts_compl = 0;
1109 1110 1111 1112 1113

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1114 1115
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1116
		bool cleaned = false;
1117
		rmb(); /* read buffer_info after eop_desc */
1118
		for (; !cleaned; count++) {
1119 1120 1121 1122 1123
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1124 1125
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1126 1127 1128 1129
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1140 1141
		if (i == tx_ring->next_to_use)
			break;
1142 1143 1144 1145 1146 1147
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1148 1149
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1150
#define TX_WAKE_THRESHOLD 32
1151 1152
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1166 1167 1168 1169
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1170
		adapter->detect_tx_hung = false;
1171 1172
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1173
			       + (adapter->tx_timeout_factor * HZ)) &&
1174
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1175
			schedule_work(&adapter->print_hang_task);
1176 1177
		else
			adapter->tx_hang_recheck = false;
1178 1179 1180
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1181
	return count < tx_ring->count;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
1194
	struct e1000_hw *hw = &adapter->hw;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1205
	bool cleaned = false;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1218
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1231
		cleaned = true;
1232
		cleaned_count++;
1233
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1234
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1235 1236
		buffer_info->dma = 0;

1237
		/* see !EOP comment in other Rx routine */
1238 1239 1240 1241
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1242
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1243
			dev_kfree_skb_irq(skb);
1244 1245
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1257
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1258 1259 1260 1261 1262 1263 1264 1265
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1266 1267 1268 1269
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
1270 1271
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

1272 1273 1274 1275 1276
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
1277 1278 1279 1280
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
1281
			ps_page = &buffer_info->ps_pages[0];
1282

1283 1284
			/*
			 * there is no documentation about how to call
1285
			 * kmap_atomic, so we can't hold the mapping
1286 1287
			 * very long
			 */
1288 1289
			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
						PAGE_SIZE, DMA_FROM_DEVICE);
1290 1291 1292
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1293 1294
			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
						   PAGE_SIZE, DMA_FROM_DEVICE);
A
Auke Kok 已提交
1295

J
Jeff Kirsher 已提交
1296 1297 1298 1299
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1310
			ps_page = &buffer_info->ps_pages[j];
1311 1312
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1313 1314 1315 1316 1317
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1318
			skb->truesize += PAGE_SIZE;
1319 1320
		}

J
Jeff Kirsher 已提交
1321 1322 1323 1324 1325 1326
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1327 1328 1329 1330
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1331 1332
		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1333

1334 1335
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1349 1350
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1364
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1365 1366

	adapter->total_rx_bytes += total_rx_bytes;
1367
	adapter->total_rx_packets += total_rx_packets;
1368 1369 1370
	return cleaned;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1380
	skb->truesize += PAGE_SIZE;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
1397
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1398
	struct e1000_buffer *buffer_info, *next_buffer;
1399
	u32 length, staterr;
1400 1401 1402 1403 1404 1405
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1406 1407
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1408 1409
	buffer_info = &rx_ring->buffer_info[i];

1410
	while (staterr & E1000_RXD_STAT_DD) {
1411 1412 1413 1414 1415
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1416
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1417 1418 1419 1420 1421 1422 1423

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1424
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1425 1426 1427 1428 1429 1430
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1431 1432
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1433 1434
		buffer_info->dma = 0;

1435
		length = le16_to_cpu(rx_desc->wb.upper.length);
1436 1437

		/* errors is only valid for DD + EOP descriptors */
1438 1439 1440 1441 1442 1443 1444 1445 1446
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1447 1448
		}

1449
#define rxtop (rx_ring->rx_skb_top)
1450
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1505
		e1000_rx_checksum(adapter, staterr,
1506
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1507

1508 1509
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1510 1511 1512 1513 1514 1515
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1516
			e_err("pskb_may_pull failed.\n");
1517
			dev_kfree_skb_irq(skb);
1518 1519 1520
			goto next_desc;
		}

1521 1522
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1523 1524

next_desc:
1525
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1526 1527 1528

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1529 1530
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1531 1532 1533 1534 1535 1536
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1537 1538

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1539 1540 1541 1542 1543
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1544
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1545 1546 1547 1548 1549 1550

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1568
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1569
						 adapter->rx_buffer_len,
1570
						 DMA_FROM_DEVICE);
1571
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1572
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1573
				               PAGE_SIZE,
1574
					       DMA_FROM_DEVICE);
1575
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1576
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1577
						 adapter->rx_ps_bsize0,
1578
						 DMA_FROM_DEVICE);
1579 1580 1581
			buffer_info->dma = 0;
		}

1582 1583 1584 1585 1586
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1587 1588 1589 1590 1591 1592
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1593
			ps_page = &buffer_info->ps_pages[j];
1594 1595
			if (!ps_page->page)
				break;
1596 1597
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1615
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1616

1617 1618
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
1619 1620
}

1621 1622 1623 1624 1625
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1626 1627 1628
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1629 1630 1631
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1644 1645 1646
	/*
	 * read ICR disables interrupts using IAM
	 */
1647

1648
	if (icr & E1000_ICR_LSC) {
1649
		hw->mac.get_link_status = 1;
1650 1651 1652 1653
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1654 1655
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1656
			schedule_work(&adapter->downshift_task);
1657

1658 1659
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1660
		 * link down event; disable receives here in the ISR and reset
1661 1662
		 * adapter in watchdog
		 */
1663 1664 1665 1666 1667
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1668
			adapter->flags |= FLAG_RX_RESTART_NOW;
1669 1670 1671 1672 1673 1674
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1675
	if (napi_schedule_prep(&adapter->napi)) {
1676 1677 1678 1679
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1680
		__napi_schedule(&adapter->napi);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1697

1698
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1699 1700
		return IRQ_NONE;  /* Not our interrupt */

1701 1702 1703 1704
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1705 1706 1707
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1708 1709 1710 1711 1712
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1713

1714
	if (icr & E1000_ICR_LSC) {
1715
		hw->mac.get_link_status = 1;
1716 1717 1718 1719
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1720 1721
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1722
			schedule_work(&adapter->downshift_task);
1723

