netdev.c 180.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
140
	{0, NULL}
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
166 167
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 174 175
}

/*
176
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
177 178 179 180 181 182 183 184
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
185
	struct my_u0 {
186 187
		__le64 a;
		__le64 b;
188
	} *u0;
189 190 191
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
192
	union e1000_rx_desc_extended *rx_desc;
193
	struct my_u1 {
194 195 196 197
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
198
	} *u1;
199 200 201 202 203 204 205 206 207
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
208 209 210 211
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
212 213 214 215
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
216
	pr_info(" Register Name   Value\n");
217 218 219 220 221
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

222
	/* Print Tx Ring Summary */
223 224 225
	if (!netdev || !netif_running(netdev))
		goto exit;

226
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229 230 231 232 233 234
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
235

236
	/* Print Tx Ring */
237 238 239
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

240
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
269 270 271
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273
		const char *next_desc;
274 275 276 277
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278
			next_desc = " NTC/U";
279
		else if (i == tx_ring->next_to_use)
280
			next_desc = " NTU";
281
		else if (i == tx_ring->next_to_clean)
282
			next_desc = " NTC";
283
		else
284 285 286 287 288 289 290 291 292 293 294
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
295 296 297

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298 299
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
300 301
	}

302
	/* Print Rx Ring Summary */
303
rx_ring_summary:
304
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305 306 307
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
308

309
	/* Print Rx Ring */
310 311 312
	if (!netif_msg_rx_status(adapter))
		goto exit;

313
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
330
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331 332 333 334 335 336 337 338 339 340 341
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
342
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343
		for (i = 0; i < rx_ring->count; i++) {
344
			const char *next_desc;
345 346 347 348
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
349
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350 351 352 353 354 355 356 357

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

358 359
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
360 361 362 363 364 365 366
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
367
			} else {
368 369 370 371 372 373 374 375
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
376 377 378 379 380 381 382 383 384 385 386

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
387
		/* Extended Receive Descriptor (Read) Format
388
		 *
389 390 391 392 393
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
394
		 */
395
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396 397 398 399 400 401 402 403 404 405 406 407 408
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
409
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410 411

		for (i = 0; i < rx_ring->count; i++) {
412 413
			const char *next_desc;

414
			buffer_info = &rx_ring->buffer_info[i];
415 416 417
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418 419 420 421 422 423 424 425

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

426 427
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
428 429 430 431 432
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
433
			} else {
434 435 436 437 438 439
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
440 441 442 443 444 445 446 447 448 449

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
450 451 452 453 454 455 456
		}
	}

exit:
	return;
}

457 458 459 460 461 462 463 464 465 466 467 468
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
469
 * e1000_receive_skb - helper function to handle Rx indications
470 471 472 473 474 475
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
476
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
477
			      u8 status, __le16 vlan)
478
{
J
Jeff Kirsher 已提交
479
	u16 tag = le16_to_cpu(vlan);
480 481
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
482 483 484 485
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
486 487 488
}

/**
489
 * e1000_rx_checksum - Receive Checksum Offload
490 491 492 493
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
494 495
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
496
			      __le16 csum, struct sk_buff *skb)
497 498 499
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
500 501

	skb_checksum_none_assert(skb);
502

503 504 505 506
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

507 508 509
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
527 528 529
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
530 531
		 * and then put the value in host order for further stack use.
		 */
532
		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
A
Al Viro 已提交
533
		skb->csum = csum_unfold(~sum);
534 535 536 537 538
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
553
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

570
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
571
{
572
	struct e1000_adapter *adapter = rx_ring->adapter;
573 574
	struct e1000_hw *hw = &adapter->hw;

575
	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
576 577 578 579 580 581 582
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

583
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
584
{
585
	struct e1000_adapter *adapter = tx_ring->adapter;
586 587
	struct e1000_hw *hw = &adapter->hw;

588
	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
589 590 591 592 593 594 595
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

596
/**
597
 * e1000_alloc_rx_buffers - Replace used receive buffers
598
 * @rx_ring: Rx descriptor ring
599
 **/
600
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
601
				   int cleaned_count, gfp_t gfp)
602
{
603
	struct e1000_adapter *adapter = rx_ring->adapter;
604 605
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
606
	union e1000_rx_desc_extended *rx_desc;
607 608 609
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
610
	unsigned int bufsz = adapter->rx_buffer_len;
611 612 613 614 615 616 617 618 619 620 621

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

622
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
623 624 625 626 627 628 629 630
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
631
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
632
						  adapter->rx_buffer_len,
633 634
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
635
			dev_err(&pdev->dev, "Rx DMA map failed\n");
636 637 638 639
			adapter->rx_dma_failed++;
			break;
		}

640 641
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
642

643 644 645 646 647 648 649 650
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
651
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
652
				e1000e_update_rdt_wa(rx_ring, i);
653
			else
654
				writel(i, rx_ring->tail);
655
		}
656 657 658 659 660 661
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

662
	rx_ring->next_to_use = i;
663 664 665 666
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
667
 * @rx_ring: Rx descriptor ring
668
 **/
669
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
670
				      int cleaned_count, gfp_t gfp)
671
{
672
	struct e1000_adapter *adapter = rx_ring->adapter;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
688 689 690
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
691 692
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
693 694 695
				continue;
			}
			if (!ps_page->page) {
696
				ps_page->page = alloc_page(gfp);
697
				if (!ps_page->page) {
A
Auke Kok 已提交
698 699 700
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
701 702 703 704 705 706
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
707
					dev_err(&adapter->pdev->dev,
708
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
709 710
					adapter->rx_dma_failed++;
					goto no_buffers;
711 712
				}
			}
A
Auke Kok 已提交
713 714 715 716 717
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
718 719
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
720 721
		}

722 723 724
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
725 726 727 728 729 730 731

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
732
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
733
						  adapter->rx_ps_bsize0,
734 735
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
736
			dev_err(&pdev->dev, "Rx DMA map failed\n");
737 738 739 740 741 742 743 744 745
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

746 747 748 749 750 751 752 753
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
754
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
755
				e1000e_update_rdt_wa(rx_ring, i << 1);
756
			else
757
				writel(i << 1, rx_ring->tail);
758 759
		}

760 761 762 763 764 765 766
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
767
	rx_ring->next_to_use = i;
768 769
}

770 771
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
772
 * @rx_ring: Rx descriptor ring
773 774 775
 * @cleaned_count: number of buffers to allocate this pass
 **/

776
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
777
					 int cleaned_count, gfp_t gfp)
778
{
779
	struct e1000_adapter *adapter = rx_ring->adapter;
780 781
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
782
	union e1000_rx_desc_extended *rx_desc;
783 784 785
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
786
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
787 788 789 790 791 792 793 794 795 796 797