1724 1725
		/*
		 * 80003ES2LAN workaround--
1726 1727 1728 1729 1730 1731 1732 1733 1734
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1735
			adapter->flags |= FLAG_RX_RESTART_NOW;
1736 1737 1738 1739 1740 1741
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1742
	if (napi_schedule_prep(&adapter->napi)) {
1743 1744 1745 1746
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1747
		__napi_schedule(&adapter->napi);
1748 1749 1750 1751 1752
	}

	return IRQ_HANDLED;
}

1753 1754 1755 1756 1757 1758 1759 1760
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1761 1762
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1779 1780
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1814
		       adapter->rx_ring->itr_register);
1815 1816 1817
		adapter->rx_ring->set_itr = 0;
	}

1818
	if (napi_schedule_prep(&adapter->napi)) {
1819 1820
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1821
		__napi_schedule(&adapter->napi);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1855
		       rx_ring->itr_register);
1856
	else
1857
		writel(1, rx_ring->itr_register);
1858 1859 1860 1861 1862 1863 1864
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1865
		       tx_ring->itr_register);
1866
	else
1867
		writel(1, tx_ring->itr_register);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1918
	int i;
1919 1920 1921 1922

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1923 1924
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1925 1926 1927
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1928
				for (i = 0; i < adapter->num_vectors; i++)
1929 1930 1931 1932
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1933
						      adapter->num_vectors);
B
Bruce Allan 已提交
1934
				if (err == 0)
1935 1936 1937
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1938
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939 1940 1941 1942 1943 1944 1945 1946 1947
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949 1950 1951 1952 1953 1954
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1955 1956 1957

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972 1973 1974
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1975 1976 1977
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1978
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979 1980 1981
			  netdev);
	if (err)
		goto out;
1982 1983
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
1984 1985 1986 1987
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 1989 1990
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
1991 1992 1993
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1994
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995 1996 1997
			  netdev);
	if (err)
		goto out;
1998 1999
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2000 2001 2002 2003
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2004
			  e1000_msix_other, 0, netdev->name, netdev);
2005 2006 2007 2008 2009 2010 2011 2012 2013
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

2014 2015 2016 2017 2018 2019
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2020 2021 2022 2023 2024
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2025 2026 2027 2028 2029 2030 2031 2032
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2033
	}
2034
	if (adapter->flags & FLAG_MSI_ENABLED) {
2035
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2036 2037 2038
				  netdev->name, netdev);
		if (!err)
			return err;
2039

2040 2041 2042
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2043 2044
	}

2045
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2046 2047 2048 2049
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2050 2051 2052 2053 2054 2055 2056
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2069
	}
2070 2071

	free_irq(adapter->pdev->irq, netdev);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2082 2083
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2084
	e1e_flush();
2085 2086 2087 2088 2089 2090 2091 2092

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2093 2094 2095 2096 2097 2098 2099 2100 2101
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2102 2103 2104 2105 2106 2107
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2108
	e1e_flush();
2109 2110 2111
}

/**
2112
 * e1000e_get_hw_control - get control of the h/w from f/w
2113 2114
 * @adapter: address of board private structure
 *
2115
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2116 2117 2118 2119
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2120
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2132
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2133 2134 2135 2136
	}
}

/**
2137
 * e1000e_release_hw_control - release control of the h/w to f/w
2138 2139
 * @adapter: address of board private structure
 *
2140
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2141 2142 2143 2144 2145
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2146
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2158
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2190
	tx_ring->buffer_info = vzalloc(size);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2208
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2221 2222
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2223 2224

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2225
	rx_ring->buffer_info = vzalloc(size);
2226 2227 2228
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2229 2230 2231 2232 2233 2234 2235 2236
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2237 2238 2239 2240 2241 2242 2243 2244 2245

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2246
		goto err_pages;
2247 2248 2249 2250 2251 2252

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2253 2254 2255 2256 2257 2258

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2259 2260
err:
	vfree(rx_ring->buffer_info);
2261
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

2281
	netdev_reset_queue(adapter->netdev);
2282 2283 2284 2285 2286 2287 2288 2289
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2290 2291
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2326
	int i;
2327 2328 2329

	e1000_clean_rx_ring(adapter);

B
Bruce Allan 已提交
2330
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2331 2332
		kfree(rx_ring->buffer_info[i].ps_pages);

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2343 2344 2345 2346 2347
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2348 2349 2350 2351 2352 2353
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2354 2355
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2371
		else if ((packets < 5) && (bytes > 512))
2372 2373 2374 2375 2376
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2377
			if (bytes/packets > 8000)
2378
				retval = bulk_latency;
B
Bruce Allan 已提交
2379
			else if ((packets < 10) || ((bytes/packets) > 1200))
2380
				retval = bulk_latency;
B
Bruce Allan 已提交
2381
			else if ((packets > 35))
2382 2383 2384 2385 2386 2387 2388 2389 2390
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2391
			if (packets > 35)
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2416 2417 2418 2419 2420
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2456 2457
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2458
		 * by adding intermediate steps when interrupt rate is
2459 2460
		 * increasing
		 */
2461 2462 2463 2464
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2465 2466 2467 2468
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2469 2470 2471 2472
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2473 2474 2475
	}
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2498 2499
/**
 * e1000_clean - NAPI Rx polling callback
2500
 * @napi: struct associated with this polling callback
2501
 * @budget: amount of packets driver is allowed to process this poll
2502 2503 2504 2505
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2506
	struct e1000_hw *hw = &adapter->hw;
2507
	struct net_device *poll_dev = adapter->netdev;
2508
	int tx_cleaned = 1, work_done = 0;
2509

2510
	adapter = netdev_priv(poll_dev);
2511

2512 2513 2514 2515
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2516
	tx_cleaned = e1000_clean_tx_irq(adapter);
2517

2518
clean_rx:
2519
	adapter->clean_rx(adapter, &work_done, budget);
2520

2521
	if (!tx_cleaned)
2522
		work_done = budget;
2523

2524 2525
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2526 2527
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2528
		napi_complete(napi);
2529 2530 2531 2532 2533 2534
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2535 2536 2537 2538 2539
	}

	return work_done;
}

2540
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2541 2542 2543 2544 2545 2546 2547 2548 2549
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2550
		return 0;
2551