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

798
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
799 800 801 802 803 804 805 806 807 808
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
809
			buffer_info->page = alloc_page(gfp);
810 811 812 813 814 815 816
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
817
			buffer_info->dma = dma_map_page(&pdev->dev,
818 819
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
820
							DMA_FROM_DEVICE);
821

822 823
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
840
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
841
			e1000e_update_rdt_wa(rx_ring, i);
842
		else
843
			writel(i, rx_ring->tail);
844 845 846
	}
}

847 848 849 850 851 852 853
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

854
/**
855 856
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
857 858 859 860
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
861 862
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
863
{
864
	struct e1000_adapter *adapter = rx_ring->adapter;
865 866
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
867
	struct e1000_hw *hw = &adapter->hw;
868
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
869
	struct e1000_buffer *buffer_info, *next_buffer;
870
	u32 length, staterr;
871 872
	unsigned int i;
	int cleaned_count = 0;
873
	bool cleaned = false;
874 875 876
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
877 878
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
879 880
	buffer_info = &rx_ring->buffer_info[i];

881
	while (staterr & E1000_RXD_STAT_DD) {
882 883 884 885 886
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
887
		rmb();	/* read descriptor and rx_buffer_info after status DD */
888 889 890 891 892 893 894 895 896

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
897
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
898 899 900 901
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

902
		cleaned = true;
903
		cleaned_count++;
904
		dma_unmap_single(&pdev->dev,
905 906
				 buffer_info->dma,
				 adapter->rx_buffer_len,
907
				 DMA_FROM_DEVICE);
908 909
		buffer_info->dma = 0;

910
		length = le16_to_cpu(rx_desc->wb.upper.length);
911

912 913 914 915 916 917 918
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
919
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
920 921 922
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
923
			/* All receives must fit into a single buffer */
924
			e_dbg("Receive packet consumed multiple buffers\n");
925 926
			/* recycle */
			buffer_info->skb = skb;
927
			if (staterr & E1000_RXD_STAT_EOP)
928
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
929 930 931
			goto next_desc;
		}

932
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
933 934 935 936 937
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
938 939 940 941
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

942 943 944
		total_rx_bytes += length;
		total_rx_packets++;

945 946
		/*
		 * code added for copybreak, this should improve
947
		 * performance for small packets with large amounts
948 949
		 * of reassembly being done in the stack
		 */
950 951
		if (length < copybreak) {
			struct sk_buff *new_skb =
952
			    netdev_alloc_skb_ip_align(netdev, length);
953
			if (new_skb) {
954 955 956 957 958 959
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
960 961 962 963 964 965 966 967 968 969
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
970
		e1000_rx_checksum(adapter, staterr,
971
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
972

973 974
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

975 976
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
977 978

next_desc:
979
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
980 981 982

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
983
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
984
					      GFP_ATOMIC);
985 986 987 988 989 990
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
991 992

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
993 994 995 996 997
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
998
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
999 1000

	adapter->total_rx_bytes += total_rx_bytes;
1001
	adapter->total_rx_packets += total_rx_packets;
1002 1003 1004
	return cleaned;
}

1005 1006
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
1007
{
1008 1009
	struct e1000_adapter *adapter = tx_ring->adapter;

1010 1011
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1012 1013
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1014
		else
1015 1016
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1017 1018
		buffer_info->dma = 0;
	}
1019 1020 1021 1022
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1023
	buffer_info->time_stamp = 0;
1024 1025
}

1026
static void e1000_print_hw_hang(struct work_struct *work)
1027
{
1028 1029 1030
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1031
	struct net_device *netdev = adapter->netdev;
1032 1033 1034 1035
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1036 1037 1038 1039
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1040 1041 1042
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
		/* May be block on write-back, flush and detect again
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1058 1059 1060
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1061

1062 1063 1064 1065
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1066 1067 1068 1069 1070 1071 1072 1073
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1074 1075 1076 1077 1078 1079
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1080 1081
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1082 1083 1084 1085 1086
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1087 1088 1089 1090 1091 1092
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1093 1094 1095 1096
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1097
 * @tx_ring: Tx descriptor ring
1098 1099 1100 1101
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1102
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1103
{
1104
	struct e1000_adapter *adapter = tx_ring->adapter;
1105 1106 1107 1108 1109 1110 1111
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1112
	unsigned int bytes_compl = 0, pkts_compl = 0;
1113 1114 1115 1116 1117

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1118 1119
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1120
		bool cleaned = false;
1121
		rmb(); /* read buffer_info after eop_desc */
1122
		for (; !cleaned; count++) {
1123 1124 1125 1126 1127
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1128 1129
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1130 1131 1132 1133
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1134 1135
			}

1136
			e1000_put_txbuf(tx_ring, buffer_info);
1137 1138 1139 1140 1141 1142 1143
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1144 1145
		if (i == tx_ring->next_to_use)
			break;
1146 1147 1148 1149 1150 1151
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1152 1153
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1154
#define TX_WAKE_THRESHOLD 32
1155 1156
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1170 1171 1172 1173
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1174
		adapter->detect_tx_hung = false;
1175 1176
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1177
			       + (adapter->tx_timeout_factor * HZ)) &&
1178
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1179
			schedule_work(&adapter->print_hang_task);
1180 1181
		else
			adapter->tx_hang_recheck = false;
1182 1183 1184
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1185
	return count < tx_ring->count;
1186 1187 1188 1189
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1190
 * @rx_ring: Rx descriptor ring
1191 1192 1193 1194
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1195 1196
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1197
{
1198
	struct e1000_adapter *adapter = rx_ring->adapter;
1199
	struct e1000_hw *hw = &adapter->hw;
1200 1201 1202 1203 1204 1205 1206 1207 1208
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1209
	bool cleaned = false;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1222
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1235
		cleaned = true;
1236
		cleaned_count++;
1237
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1238
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1239 1240
		buffer_info->dma = 0;

1241
		/* see !EOP comment in other Rx routine */
1242 1243 1244 1245
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1246
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1247
			dev_kfree_skb_irq(skb);
1248 1249
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1261
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1262 1263 1264 1265 1266 1267 1268 1269
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1270 1271 1272 1273 1274
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1275

1276
			/*
1277 1278 1279 1280
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1281
			 */
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
				vaddr = kmap_atomic(ps_page->page,
						    KM_SKB_DATA_SOFTIRQ);
				memcpy(skb_tail_pointer(skb), vaddr, l1);
				kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
					l1 -= 4;

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1313 1314 1315 1316 1317 1318 1319
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1320
			ps_page = &buffer_info->ps_pages[j];
1321 1322
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1323 1324 1325 1326 1327
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1328
			skb->truesize += PAGE_SIZE;
1329 1330
		}

J
Jeff Kirsher 已提交
1331 1332 1333 1334 1335 1336
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1337 1338 1339 1340
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1341 1342
		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1343

1344 1345
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1359
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1360
					      GFP_ATOMIC);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1374
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1375 1376

	adapter->total_rx_bytes += total_rx_bytes;
1377
	adapter->total_rx_packets += total_rx_packets;
1378 1379 1380
	return cleaned;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1390
	skb->truesize += PAGE_SIZE;
1391 1392 1393 1394 1395 1396 1397 1398 1399
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1400 1401
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1402
{
1403
	struct e1000_adapter *adapter = rx_ring->adapter;
1404 1405
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1406
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1407
	struct e1000_buffer *buffer_info, *next_buffer;
1408
	u32 length, staterr;
1409 1410 1411 1412 1413 1414
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1415 1416
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1417 1418
	buffer_info = &rx_ring->buffer_info[i];

1419
	while (staterr & E1000_RXD_STAT_DD) {
1420 1421 1422 1423 1424
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1425
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1426 1427 1428 1429 1430 1431 1432

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1433
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1434 1435 1436 1437 1438 1439
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1440 1441
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1442 1443
		buffer_info->dma = 0;

1444
		length = le16_to_cpu(rx_desc->wb.upper.length);
1445 1446

		/* errors is only valid for DD + EOP descriptors */
1447 1448 1449 1450 1451 1452 1453 1454 1455
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1456 1457
		}

1458
#define rxtop (rx_ring->rx_skb_top)
1459
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1514
		e1000_rx_checksum(adapter, staterr,
1515
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1516

1517 1518
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1519 1520 1521 1522 1523 1524
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1525
			e_err("pskb_may_pull failed.\n");
1526
			dev_kfree_skb_irq(skb);
1527 1528 1529
			goto next_desc;
		}

1530 1531
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1532 1533

next_desc:
1534
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1535 1536 1537

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1538
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1539
					      GFP_ATOMIC);
1540 1541 1542 1543 1544 1545
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1546 1547

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1548 1549 1550 1551 1552
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1553
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1554 1555 1556 1557 1558 1559

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1560 1561
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1562
 * @rx_ring: Rx descriptor ring
1563
 **/
1564
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1565
{
1566
	struct e1000_adapter *adapter = rx_ring->adapter;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1577
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1578
						 adapter->rx_buffer_len,
1579
						 DMA_FROM_DEVICE);
1580
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1581
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1582
				               PAGE_SIZE,
1583
					       DMA_FROM_DEVICE);
1584
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1585
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1586
						 adapter->rx_ps_bsize0,
1587
						 DMA_FROM_DEVICE);
1588 1589 1590
			buffer_info->dma = 0;
		}

1591 1592 1593 1594 1595
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1596 1597 1598 1599 1600 1601
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1602
			ps_page = &buffer_info->ps_pages[j];
1603 1604
			if (!ps_page->page)
				break;
1605 1606
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1624
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1625

1626 1627
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
1628 1629
}

1630 1631 1632 1633 1634
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1635 1636 1637
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1638 1639 1640
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1653 1654 1655
	/*
	 * read ICR disables interrupts using IAM
	 */
1656

1657
	if (icr & E1000_ICR_LSC) {
1658
		hw->mac.get_link_status = 1;
1659 1660 1661 1662
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1663 1664
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1665
			schedule_work(&adapter->downshift_task);
1666

1667 1668
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1669
		 * link down event; disable receives here in the ISR and reset
1670 1671
		 * adapter in watchdog
		 */
1672 1673 1674 1675 1676
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1677
			adapter->flags |= FLAG_RX_RESTART_NOW;
1678 1679 1680 1681 1682 1683
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1684
	if (napi_schedule_prep(&adapter->napi)) {
1685 1686 1687 1688
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1689
		__napi_schedule(&adapter->napi);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1706

1707
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1708 1709
		return IRQ_NONE;  /* Not our interrupt */

1710 1711 1712 1713
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1714 1715 1716
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1717 1718 1719 1720 1721
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1722

1723
	if (icr & E1000_ICR_LSC) {
1724
		hw->mac.get_link_status = 1;
1725 1726 1727 1728
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1729 1730
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1731
			schedule_work(&adapter->downshift_task);
1732

1733 1734
		/*
		 * 80003ES2LAN workaround--
1735 1736 1737 1738 1739 1740 1741 1742 1743
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1744
			adapter->flags |= FLAG_RX_RESTART_NOW;
1745 1746 1747 1748 1749 1750
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1751
	if (napi_schedule_prep(&adapter->napi)) {
1752 1753 1754 1755
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1756
		__napi_schedule(&adapter->napi);
1757 1758 1759 1760 1761
	}

	return IRQ_HANDLED;
}

1762 1763 1764 1765 1766 1767 1768 1769
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1770 1771
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1788 1789
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1806
	if (!e1000_clean_tx_irq(tx_ring))
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1817
	struct e1000_ring *rx_ring = adapter->rx_ring;
1818 1819 1820 1821

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1822 1823 1824 1825
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1826 1827
	}

1828
	if (napi_schedule_prep(&adapter->napi)) {
1829 1830
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1831
		__napi_schedule(&adapter->napi);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1865
		       rx_ring->itr_register);
1866
	else
1867
		writel(1, rx_ring->itr_register);
1868 1869 1870 1871 1872 1873 1874
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1875
		       tx_ring->itr_register);
1876
	else
1877
		writel(1, tx_ring->itr_register);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1928
	int i;
1929 1930 1931 1932

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1933 1934
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1935 1936 1937
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1938
				for (i = 0; i < adapter->num_vectors; i++)
1939 1940 1941 1942
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1943
						      adapter->num_vectors);
B
Bruce Allan 已提交
1944
				if (err == 0)
1945 1946 1947
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1948
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1949 1950 1951 1952 1953 1954 1955 1956 1957
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1958
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1959 1960 1961 1962 1963 1964
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1965 1966 1967

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1982 1983 1984
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1985 1986 1987
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1988
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1989 1990 1991
			  netdev);
	if (err)
		goto out;
1992 1993
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
1994 1995 1996 1997
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1998 1999 2000
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
2001 2002 2003
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2004
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2005 2006 2007
			  netdev);
	if (err)
		goto out;
2008 2009
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2010 2011 2012 2013
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2014
			  e1000_msix_other, 0, netdev->name, netdev);
2015 2016 2017 2018 2019 2020 2021 2022 2023
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

2024 2025 2026 2027 2028 2029
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2030 2031 2032 2033 2034
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2035 2036 2037 2038 2039 2040 2041 2042
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2043
	}
2044
	if (adapter->flags & FLAG_MSI_ENABLED) {
2045
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2046 2047 2048
				  netdev->name, netdev);
		if (!err)
			return err;
2049

2050 2051 2052
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2053 2054
	}

2055
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2056 2057 2058 2059
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2060 2061 2062 2063 2064 2065 2066
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2079
	}
2080 2081

	free_irq(adapter->pdev->irq, netdev);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2092 2093
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2094
	e1e_flush();
2095 2096 2097 2098 2099 2100 2101 2102