2552
	/* add VID to filter table */
2553 2554 2555 2556 2557 2558
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2559 2560

	set_bit(vid, adapter->active_vlans);
2561 2562

	return 0;
2563 2564
}

2565
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2566 2567 2568 2569 2570 2571 2572 2573 2574
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2575
		e1000e_release_hw_control(adapter);
2576
		return 0;
2577 2578 2579
	}

	/* remove VID from filter table */
2580 2581 2582 2583 2584 2585
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2586 2587

	clear_bit(vid, adapter->active_vlans);
2588 2589

	return 0;
2590 2591
}

J
Jeff Kirsher 已提交
2592 2593 2594 2595 2596
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2597 2598
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2599 2600
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2601

J
Jeff Kirsher 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2611 2612 2613 2614
		}
	}
}

J
Jeff Kirsher 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2632

J
Jeff Kirsher 已提交
2633 2634 2635 2636 2637
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2638 2639
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2640
	u32 ctrl;
2641

J
Jeff Kirsher 已提交
2642 2643 2644 2645 2646
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2647

J
Jeff Kirsher 已提交
2648 2649 2650 2651 2652 2653 2654 2655
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2656

J
Jeff Kirsher 已提交
2657 2658 2659 2660 2661
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2662

J
Jeff Kirsher 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2673 2674
	}

J
Jeff Kirsher 已提交
2675 2676
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2677 2678 2679 2680 2681 2682
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2683
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2684

J
Jeff Kirsher 已提交
2685
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2686 2687 2688
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2689
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2690 2691
{
	struct e1000_hw *hw = &adapter->hw;
2692
	u32 manc, manc2h, mdef, i, j;
2693 2694 2695 2696 2697 2698

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2699 2700
	/*
	 * enable receiving management packets to the host. this will probably
2701
	 * generate destination unreachable messages from the host OS, but
2702 2703
	 * the packets will be handled on SMBUS
	 */
2704 2705
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2721
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2749 2750 2751 2752 2753
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2754
 * e1000_configure_tx - Configure Transmit Unit after Reset
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2770
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2771 2772 2773 2774
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
2775 2776
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2792
	/* Tx irq moderation */
2793 2794
	ew32(TADV, adapter->tx_abs_int_delay);

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2807
		 * there are Tx hangs or other Tx related bugs
2808 2809 2810 2811 2812 2813 2814
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
		/* erratum work around: set txdctl the same for both queues */
		ew32(TXDCTL(1), txdctl);
	}

2815 2816 2817 2818 2819 2820 2821
	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2822
		tarc = er32(TARC(0));
2823 2824 2825 2826
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2827 2828
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2829
		ew32(TARC(0), tarc);
2830 2831 2832 2833
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2834
		tarc = er32(TARC(0));
2835
		tarc |= 1;
2836 2837
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2838
		tarc |= 1;
2839
		ew32(TARC(1), tarc);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2854
	e1000e_config_collision_dist(hw);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2869 2870 2871 2872 2873 2874 2875 2876
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2877 2878 2879

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2880 2881
	}

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2898 2899 2900 2901 2902 2903
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2904

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2942 2943 2944 2945
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2962
	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2963
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2964
		adapter->rx_ps_pages = pages;
2965 2966
	else
		adapter->rx_ps_pages = 0;
2967 2968

	if (adapter->rx_ps_pages) {
2969 2970
		u32 psrctl = 0;

2971 2972 2973 2974
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2975 2976 2977
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2978 2979
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

3000
	ew32(RFCTL, rfctl);
3001
	ew32(RCTL, rctl);
3002 3003
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3022
		    sizeof(union e1000_rx_desc_packet_split);
3023 3024
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3025
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3026
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3027 3028
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3029
	} else {
3030
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3031 3032 3033 3034 3035 3036
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3037 3038
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3039
	e1e_flush();
3040
	usleep_range(10000, 20000);
3041

3042 3043 3044 3045
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3046
		 * enable prefetching of 0x20 Rx descriptors
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3065 3066 3067 3068 3069
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3070
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3071
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3072 3073 3074 3075 3076 3077 3078 3079

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3080 3081 3082 3083
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3084
	rdba = rx_ring->dma;
3085
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3086 3087 3088 3089
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
3090 3091
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3092 3093 3094

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3095
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3096 3097
		rxcsum |= E1000_RXCSUM_TUOFL;

3098 3099 3100 3101
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3102 3103 3104 3105 3106 3107 3108 3109
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3110 3111
	/*
	 * Enable early receives on supported devices, only takes effect when
3112
	 * packet size is equal or larger than the specified value (in 8 byte
3113 3114
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
3115 3116
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan)) {
3117 3118 3119
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3120 3121
			if (adapter->flags & FLAG_HAS_ERT)
				ew32(ERT, E1000_ERT_2048 | (1 << 13));
3122 3123 3124 3125 3126
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
3127
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3128
		} else {
3129 3130
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3131
		}
3132
	}
3133 3134 3135 3136 3137 3138

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3139 3140
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3141
 *
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3179
 *
3180 3181 3182 3183
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3184
 **/
3185
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3186
{
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3226 3227 3228
}

/**
3229
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3230 3231
 * @netdev: network interface device structure
 *
3232 3233 3234
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3235 3236
 * promiscuous mode, and all-multi behavior.
 **/
3237
static void e1000e_set_rx_mode(struct net_device *netdev)
3238 3239 3240 3241 3242 3243 3244 3245
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3246 3247 3248
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3249 3250
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3251 3252
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3253
	} else {
3254
		int count;
3255 3256 3257
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3258 3259 3260 3261 3262 3263 3264 3265
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3266
		}
J
Jeff Kirsher 已提交
3267
		e1000e_vlan_filter_enable(adapter);
3268
		/*
3269 3270 3271
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3272
		 */
3273 3274 3275
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3276
	}
J
Jeff Kirsher 已提交
3277