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2103 2104 2105 2106 2107 2108 2109 2110 2111
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2112 2113 2114 2115 2116 2117
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2118
	e1e_flush();
2119 2120 2121
}

/**
2122
 * e1000e_get_hw_control - get control of the h/w from f/w
2123 2124
 * @adapter: address of board private structure
 *
2125
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2126 2127 2128 2129
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2130
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2142
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2143 2144 2145 2146
	}
}

/**
2147
 * e1000e_release_hw_control - release control of the h/w to f/w
2148 2149
 * @adapter: address of board private structure
 *
2150
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2151 2152 2153 2154 2155
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2156
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2168
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2190
 * @tx_ring: Tx descriptor ring
2191 2192 2193
 *
 * Return 0 on success, negative on failure
 **/
2194
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2195
{
2196
	struct e1000_adapter *adapter = tx_ring->adapter;
2197 2198 2199
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2200
	tx_ring->buffer_info = vzalloc(size);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2218
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2219 2220 2221 2222 2223
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2224
 * @rx_ring: Rx descriptor ring
2225 2226 2227
 *
 * Returns 0 on success, negative on failure
 **/
2228
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2229
{
2230
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2231 2232
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2233 2234

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2235
	rx_ring->buffer_info = vzalloc(size);
2236 2237 2238
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2239 2240 2241 2242 2243 2244 2245 2246
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2247 2248 2249 2250 2251 2252 2253 2254 2255

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2256
		goto err_pages;
2257 2258 2259 2260 2261 2262

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2263 2264 2265 2266 2267 2268

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2269 2270
err:
	vfree(rx_ring->buffer_info);
2271
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2272 2273 2274 2275 2276
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2277
 * @tx_ring: Tx descriptor ring
2278
 **/
2279
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2280
{
2281
	struct e1000_adapter *adapter = tx_ring->adapter;
2282 2283 2284 2285 2286 2287
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2288
		e1000_put_txbuf(tx_ring, buffer_info);
2289 2290
	}

2291
	netdev_reset_queue(adapter->netdev);
2292 2293 2294 2295 2296 2297 2298 2299
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2300 2301
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2302 2303 2304 2305
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2306
 * @tx_ring: Tx descriptor ring
2307 2308 2309
 *
 * Free all transmit software resources
 **/
2310
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2311
{
2312
	struct e1000_adapter *adapter = tx_ring->adapter;
2313 2314
	struct pci_dev *pdev = adapter->pdev;

2315
	e1000_clean_tx_ring(tx_ring);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2327
 * @rx_ring: Rx descriptor ring
2328 2329 2330
 *
 * Free all receive software resources
 **/
2331
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2332
{
2333
	struct e1000_adapter *adapter = rx_ring->adapter;
2334
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2335
	int i;
2336

2337
	e1000_clean_rx_ring(rx_ring);
2338

B
Bruce Allan 已提交
2339
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2340 2341
		kfree(rx_ring->buffer_info[i].ps_pages);

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2352 2353 2354 2355 2356
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2357 2358 2359 2360 2361 2362
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2363 2364
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2380
		else if ((packets < 5) && (bytes > 512))
2381 2382 2383 2384 2385
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2386
			if (bytes/packets > 8000)
2387
				retval = bulk_latency;
B
Bruce Allan 已提交
2388
			else if ((packets < 10) || ((bytes/packets) > 1200))
2389
				retval = bulk_latency;
B
Bruce Allan 已提交
2390
			else if ((packets > 35))
2391 2392 2393 2394 2395 2396 2397 2398 2399
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2400
			if (packets > 35)
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2425 2426 2427 2428 2429
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2465 2466
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2467
		 * by adding intermediate steps when interrupt rate is
2468 2469
		 * increasing
		 */
2470 2471 2472 2473
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2474 2475 2476 2477
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2478 2479 2480 2481
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2482 2483 2484
	}
}

2485 2486 2487 2488 2489 2490
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2491 2492 2493
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2494 2495
	if (!adapter->tx_ring)
		goto err;
2496 2497
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2498

2499
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2500 2501
	if (!adapter->rx_ring)
		goto err;
2502 2503
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2504 2505 2506 2507 2508 2509 2510 2511 2512

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2513 2514
/**
 * e1000_clean - NAPI Rx polling callback
2515
 * @napi: struct associated with this polling callback
2516
 * @budget: amount of packets driver is allowed to process this poll
2517 2518 2519 2520
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2521
	struct e1000_hw *hw = &adapter->hw;
2522
	struct net_device *poll_dev = adapter->netdev;
2523
	int tx_cleaned = 1, work_done = 0;
2524

2525
	adapter = netdev_priv(poll_dev);
2526

2527 2528 2529 2530
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2531
	tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2532

2533
clean_rx:
2534
	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2535

2536
	if (!tx_cleaned)
2537
		work_done = budget;
2538

2539 2540
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2541 2542
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2543
		napi_complete(napi);
2544 2545 2546 2547 2548 2549
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2550 2551 2552 2553 2554
	}

	return work_done;
}

2555
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2556 2557 2558 2559 2560 2561 2562 2563 2564
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2565
		return 0;
2566

2567
	/* add VID to filter table */
2568 2569 2570 2571 2572 2573
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2574 2575

	set_bit(vid, adapter->active_vlans);
2576 2577

	return 0;
2578 2579
}

2580
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2581 2582 2583 2584 2585 2586 2587 2588 2589
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2590
		e1000e_release_hw_control(adapter);
2591
		return 0;
2592 2593 2594
	}

	/* remove VID from filter table */
2595 2596 2597 2598 2599 2600
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2601 2602

	clear_bit(vid, adapter->active_vlans);
2603 2604

	return 0;
2605 2606
}

J
Jeff Kirsher 已提交
2607 2608 2609 2610 2611
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2612 2613
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2614 2615
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2616

J
Jeff Kirsher 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2626 2627 2628 2629
		}
	}
}

J
Jeff Kirsher 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2647

J
Jeff Kirsher 已提交
2648 2649 2650 2651 2652
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2653 2654
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2655
	u32 ctrl;
2656

J
Jeff Kirsher 已提交
2657 2658 2659 2660 2661
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2662

J
Jeff Kirsher 已提交
2663 2664 2665 2666 2667 2668 2669 2670
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2671

J
Jeff Kirsher 已提交
2672 2673 2674 2675 2676
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2677

J
Jeff Kirsher 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2688 2689
	}

J
Jeff Kirsher 已提交
2690 2691
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2692 2693 2694 2695 2696 2697
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2698
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2699

J
Jeff Kirsher 已提交
2700
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2701 2702 2703
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2704
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2705 2706
{
	struct e1000_hw *hw = &adapter->hw;
2707
	u32 manc, manc2h, mdef, i, j;
2708 2709 2710 2711 2712 2713