3278 3279
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3280 3281 3282 3283
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3284 3285
}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3322
/**
3323
 * e1000_configure - configure the hardware for Rx and Tx
3324 3325 3326 3327
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3328
	e1000e_set_rx_mode(adapter->netdev);
3329 3330

	e1000_restore_vlan(adapter);
3331
	e1000_init_manageability_pt(adapter);
3332 3333

	e1000_configure_tx(adapter);
3334 3335 3336

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3337 3338
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3339 3340
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
			      GFP_KERNEL);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3353 3354
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3355 3356 3357 3358 3359 3360 3361

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3362 3363
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3364 3365 3366 3367
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3368
	if (adapter->wol)
3369 3370
		return;

3371 3372
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3373 3374 3375 3376 3377 3378 3379 3380
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3381
 * properly configured for Rx, Tx etc.
3382 3383 3384 3385
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3386
	struct e1000_fc_info *fc = &adapter->hw.fc;
3387 3388
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3389
	u32 pba = adapter->pba;
3390 3391
	u16 hwm;

3392
	/* reset Packet Buffer Allocation to default */
3393
	ew32(PBA, pba);
3394

3395
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3396 3397
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3398 3399 3400 3401
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3402 3403
		 * expressed in KB.
		 */
3404
		pba = er32(PBA);
3405
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3406
		tx_space = pba >> 16;
3407
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3408
		pba &= 0xffff;
3409
		/*
3410
		 * the Tx fifo also stores 16 bytes of information about the Tx
3411
		 * but don't include ethernet FCS because hardware appends it
3412 3413
		 */
		min_tx_space = (adapter->max_frame_size +
3414 3415 3416 3417 3418
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3419
		min_rx_space = adapter->max_frame_size;
3420 3421 3422
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3423 3424
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3425
		 * and the min Tx FIFO size is less than the current Rx FIFO
3426 3427
		 * allocation, take space away from current Rx allocation
		 */
3428 3429 3430
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3431

3432
			/*
3433
			 * if short on Rx space, Rx wins and must trump Tx
3434 3435
			 * adjustment or use Early Receive if available
			 */
3436
			if ((pba < min_rx_space) &&
3437 3438
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
3439
				pba = min_rx_space;
3440
		}
3441 3442

		ew32(PBA, pba);
3443 3444
	}

3445 3446 3447
	/*
	 * flow control settings
	 *
3448
	 * The high water mark must be low enough to fit one full frame
3449 3450 3451 3452 3453
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3454
	 * - the full Rx FIFO size minus one full frame
3455
	 */
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
	default:
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3488
		fc->refresh_time = 0x1000;
3489 3490 3491 3492 3493 3494
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3495 3496 3497 3498
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3499
		break;
3500
	}
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
	 * fit in receive buffer and early-receive not supported.
	 */
	if (adapter->itr_setting & 0x3) {
		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
		    !(adapter->flags & FLAG_HAS_ERT)) {
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3524 3525
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3526 3527 3528 3529 3530

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3531
	if (adapter->flags & FLAG_HAS_AMT)
3532
		e1000e_get_hw_control(adapter);
3533

3534 3535 3536
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3537
		e_err("Hardware Error\n");
3538 3539 3540 3541 3542 3543 3544

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3545 3546 3547 3548 3549 3550 3551

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3552 3553
	e1000_get_phy_info(hw);

3554 3555
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3556
		u16 phy_data = 0;
3557 3558
		/*
		 * speed up time to link by disabling smart power down, ignore
3559
		 * the return value of this function because there is nothing
3560 3561
		 * different we would do if it failed
		 */
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3577 3578
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3579 3580
	e1000_irq_enable(adapter);

3581
	netif_start_queue(adapter->netdev);
3582

3583
	/* fire a link change interrupt to start the watchdog */
3584 3585 3586 3587 3588
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3589 3590 3591
	return 0;
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3607 3608
static void e1000e_update_stats(struct e1000_adapter *adapter);

3609 3610 3611 3612 3613 3614
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3615 3616 3617 3618
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3619 3620 3621 3622
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3623 3624
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3625 3626
	/* flush and sleep below */

3627
	netif_stop_queue(netdev);
3628 3629 3630 3631 3632

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3633

3634 3635
	/* flush both disables and wait for them to finish */
	e1e_flush();
3636
	usleep_range(10000, 20000);
3637 3638 3639 3640 3641 3642 3643

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3644 3645 3646 3647 3648

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3649 3650 3651 3652
	e1000e_flush_descriptors(adapter);
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

3653 3654 3655
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3656 3657
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3658

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3669
		usleep_range(1000, 2000);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3689 3690
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3691

J
Jeff Kirsher 已提交
3692 3693
	spin_lock_init(&adapter->stats64_lock);

3694
	e1000e_set_interrupt_capability(adapter);
3695

3696 3697
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3698 3699 3700 3701 3702 3703 3704 3705

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3718
	e_dbg("icr is %08X\n", icr);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3745
	e1000e_reset_interrupt_capability(adapter);
3746 3747 3748 3749 3750 3751 3752 3753 3754

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3755
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3776
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3777 3778 3779
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
	} else
		e_dbg("MSI interrupt test succeeded!\n");
3780 3781 3782 3783 3784

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3785
	e1000e_set_interrupt_capability(adapter);
3786
	return e1000_request_irq(adapter);
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3805 3806 3807
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3808 3809 3810

	err = e1000_test_msi_interrupt(adapter);

3811 3812 3813 3814 3815 3816
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3817 3818 3819 3820

	return err;
}

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3837
	struct pci_dev *pdev = adapter->pdev;
3838 3839 3840 3841 3842 3843
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3844 3845
	pm_runtime_get_sync(&pdev->dev);

3846 3847
	netif_carrier_off(netdev);

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3858 3859 3860 3861 3862
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3863
		e1000e_get_hw_control(adapter);
3864 3865 3866
		e1000e_reset(adapter);
	}

3867 3868 3869 3870 3871 3872 3873
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3874
	/* DMA latency requirement to workaround early-receive/jumbo issue */
3875 3876
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3877 3878 3879
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3880

3881 3882
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3883 3884
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3885 3886
	 * clean_rx handler before we do so.
	 */
3887 3888 3889 3890 3891 3892
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3893 3894 3895 3896 3897
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3898
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3899 3900 3901 3902 3903 3904 3905
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3906 3907 3908 3909 3910 3911 3912
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3913
	adapter->tx_hang_recheck = false;
3914
	netif_start_queue(netdev);
3915

3916 3917 3918
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3919
	/* fire a link status change interrupt to start the watchdog */
3920 3921 3922 3923
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3924 3925 3926 3927

	return 0;

err_req_irq:
3928
	e1000e_release_hw_control(adapter);
3929 3930 3931 3932 3933 3934
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);
3935
	pm_runtime_put_sync(&pdev->dev);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3954
	struct pci_dev *pdev = adapter->pdev;
3955 3956

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3957 3958 3959

	pm_runtime_get_sync(&pdev->dev);

3960 3961
	napi_disable(&adapter->napi);

3962 3963 3964 3965
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3966 3967 3968 3969 3970
	e1000_power_down_phy(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3971 3972 3973 3974
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3975 3976
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3977 3978
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3979 3980 3981 3982
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3983 3984 3985
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3986

3987 3988
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3989
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3990

3991 3992
	pm_runtime_put_sync(&pdev->dev);

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4019 4020
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4021 4022 4023 4024
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4025 4026
		 * RAR[14]
		 */
4027 4028 4029 4030 4031 4032 4033 4034
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4047 4048 4049 4050

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4051 4052 4053
	e1000_get_phy_info(&adapter->hw);
}

4054 4055 4056 4057
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4058 4059 4060
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4061 4062 4063 4064

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4065
	schedule_work(&adapter->update_phy_task);
4066 4067
}

4068 4069 4070
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4071 4072
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4088
	hw->phy.addr = 1;
4089 4090 4091 4092
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4093 4094 4095
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4096 4097 4098 4099 4100
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4101 4102
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4103 4104 4105 4106
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4107 4108
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4109 4110 4111 4112
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4113 4114
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4115 4116 4117 4118
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4119 4120
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4121 4122 4123 4124
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4125 4126
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4127 4128 4129 4130
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4131 4132
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4133 4134 4135 4136
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4137 4138
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4139 4140 4141 4142 4143 4144 4145
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4146 4147 4148 4149
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4150
static void e1000e_update_stats(struct e1000_adapter *adapter)
4151
{
4152
	struct net_device *netdev = adapter->netdev;
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4167 4168
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4169 4170 4171 4172 4173
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4193
	}
4194

4195 4196 4197 4198 4199
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4200 4201
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4220 4221
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4222 4223 4224

	/* Rx Errors */

4225 4226 4227 4228
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4229
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4230 4231 4232
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4233
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4234
					      adapter->stats.roc;
4235 4236 4237
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4238 4239

	/* Tx Errors */
4240
	netdev->stats.tx_errors = adapter->stats.ecol +
4241
				       adapter->stats.latecol;
4242 4243 4244
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4245 4246 4247 4248 4249 4250 4251 4252 4253

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4265 4266
		int ret_val;

4267 4268 4269 4270 4271 4272 4273 4274 4275
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4276
			e_warn("Error reading PHY register\n");
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4296 4297 4298 4299 4300
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4301
	/* Link status message must follow this format for user tools */
4302 4303 4304 4305 4306 4307 4308
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4309 4310
}

4311
static bool e1000e_has_link(struct e1000_adapter *adapter)
4312 4313
{
	struct e1000_hw *hw = &adapter->hw;
4314
	bool link_active = false;
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4329
			link_active = true;
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4348
		e_info("Gigabit has been disabled, downgrading speed\n");
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4405
	struct e1000_phy_info *phy = &adapter->hw.phy;
4406 4407 4408 4409
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4410 4411 4412
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4413
	link = e1000e_has_link(adapter);
4414
	if ((netif_carrier_ok(netdev)) && link) {
4415 4416 4417
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4418
		e1000e_enable_receives(adapter);
4419 4420 4421 4422 4423 4424 4425 4426 4427
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4428
			bool txb2b = true;
4429 4430 4431 4432

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4433
			/* update snapshot of PHY registers on LSC */
4434
			e1000_phy_read_status(adapter);
4435 4436 4437 4438
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4454
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4455 4456
			}

4457
			/* adjust timeout factor according to speed/duplex */
4458 4459 4460
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4461
				txb2b = false;
4462
				adapter->tx_timeout_factor = 16;
4463 4464
				break;
			case SPEED_100:
4465
				txb2b = false;
4466
				adapter->tx_timeout_factor = 10;
4467 4468 4469
				break;
			}

4470 4471 4472 4473
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4474 4475 4476
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4477
				tarc0 = er32(TARC(0));
4478
				tarc0 &= ~SPEED_MODE_BIT;
4479
				ew32(TARC(0), tarc0);
4480 4481
			}

4482 4483 4484 4485
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4486 4487 4488 4489
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4490
					e_info("10/100 speed: disabling TSO\n");
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4504 4505 4506 4507
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4508 4509 4510 4511
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4512 4513 4514 4515 4516 4517 4518
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4529 4530 4531
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4532 4533 4534 4535 4536 4537 4538
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4539 4540 4541
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4542 4543 4544 4545
		}
	}

link_up:
J
Jeff Kirsher 已提交
4546
	spin_lock(&adapter->stats64_lock);
4547 4548 4549 4550 4551 4552 4553
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4554 4555 4556 4557
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4558
	spin_unlock(&adapter->stats64_lock);
4559 4560 4561

	e1000e_update_adaptive(&adapter->hw);

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4573 4574
	}

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4591
	/* Cause software interrupt to ensure Rx ring is cleaned */
4592 4593 4594 4595
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4596

4597 4598 4599
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4600
	/* Force detection of hung controller every watchdog period */
4601
	adapter->detect_tx_hung = true;
4602