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2714 2715
	/*
	 * enable receiving management packets to the host. this will probably
2716
	 * generate destination unreachable messages from the host OS, but
2717 2718
	 * the packets will be handled on SMBUS
	 */
2719 2720
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2736
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2764 2765 2766 2767 2768
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2769
 * e1000_configure_tx - Configure Transmit Unit after Reset
2770 2771 2772 2773 2774 2775 2776 2777 2778
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2779
	u32 tdlen, tarc;
2780 2781 2782 2783

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2784
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2785 2786 2787 2788
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
2789 2790
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2791 2792 2793

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2794
	/* Tx irq moderation */
2795 2796
	ew32(TADV, adapter->tx_abs_int_delay);

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2809
		 * there are Tx hangs or other Tx related bugs
2810 2811 2812 2813
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2814 2815
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2816

2817
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2818
		tarc = er32(TARC(0));
2819 2820 2821 2822
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2823 2824
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2825
		ew32(TARC(0), tarc);
2826 2827 2828 2829
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2830
		tarc = er32(TARC(0));
2831
		tarc |= 1;
2832 2833
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2834
		tarc |= 1;
2835
		ew32(TARC(1), tarc);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2848
	e1000e_config_collision_dist(hw);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2863 2864 2865 2866 2867 2868 2869 2870
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2871 2872 2873

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2874 2875
	}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2892 2893 2894 2895 2896 2897
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2936 2937 2938 2939
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2956
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2957
		adapter->rx_ps_pages = pages;
2958 2959
	else
		adapter->rx_ps_pages = 0;
2960 2961

	if (adapter->rx_ps_pages) {
2962 2963
		u32 psrctl = 0;

2964 2965 2966 2967
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2968 2969 2970
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2971 2972
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

2993
	ew32(RFCTL, rfctl);
2994
	ew32(RCTL, rctl);
2995 2996
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3015
		    sizeof(union e1000_rx_desc_packet_split);
3016 3017
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3018
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3019
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3020 3021
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3022
	} else {
3023
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3024 3025 3026 3027 3028 3029
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3030 3031
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3032
	e1e_flush();
3033
	usleep_range(10000, 20000);
3034

3035 3036 3037 3038
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3039
		 * enable prefetching of 0x20 Rx descriptors
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3058 3059 3060 3061 3062
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3063
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3064
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3065 3066 3067 3068 3069 3070 3071 3072

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3073 3074 3075 3076
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3077
	rdba = rx_ring->dma;
3078
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3079 3080 3081 3082
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
3083 3084
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3085 3086 3087

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3088
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3089 3090
		rxcsum |= E1000_RXCSUM_TUOFL;

3091 3092 3093 3094
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3095 3096 3097 3098 3099 3100 3101 3102
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3103 3104 3105 3106 3107
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3108 3109 3110
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3111
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3112
		} else {
3113 3114
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3115
		}
3116
	}
3117 3118 3119 3120 3121 3122

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3123 3124
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3125
 *
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3163
 *
3164 3165 3166 3167
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3168
 **/
3169
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3170
{
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3210 3211 3212
}

/**
3213
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3214 3215
 * @netdev: network interface device structure
 *
3216 3217 3218
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3219 3220
 * promiscuous mode, and all-multi behavior.
 **/
3221
static void e1000e_set_rx_mode(struct net_device *netdev)
3222 3223 3224 3225 3226 3227 3228 3229
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3230 3231 3232
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3233 3234
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3235 3236
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3237
	} else {
3238
		int count;
3239 3240 3241
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3242 3243 3244 3245 3246 3247 3248 3249
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3250
		}
J
Jeff Kirsher 已提交
3251
		e1000e_vlan_filter_enable(adapter);
3252
		/*
3253 3254 3255
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3256
		 */
3257 3258 3259
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3260
	}
J
Jeff Kirsher 已提交
3261

3262 3263
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3264 3265 3266 3267
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3268 3269
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3306
/**
3307
 * e1000_configure - configure the hardware for Rx and Tx
3308 3309 3310 3311
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3312 3313
	struct e1000_ring *rx_ring = adapter->rx_ring;

3314
	e1000e_set_rx_mode(adapter->netdev);
3315 3316

	e1000_restore_vlan(adapter);
3317
	e1000_init_manageability_pt(adapter);
3318 3319

	e1000_configure_tx(adapter);
3320 3321 3322

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3323 3324
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3325
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3338 3339
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3340 3341 3342 3343 3344 3345 3346

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3347 3348
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3349 3350 3351 3352
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3353
	if (adapter->wol)
3354 3355
		return;

3356 3357
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3358 3359 3360 3361 3362 3363 3364 3365
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3366
 * properly configured for Rx, Tx etc.
3367 3368 3369 3370
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3371
	struct e1000_fc_info *fc = &adapter->hw.fc;
3372 3373
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3374
	u32 pba = adapter->pba;
3375 3376
	u16 hwm;

3377
	/* reset Packet Buffer Allocation to default */
3378
	ew32(PBA, pba);
3379

3380
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3381 3382
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3383 3384 3385 3386
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3387 3388
		 * expressed in KB.
		 */
3389
		pba = er32(PBA);
3390
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3391
		tx_space = pba >> 16;
3392
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3393
		pba &= 0xffff;
3394
		/*
3395
		 * the Tx fifo also stores 16 bytes of information about the Tx
3396
		 * but don't include ethernet FCS because hardware appends it
3397 3398
		 */
		min_tx_space = (adapter->max_frame_size +
3399 3400 3401 3402 3403
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3404
		min_rx_space = adapter->max_frame_size;
3405 3406 3407
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3408 3409
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3410
		 * and the min Tx FIFO size is less than the current Rx FIFO
3411 3412
		 * allocation, take space away from current Rx allocation
		 */
3413 3414 3415
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3416

3417
			/*
3418
			 * if short on Rx space, Rx wins and must trump Tx
3419 3420
			 * adjustment or use Early Receive if available
			 */
3421
			if (pba < min_rx_space)
3422
				pba = min_rx_space;
3423
		}
3424 3425

		ew32(PBA, pba);
3426 3427
	}

3428 3429 3430
	/*
	 * flow control settings
	 *
3431
	 * The high water mark must be low enough to fit one full frame
3432 3433 3434
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3435
	 * - the full Rx FIFO size minus one full frame
3436
	 */
3437 3438 3439 3440 3441 3442 3443 3444
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3455
	default:
3456 3457
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3458 3459 3460 3461 3462

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3474
		fc->refresh_time = 0x1000;
3475 3476 3477 3478 3479 3480
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3481 3482 3483 3484
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3485
		break;
3486
	}
3487

3488 3489
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3490
	 * fit in receive buffer.
3491 3492
	 */
	if (adapter->itr_setting & 0x3) {
3493
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3509 3510
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3511 3512 3513 3514 3515

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3516
	if (adapter->flags & FLAG_HAS_AMT)
3517
		e1000e_get_hw_control(adapter);
3518