4603 4604 4605 4606
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4607 4608 4609
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4610 4611 4612
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4637 4638
	if (!skb_is_gso(skb))
		return 0;
4639

4640
	if (skb_header_cloned(skb)) {
4641 4642
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4643 4644
		if (err)
			return err;
4645 4646
	}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4657
	} else if (skb_is_gso_v6(skb)) {
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4696 4697 4698 4699 4700 4701 4702 4703 4704
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4705
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4706
	__be16 protocol;
4707

4708 4709
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4710

4711 4712 4713 4714 4715
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4716
	switch (protocol) {
4717
	case cpu_to_be16(ETH_P_IP):
4718 4719 4720
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4721
	case cpu_to_be16(ETH_P_IPV6):
4722 4723 4724 4725 4726 4727
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4728 4729
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4730
		break;
4731 4732
	}

4733
	css = skb_checksum_start_offset(skb);
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
4767
	struct pci_dev *pdev = adapter->pdev;
4768
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4769
	unsigned int len = skb_headlen(skb);
4770
	unsigned int offset = 0, size, count = 0, i;
4771
	unsigned int f, bytecount, segs;
4772 4773 4774 4775

	i = tx_ring->next_to_use;

	while (len) {
4776
		buffer_info = &tx_ring->buffer_info[i];
4777 4778 4779 4780 4781
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4782 4783
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4784
						  size, DMA_TO_DEVICE);
4785
		buffer_info->mapped_as_page = false;
4786
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4787
			goto dma_error;
4788 4789 4790

		len -= size;
		offset += size;
4791
		count++;
4792 4793 4794 4795 4796 4797

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4798 4799 4800
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4801
		const struct skb_frag_struct *frag;
4802 4803

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4804
		len = skb_frag_size(frag);
4805
		offset = 0;
4806 4807

		while (len) {
4808 4809 4810 4811
			i++;
			if (i == tx_ring->count)
				i = 0;

4812 4813 4814 4815 4816 4817
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4818 4819
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4820
			buffer_info->mapped_as_page = true;
4821
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4822
				goto dma_error;
4823 4824 4825 4826 4827 4828 4829

			len -= size;
			offset += size;
			count++;
		}
	}

4830
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4831 4832 4833
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4834
	tx_ring->buffer_info[i].skb = skb;
4835 4836
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4837 4838 4839
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4840 4841

dma_error:
4842
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4843
	buffer_info->dma = 0;
4844
	if (count)
4845
		count--;
4846 4847

	while (count--) {
4848
		if (i == 0)
4849
			i += tx_ring->count;
4850
		i--;
4851
		buffer_info = &tx_ring->buffer_info[i];
4852
		e1000_put_txbuf(adapter, buffer_info);
4853 4854 4855
	}

	return 0;
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4888
	do {
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4899
	} while (--count > 0);
4900 4901 4902

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4903 4904
	/*
	 * Force memory writes to complete before letting h/w
4905 4906
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4907 4908
	 * such as IA-64).
	 */
4909 4910 4911
	wmb();

	tx_ring->next_to_use = i;
4912 4913 4914 4915

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_tdt_wa(adapter, i);
	else
4916
		writel(i, tx_ring->tail);
4917

4918 4919 4920 4921
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4933 4934
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4969 4970
	/*
	 * Herbert's original patch had:
4971
	 *  smp_mb__after_netif_stop_queue();
4972 4973
	 * but since that doesn't exist yet, just open code it.
	 */
4974 4975
	smp_mb();

4976 4977 4978 4979
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4999 5000
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
5001 5002 5003 5004 5005 5006 5007
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
5008
	unsigned int len = skb_headlen(skb);
5009 5010
	unsigned int nr_frags;
	unsigned int mss;
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5026 5027
	/*
	 * The controller does a simple calculation to
5028 5029 5030 5031
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5032 5033
	 * drops.
	 */
5034 5035 5036 5037 5038
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5039 5040 5041 5042 5043
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5044
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5045 5046 5047 5048
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5049
		if (skb->data_len && (hdr_len == len)) {
5050 5051 5052 5053
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
5054
				e_err("__pskb_pull_tail failed.\n");
5055 5056 5057
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5058
			len = skb_headlen(skb);
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5071
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5072 5073 5074 5075 5076
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5077 5078 5079 5080
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5081
	if (e1000_maybe_stop_tx(netdev, count + 2))
5082 5083
		return NETDEV_TX_BUSY;

5084
	if (vlan_tx_tag_present(skb)) {
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

5102 5103
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5104
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5105 5106
	 * no longer assume, we must.
	 */
5107 5108 5109
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

L
Lucas De Marchi 已提交
5110
	/* if count is 0 then mapping error has occurred */
5111
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
5112
	if (count) {
5113
		netdev_sent_queue(netdev, skb->len);
5114 5115 5116 5117 5118
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
5119
		dev_kfree_skb_any(skb);
5120 5121
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5145 5146 5147 5148
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5149 5150 5151 5152 5153
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5154 5155 5156 5157
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5158
 * e1000_get_stats64 - Get System Network Statistics
5159
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5160
 * @stats: rtnl_link_stats64 pointer
5161 5162 5163
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5164 5165
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5166
{
J
Jeff Kirsher 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5221
	/* Jumbo frame support */
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
			e_err("Jumbo Frames not supported.\n");
			return -EINVAL;
		}

		/*
		 * IP payload checksum (enabled with jumbos/packet-split when
		 * Rx checksum is enabled) and generation of RSS hash is
		 * mutually exclusive in the hardware.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) &&
		    (netdev->features & NETIF_F_RXHASH)) {
			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
			return -EINVAL;
		}
5238 5239
	}

5240 5241 5242 5243
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5244 5245 5246
		return -EINVAL;
	}

5247 5248 5249 5250
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5251
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5252 5253 5254
		return -EINVAL;
	}

5255 5256 5257 5258 5259 5260 5261 5262
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5263
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5264
		usleep_range(1000, 2000);
5265
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5266
	adapter->max_frame_size = max_frame;
5267 5268
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5269 5270 5271
	if (netif_running(netdev))
		e1000e_down(adapter);