3519 3520 3521
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3522
		e_err("Hardware Error\n");
3523 3524 3525 3526 3527 3528 3529

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3530 3531 3532 3533 3534 3535 3536

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3537 3538
	e1000_get_phy_info(hw);

3539 3540
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3541
		u16 phy_data = 0;
3542 3543
		/*
		 * speed up time to link by disabling smart power down, ignore
3544
		 * the return value of this function because there is nothing
3545 3546
		 * different we would do if it failed
		 */
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3562 3563
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3564 3565
	e1000_irq_enable(adapter);

3566
	netif_start_queue(adapter->netdev);
3567

3568
	/* fire a link change interrupt to start the watchdog */
3569 3570 3571 3572 3573
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3574 3575 3576
	return 0;
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3592 3593
static void e1000e_update_stats(struct e1000_adapter *adapter);

3594 3595 3596 3597 3598 3599
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3600 3601 3602 3603
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3604 3605 3606 3607
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3608 3609
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3610 3611
	/* flush and sleep below */

3612
	netif_stop_queue(netdev);
3613 3614 3615 3616 3617

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3618

3619 3620
	/* flush both disables and wait for them to finish */
	e1e_flush();
3621
	usleep_range(10000, 20000);
3622 3623 3624 3625 3626 3627 3628

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3629 3630 3631 3632 3633

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3634
	e1000e_flush_descriptors(adapter);
3635 3636
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3637

3638 3639 3640
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3641 3642
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3643

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3654
		usleep_range(1000, 2000);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3674 3675
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3676 3677
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3678

J
Jeff Kirsher 已提交
3679 3680
	spin_lock_init(&adapter->stats64_lock);

3681
	e1000e_set_interrupt_capability(adapter);
3682

3683 3684
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3685 3686 3687 3688 3689 3690 3691 3692

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3705
	e_dbg("icr is %08X\n", icr);
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3732
	e1000e_reset_interrupt_capability(adapter);
3733 3734 3735 3736 3737 3738 3739 3740 3741

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3742
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3763
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3764
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3765
	} else {
3766
		e_dbg("MSI interrupt test succeeded!\n");
3767
	}
3768 3769 3770 3771 3772

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3773
	e1000e_set_interrupt_capability(adapter);
3774
	return e1000_request_irq(adapter);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3793 3794 3795
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3796 3797 3798

	err = e1000_test_msi_interrupt(adapter);

3799 3800 3801 3802 3803 3804
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3805 3806 3807 3808

	return err;
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3825
	struct pci_dev *pdev = adapter->pdev;
3826 3827 3828 3829 3830 3831
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3832 3833
	pm_runtime_get_sync(&pdev->dev);

3834 3835
	netif_carrier_off(netdev);

3836
	/* allocate transmit descriptors */
3837
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3838 3839 3840 3841
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3842
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3843 3844 3845
	if (err)
		goto err_setup_rx;

3846 3847 3848 3849 3850
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3851
		e1000e_get_hw_control(adapter);
3852 3853 3854
		e1000e_reset(adapter);
	}

3855 3856 3857 3858 3859 3860 3861
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3862 3863
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3864 3865 3866
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3867

3868 3869
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3870 3871
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3872 3873
	 * clean_rx handler before we do so.
	 */
3874 3875 3876 3877 3878 3879
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3880 3881 3882 3883 3884
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3885
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3886 3887 3888 3889 3890 3891 3892
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3893 3894 3895 3896 3897 3898 3899
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3900
	adapter->tx_hang_recheck = false;
3901
	netif_start_queue(netdev);
3902

3903 3904 3905
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3906
	/* fire a link status change interrupt to start the watchdog */
3907 3908 3909 3910
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3911 3912 3913 3914

	return 0;

err_req_irq:
3915
	e1000e_release_hw_control(adapter);
3916
	e1000_power_down_phy(adapter);
3917
	e1000e_free_rx_resources(adapter->rx_ring);
3918
err_setup_rx:
3919
	e1000e_free_tx_resources(adapter->tx_ring);
3920 3921
err_setup_tx:
	e1000e_reset(adapter);
3922
	pm_runtime_put_sync(&pdev->dev);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3941
	struct pci_dev *pdev = adapter->pdev;
3942 3943

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3944 3945 3946

	pm_runtime_get_sync(&pdev->dev);

3947 3948
	napi_disable(&adapter->napi);

3949 3950 3951 3952
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3953 3954
	e1000_power_down_phy(adapter);

3955 3956
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
3957

3958 3959 3960 3961
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3962 3963
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3964 3965
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3966 3967 3968 3969
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3970 3971 3972
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3973

3974
	if (adapter->hw.mac.type == e1000_pch2lan)
3975
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3976

3977 3978
	pm_runtime_put_sync(&pdev->dev);

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4005 4006
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4007 4008 4009 4010
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4011 4012
		 * RAR[14]
		 */
4013 4014 4015 4016 4017 4018 4019 4020
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4033 4034 4035 4036

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4037 4038 4039
	e1000_get_phy_info(&adapter->hw);
}

4040 4041 4042 4043
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4044 4045 4046
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4047 4048 4049 4050

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4051
	schedule_work(&adapter->update_phy_task);
4052 4053
}

4054 4055 4056
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4057 4058
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4074
	hw->phy.addr = 1;
4075 4076 4077 4078
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4079 4080 4081
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4082 4083 4084 4085 4086
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4087 4088
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4089 4090 4091 4092
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4093 4094
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4095 4096 4097 4098
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4099 4100
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4101 4102 4103 4104
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4105 4106
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4107 4108 4109 4110
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4111 4112
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4113 4114 4115 4116
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4117 4118
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4119 4120 4121 4122
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4123 4124
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4125 4126 4127 4128 4129 4130 4131
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4132 4133 4134 4135
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4136
static void e1000e_update_stats(struct e1000_adapter *adapter)
4137
{
4138
	struct net_device *netdev = adapter->netdev;
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4153 4154
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4155 4156 4157 4158 4159
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4179
	}
4180

4181 4182 4183 4184 4185
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4186 4187
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4206 4207
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4208 4209 4210

	/* Rx Errors */

4211 4212 4213 4214
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4215
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4216 4217 4218
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4219
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4220
					      adapter->stats.roc;
4221 4222 4223
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4224 4225

	/* Tx Errors */
4226
	netdev->stats.tx_errors = adapter->stats.ecol +
4227
				       adapter->stats.latecol;
4228 4229 4230
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4231 4232 4233 4234 4235 4236 4237 4238 4239

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4251 4252
		int ret_val;

4253 4254 4255 4256 4257 4258 4259 4260 4261
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4262
			e_warn("Error reading PHY register\n");
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4282 4283 4284 4285 4286
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4287
	/* Link status message must follow this format for user tools */
4288 4289 4290 4291 4292 4293 4294
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4295 4296
}

4297
static bool e1000e_has_link(struct e1000_adapter *adapter)
4298 4299
{
	struct e1000_hw *hw = &adapter->hw;
4300
	bool link_active = false;
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4315
			link_active = true;
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4334
		e_info("Gigabit has been disabled, downgrading speed\n");
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4391
	struct e1000_phy_info *phy = &adapter->hw.phy;
4392 4393 4394 4395
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4396 4397 4398
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4399
	link = e1000e_has_link(adapter);
4400
	if ((netif_carrier_ok(netdev)) && link) {
4401 4402 4403
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4404
		e1000e_enable_receives(adapter);
4405 4406 4407 4408 4409 4410 4411 4412 4413
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4414
			bool txb2b = true;
4415 4416 4417 4418

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4419
			/* update snapshot of PHY registers on LSC */
4420
			e1000_phy_read_status(adapter);
4421 4422 4423 4424
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4440
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4441 4442
			}

4443
			/* adjust timeout factor according to speed/duplex */
4444 4445 4446
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4447
				txb2b = false;
4448
				adapter->tx_timeout_factor = 16;
4449 4450
				break;
			case SPEED_100:
4451
				txb2b = false;
4452
				adapter->tx_timeout_factor = 10;
4453 4454 4455
				break;
			}

4456 4457 4458 4459
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4460 4461 4462
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4463
				tarc0 = er32(TARC(0));
4464
				tarc0 &= ~SPEED_MODE_BIT;
4465
				ew32(TARC(0), tarc0);
4466 4467
			}

4468 4469 4470 4471
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4472 4473 4474 4475
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4476
					e_info("10/100 speed: disabling TSO\n");
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4490 4491 4492 4493
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4494 4495 4496 4497
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4498 4499 4500 4501 4502 4503 4504
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4515 4516 4517
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4518 4519 4520 4521 4522 4523 4524
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4525 4526 4527
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4528 4529 4530 4531
		}
	}

link_up:
J
Jeff Kirsher 已提交
4532
	spin_lock(&adapter->stats64_lock);
4533 4534 4535 4536 4537 4538 4539
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4540 4541 4542 4543
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4544
	spin_unlock(&adapter->stats64_lock);
4545 4546 4547

	e1000e_update_adaptive(&adapter->hw);

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4559 4560
	}

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4577
	/* Cause software interrupt to ensure Rx ring is cleaned */
4578 4579 4580 4581
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4582

4583 4584 4585
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4586
	/* Force detection of hung controller every watchdog period */
4587
	adapter->detect_tx_hung = true;
4588

4589 4590 4591 4592
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4593 4594 4595
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4596 4597 4598
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4612
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4613 4614 4615 4616 4617 4618 4619 4620
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4621 4622
	if (!skb_is_gso(skb))
		return 0;
4623

4624
	if (skb_header_cloned(skb)) {
4625 4626
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4627 4628
		if (err)
			return err;
4629 4630
	}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4641
	} else if (skb_is_gso_v6(skb)) {
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4680 4681
}

4682
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4683
{
4684
	struct e1000_adapter *adapter = tx_ring->adapter;
4685 4686 4687 4688
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4689
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4690
	__be16 protocol;
4691

4692 4693
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4694

4695 4696 4697 4698 4699
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4700
	switch (protocol) {
4701
	case cpu_to_be16(ETH_P_IP):
4702 4703 4704
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4705
	case cpu_to_be16(ETH_P_IPV6):
4706 4707 4708 4709 4710 4711
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4712 4713
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4714
		break;
4715 4716
	}

4717
	css = skb_checksum_start_offset(skb);
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4740 4741 4742 4743 4744
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4745 4746 4747
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4748
{
4749
	struct e1000_adapter *adapter = tx_ring->adapter;
4750
	struct pci_dev *pdev = adapter->pdev;
4751
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4752
	unsigned int len = skb_headlen(skb);
4753
	unsigned int offset = 0, size, count = 0, i;
4754
	unsigned int f, bytecount, segs;
4755 4756 4757 4758

	i = tx_ring->next_to_use;

	while (len) {
4759
		buffer_info = &tx_ring->buffer_info[i];
4760 4761 4762 4763 4764
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4765 4766
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4767
						  size, DMA_TO_DEVICE);
4768
		buffer_info->mapped_as_page = false;
4769
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4770
			goto dma_error;
4771 4772 4773

		len -= size;
		offset += size;
4774
		count++;
4775 4776 4777 4778 4779 4780

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4781 4782 4783
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4784
		const struct skb_frag_struct *frag;
4785 4786

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4787
		len = skb_frag_size(frag);
4788
		offset = 0;
4789 4790

		while (len) {
4791 4792 4793 4794
			i++;
			if (i == tx_ring->count)
				i = 0;

4795 4796 4797 4798 4799 4800
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4801 4802
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4803
			buffer_info->mapped_as_page = true;
4804
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4805
				goto dma_error;
4806 4807 4808 4809 4810 4811 4812

			len -= size;
			offset += size;
			count++;
		}
	}

4813
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4814 4815 4816
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4817
	tx_ring->buffer_info[i].skb = skb;
4818 4819
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4820 4821 4822
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4823 4824

dma_error:
4825
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4826
	buffer_info->dma = 0;
4827
	if (count)
4828
		count--;
4829 4830

	while (count--) {
4831
		if (i == 0)
4832
			i += tx_ring->count;
4833
		i--;
4834
		buffer_info = &tx_ring->buffer_info[i];
4835
		e1000_put_txbuf(tx_ring, buffer_info);
4836 4837 4838
	}

	return 0;
4839 4840
}

4841
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4842
{
4843
	struct e1000_adapter *adapter = tx_ring->adapter;
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4870
	do {
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4881
	} while (--count > 0);
4882 4883 4884

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4885 4886
	/*
	 * Force memory writes to complete before letting h/w
4887 4888
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4889 4890
	 * such as IA-64).
	 */
4891 4892 4893
	wmb();

	tx_ring->next_to_use = i;
4894 4895

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4896
		e1000e_update_tdt_wa(tx_ring, i);
4897
	else
4898
		writel(i, tx_ring->tail);
4899

4900 4901 4902 4903
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4915 4916
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

4946
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4947
{
4948
	struct e1000_adapter *adapter = tx_ring->adapter;
4949

4950
	netif_stop_queue(adapter->netdev);
4951 4952
	/*
	 * Herbert's original patch had:
4953
	 *  smp_mb__after_netif_stop_queue();
4954 4955
	 * but since that doesn't exist yet, just open code it.
	 */
4956 4957
	smp_mb();

4958 4959 4960 4961
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4962
	if (e1000_desc_unused(tx_ring) < size)
4963 4964 4965
		return -EBUSY;

	/* A reprieve! */
4966
	netif_start_queue(adapter->netdev);
4967 4968 4969 4970
	++adapter->restart_queue;
	return 0;
}