5272 5273
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5274 5275
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5276
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5277 5278
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5279
	 */
5280

5281
	if (max_frame <= 2048)
5282 5283 5284 5285 5286 5287 5288 5289
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5290
					 + ETH_FCS_LEN;
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5308
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5309 5310 5311 5312 5313 5314 5315
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5316 5317
		e1000_phy_read_status(adapter);

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5372 5373 5374 5375
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5376
	u16 phy_reg, wuc_enable;
5377 5378 5379
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5380
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5381

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
		goto out;

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5394 5395
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5396 5397 5398 5399
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5400 5401 5402
	}

	/* configure PHY Rx Control register */
5403
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5420
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5421 5422 5423 5424 5425 5426

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5427 5428
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5429 5430

	/* activate PHY wakeup */
5431 5432
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5433 5434 5435
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
5436
	hw->phy.ops.release(hw);
5437 5438 5439 5440

	return retval;
}

5441 5442
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5443 5444 5445 5446 5447
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5448 5449
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5450 5451 5452 5453 5454 5455 5456 5457 5458
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5459
	e1000e_reset_interrupt_capability(adapter);
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5471
		e1000e_set_rx_mode(netdev);
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5485 5486 5487
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5488 5489
		ew32(CTRL, ctrl);

5490 5491 5492
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5493 5494
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5495
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5496 5497 5498
			ew32(CTRL_EXT, ctrl_ext);
		}

5499
		if (adapter->flags & FLAG_IS_ICH)
5500
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5501

5502 5503 5504
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5505
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5506 5507 5508 5509 5510 5511 5512 5513 5514
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5515 5516 5517 5518 5519
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5520 5521
	*enable_wake = !!wufc;

5522
	/* make sure adapter isn't asleep if manageability is enabled */
5523 5524
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5525
		*enable_wake = true;
5526 5527 5528 5529

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5530 5531 5532 5533
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5534
	e1000e_release_hw_control(adapter);
5535 5536 5537

	pci_disable_device(pdev);

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5558 5559 5560 5561 5562 5563 5564 5565
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5566
		int pos = pci_pcie_cap(us_dev);
5567 5568 5569 5570 5571 5572
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5573
		e1000_power_off(pdev, sleep, wake);
5574 5575 5576

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5577
		e1000_power_off(pdev, sleep, wake);
5578
	}
5579 5580
}

5581 5582 5583
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5584
	pci_disable_link_state_locked(pdev, state);
5585 5586 5587
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5588 5589
{
	int pos;
5590
	u16 reg16;
5591 5592

	/*
5593 5594
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5595
	 */
5596 5597 5598 5599 5600
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5601 5602 5603
	if (!pdev->bus->self)
		return;

5604 5605 5606 5607 5608 5609
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5610
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5611 5612 5613 5614 5615 5616
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5617 5618
}

R
Rafael J. Wysocki 已提交
5619
#ifdef CONFIG_PM
5620
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5621
{
5622
	return !!adapter->tx_ring->buffer_info;
5623 5624
}

5625
static int __e1000_resume(struct pci_dev *pdev)
5626 5627 5628 5629
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5630
	u16 aspm_disable_flag = 0;
5631 5632
	u32 err;

5633 5634 5635 5636 5637 5638 5639
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5640 5641
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5642
	pci_save_state(pdev);
T
Taku Izumi 已提交
5643

5644
	e1000e_set_interrupt_capability(adapter);
5645 5646 5647 5648 5649 5650
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5651 5652 5653
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5654
	e1000e_power_up_phy(adapter);
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5667 5668
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5685 5686
	e1000e_reset(adapter);

5687
	e1000_init_manageability_pt(adapter);
5688 5689 5690 5691 5692 5693

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5694 5695
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5696
	 * is up.  For all other cases, let the f/w know that the h/w is now
5697 5698
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5699
	if (!(adapter->flags & FLAG_HAS_AMT))
5700
		e1000e_get_hw_control(adapter);
5701 5702 5703

	return 0;
}
5704

5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5778
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5779
#endif /* CONFIG_PM */
5780 5781 5782

static void e1000_shutdown(struct pci_dev *pdev)
{
5783 5784
	bool wake = false;

5785
	__e1000_shutdown(pdev, &wake, false);
5786 5787 5788

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5789 5790 5791
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5792 5793 5794 5795 5796 5797 5798

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5799 5800
		int vector, msix_irq;

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5823 5824 5825 5826 5827 5828 5829 5830 5831
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5866 5867 5868
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5889
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5890
	int err;
J
Jesse Brandeburg 已提交
5891
	pci_ers_result_t result;
5892

5893 5894
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5895
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5896 5897 5898 5899
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5900
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5901
	if (err) {
5902 5903
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5904 5905 5906
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5907
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5908
		pci_restore_state(pdev);
5909

J
Jesse Brandeburg 已提交
5910 5911
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5912

J
Jesse Brandeburg 已提交
5913 5914 5915 5916
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5917

J
Jesse Brandeburg 已提交
5918 5919 5920
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5936
	e1000_init_manageability_pt(adapter);
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5948 5949
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5950
	 * is up.  For all other cases, let the f/w know that the h/w is now
5951 5952
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5953
	if (!(adapter->flags & FLAG_HAS_AMT))
5954
		e1000e_get_hw_control(adapter);
5955 5956 5957 5958 5959 5960 5961

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5962 5963
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5964 5965

	/* print bus type/speed/width info */
5966
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5967 5968 5969 5970
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5971
	       netdev->dev_addr);
5972 5973
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5974 5975 5976
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5977
		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5978 5979
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5980 5981
}

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5992
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5993
		/* Deep Smart Power Down (DSPD) */
5994 5995
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5996 5997 5998
	}
}

5999
static int e1000_set_features(struct net_device *netdev,
6000
			      netdev_features_t features)
6001 6002
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
6003
	netdev_features_t changed = features ^ netdev->features;
6004 6005 6006 6007 6008

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6009
			 NETIF_F_RXCSUM | NETIF_F_RXHASH)))
6010 6011
		return 0;