4971
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4972
{
4973
	if (e1000_desc_unused(tx_ring) >= size)
4974
		return 0;
4975
	return __e1000_maybe_stop_tx(tx_ring, size);
4976 4977
}

4978
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
4979 4980
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4981 4982 4983 4984 4985 4986 4987
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4988
	unsigned int len = skb_headlen(skb);
4989 4990
	unsigned int nr_frags;
	unsigned int mss;
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5006 5007
	/*
	 * The controller does a simple calculation to
5008 5009 5010 5011
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5012 5013
	 * drops.
	 */
5014 5015 5016 5017 5018
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5019 5020 5021 5022 5023
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5024
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5025 5026 5027 5028
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5029
		if (skb->data_len && (hdr_len == len)) {
5030 5031
			unsigned int pull_size;

5032
			pull_size = min_t(unsigned int, 4, skb->data_len);
5033
			if (!__pskb_pull_tail(skb, pull_size)) {
5034
				e_err("__pskb_pull_tail failed.\n");
5035 5036 5037
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5038
			len = skb_headlen(skb);
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5051
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5052 5053 5054 5055 5056
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5057 5058 5059 5060
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5061
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5062 5063
		return NETDEV_TX_BUSY;

5064
	if (vlan_tx_tag_present(skb)) {
5065 5066 5067 5068 5069 5070
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5071
	tso = e1000_tso(tx_ring, skb);
5072 5073 5074 5075 5076 5077 5078
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5079
	else if (e1000_tx_csum(tx_ring, skb))
5080 5081
		tx_flags |= E1000_TX_FLAGS_CSUM;

5082 5083
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5084
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5085 5086
	 * no longer assume, we must.
	 */
5087 5088 5089
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

L
Lucas De Marchi 已提交
5090
	/* if count is 0 then mapping error has occurred */
5091
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5092
	if (count) {
5093
		netdev_sent_queue(netdev, skb->len);
5094
		e1000_tx_queue(tx_ring, tx_flags, count);
5095
		/* Make sure there is space in the ring for the next send. */
5096
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5097 5098

	} else {
5099
		dev_kfree_skb_any(skb);
5100 5101
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5125 5126 5127 5128
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5129 5130 5131 5132 5133
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5134 5135 5136 5137
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5138
 * e1000_get_stats64 - Get System Network Statistics
5139
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5140
 * @stats: rtnl_link_stats64 pointer
5141 5142 5143
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5144 5145
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5146
{
J
Jeff Kirsher 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5201
	/* Jumbo frame support */
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
			e_err("Jumbo Frames not supported.\n");
			return -EINVAL;
		}

		/*
		 * IP payload checksum (enabled with jumbos/packet-split when
		 * Rx checksum is enabled) and generation of RSS hash is
		 * mutually exclusive in the hardware.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) &&
		    (netdev->features & NETIF_F_RXHASH)) {
			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
			return -EINVAL;
		}
5218 5219
	}

5220 5221 5222 5223
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5224 5225 5226
		return -EINVAL;
	}

5227 5228 5229 5230
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5231
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5232 5233 5234
		return -EINVAL;
	}

5235 5236 5237 5238 5239 5240 5241 5242
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5243
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5244
		usleep_range(1000, 2000);
5245
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5246
	adapter->max_frame_size = max_frame;
5247 5248
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5249 5250 5251
	if (netif_running(netdev))
		e1000e_down(adapter);

5252 5253
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5254 5255
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5256
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5257 5258
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5259
	 */
5260

5261
	if (max_frame <= 2048)
5262 5263 5264 5265 5266 5267 5268 5269
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5270
					 + ETH_FCS_LEN;
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5288
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5289 5290 5291 5292 5293 5294 5295
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5296 5297
		e1000_phy_read_status(adapter);

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5352 5353 5354 5355
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5356
	u16 phy_reg, wuc_enable;
5357 5358 5359
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5360
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5361

5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
		goto out;

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5374 5375
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5376 5377 5378 5379
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5380 5381 5382
	}

	/* configure PHY Rx Control register */
5383
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5400
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5401 5402 5403 5404 5405 5406

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5407 5408
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5409 5410

	/* activate PHY wakeup */
5411 5412
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5413 5414 5415
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
5416
	hw->phy.ops.release(hw);
5417 5418 5419 5420

	return retval;
}

5421 5422
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5423 5424 5425 5426 5427
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5428 5429
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5430 5431 5432 5433 5434 5435 5436 5437 5438
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5439
	e1000e_reset_interrupt_capability(adapter);
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5451
		e1000e_set_rx_mode(netdev);
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5465 5466 5467
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5468 5469
		ew32(CTRL, ctrl);

5470 5471 5472
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5473 5474
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5475
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5476 5477 5478
			ew32(CTRL_EXT, ctrl_ext);
		}

5479
		if (adapter->flags & FLAG_IS_ICH)
5480
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5481

5482 5483 5484
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5485
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5486 5487 5488 5489 5490 5491 5492 5493 5494
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5495 5496 5497 5498 5499
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5500 5501
	*enable_wake = !!wufc;

5502
	/* make sure adapter isn't asleep if manageability is enabled */
5503 5504
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5505
		*enable_wake = true;
5506 5507 5508 5509

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5510 5511 5512 5513
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5514
	e1000e_release_hw_control(adapter);
5515 5516 5517

	pci_disable_device(pdev);

5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5538 5539 5540 5541 5542 5543 5544 5545
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5546
		int pos = pci_pcie_cap(us_dev);
5547 5548 5549 5550 5551 5552
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5553
		e1000_power_off(pdev, sleep, wake);
5554 5555 5556

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5557
		e1000_power_off(pdev, sleep, wake);
5558
	}
5559 5560
}

5561 5562 5563
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5564
	pci_disable_link_state_locked(pdev, state);
5565 5566 5567
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5568 5569
{
	int pos;
5570
	u16 reg16;
5571 5572

	/*
5573 5574
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5575
	 */
5576 5577 5578 5579 5580
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5581 5582 5583
	if (!pdev->bus->self)
		return;

5584 5585 5586 5587 5588 5589
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5590
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5591 5592 5593 5594 5595 5596
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5597 5598
}

R
Rafael J. Wysocki 已提交
5599
#ifdef CONFIG_PM
5600
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5601
{
5602
	return !!adapter->tx_ring->buffer_info;
5603 5604
}

5605
static int __e1000_resume(struct pci_dev *pdev)
5606 5607 5608 5609
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5610
	u16 aspm_disable_flag = 0;
5611 5612
	u32 err;

5613 5614 5615 5616 5617 5618 5619
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5620 5621
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5622
	pci_save_state(pdev);
T
Taku Izumi 已提交
5623

5624
	e1000e_set_interrupt_capability(adapter);
5625 5626 5627 5628 5629 5630
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5631 5632 5633
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5634
	e1000e_power_up_phy(adapter);
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5647 5648
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5665 5666
	e1000e_reset(adapter);