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
	/*
	 * IP payload checksum (enabled with jumbos/packet-split when Rx
	 * checksum is enabled) and generation of RSS hash is mutually
	 * exclusive in the hardware.
	 */
	if (adapter->rx_ps_pages &&
	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
		return -EINVAL;
	}

	netdev->features = features;

6025 6026 6027 6028 6029 6030 6031 6032
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6033 6034 6035
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6036
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6037
	.ndo_get_stats64	= e1000e_get_stats64,
6038
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6050
	.ndo_set_features = e1000_set_features,
6051 6052
};

6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6071 6072
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6073 6074

	static int cards_found;
6075
	u16 aspm_disable_flag = 0;
6076 6077 6078 6079
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6080 6081
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6082
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6083 6084 6085
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6086

6087
	err = pci_enable_device_mem(pdev);
6088 6089 6090 6091
	if (err)
		return err;

	pci_using_dac = 0;
6092
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6093
	if (!err) {
6094
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6095 6096 6097
		if (!err)
			pci_using_dac = 1;
	} else {
6098
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6099
		if (err) {
6100 6101
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6102
			if (err) {
6103
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6104 6105 6106 6107 6108
				goto err_dma;
			}
		}
	}

6109
	err = pci_request_selected_regions_exclusive(pdev,
6110 6111
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6112 6113 6114
	if (err)
		goto err_pci_reg;

6115
	/* AER (Advanced Error Reporting) hooks */
6116
	pci_enable_pcie_error_reporting(pdev);
6117

6118
	pci_set_master(pdev);
6119 6120 6121 6122
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6123 6124 6125 6126 6127 6128 6129 6130

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6131 6132
	netdev->irq = pdev->irq;

6133 6134 6135 6136 6137 6138 6139 6140
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6141
	adapter->flags2 = ei->flags2;
6142 6143
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6144
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6165
	netdev->netdev_ops		= &e1000e_netdev_ops;
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6176 6177
	e1000e_check_options(adapter);

6178 6179 6180 6181 6182 6183 6184 6185 6186
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6187
	err = ei->get_variants(adapter);
6188 6189 6190
	if (err)
		goto err_hw_init;

6191 6192 6193 6194
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6195 6196
	hw->mac.ops.get_bus_info(&adapter->hw);

6197
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6198 6199

	/* Copper options */
6200
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6201 6202 6203 6204 6205 6206
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
6207
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6208

6209 6210 6211 6212 6213 6214
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6215
			    NETIF_F_RXHASH |
6216 6217 6218 6219 6220
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
6221 6222 6223 6224

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6225 6226 6227 6228
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6229

6230 6231
	netdev->priv_flags |= IFF_UNICAST_FLT;

6232
	if (pci_using_dac) {
6233
		netdev->features |= NETIF_F_HIGHDMA;
6234 6235
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6236 6237 6238 6239

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6240 6241 6242 6243
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6254
			e_err("The NVM Checksum Is Not Valid\n");
6255 6256 6257 6258 6259
			err = -EIO;
			goto err_eeprom;
		}
	}

6260 6261
	e1000_eeprom_checks(adapter);

6262
	/* copy the MAC address */
6263
	if (e1000e_read_mac_addr(&adapter->hw))
6264
		e_err("NVM Read Error while reading MAC address\n");
6265 6266 6267 6268 6269

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6270
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6271 6272 6273 6274 6275
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6276
	adapter->watchdog_timer.function = e1000_watchdog;
6277 6278 6279
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6280
	adapter->phy_info_timer.function = e1000_update_phy_info;
6281 6282 6283 6284
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6285 6286
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6287
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6288 6289 6290

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6291
	adapter->fc_autoneg = true;
6292 6293
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6308 6309
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6310
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6335
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6336

6337 6338 6339
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6340 6341 6342
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6343 6344
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6345
	 * is up.  For all other cases, let the f/w know that the h/w is now
6346 6347
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6348
	if (!(adapter->flags & FLAG_HAS_AMT))
6349
		e1000e_get_hw_control(adapter);
6350

6351
	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6352 6353 6354 6355
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6356 6357 6358
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6359 6360
	e1000_print_device_info(adapter);

6361 6362
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6363

6364 6365 6366
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6367
	if (!(adapter->flags & FLAG_HAS_AMT))
6368
		e1000e_release_hw_control(adapter);
6369 6370 6371
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6372
err_hw_init:
6373 6374 6375
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6376 6377
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6378
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6379
err_flashmap:
6380 6381 6382 6383
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6384 6385
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6405 6406
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6407
	/*
6408 6409
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6410
	 */
6411 6412
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6413 6414 6415
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6416 6417 6418 6419 6420
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6421

6422 6423 6424
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6425 6426 6427
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6428 6429
	unregister_netdev(netdev);

6430 6431
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6432

6433 6434 6435 6436
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6437
	e1000e_release_hw_control(adapter);
6438

6439
	e1000e_reset_interrupt_capability(adapter);
6440 6441 6442 6443 6444 6445
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6446 6447
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6448 6449 6450

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6451
	/* AER disable */
6452
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6453

6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6464
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6465 6466 6467 6468 6469 6470
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6471 6472 6473
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6474

6475 6476 6477 6478
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6479

6480 6481 6482
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6483

6484
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6485
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6486
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6487

6488 6489 6490 6491 6492 6493 6494 6495
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6496

6497 6498 6499 6500 6501 6502 6503
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6504
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6505

6506 6507 6508 6509 6510
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6511
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6512 6513 6514 6515 6516 6517 6518
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6519

6520 6521
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6522
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6523

6524 6525 6526 6527 6528
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6529 6530 6531
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6532 6533 6534 6535
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6536
#ifdef CONFIG_PM
6537
static const struct dev_pm_ops e1000_pm_ops = {
6538 6539 6540
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6541
};
6542
#endif
6543

6544 6545 6546 6547 6548 6549
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6550
#ifdef CONFIG_PM
6551
	.driver.pm = &e1000_pm_ops,
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6566 6567
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6568
	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6569
	ret = pci_register_driver(&e1000_driver);
6570

6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */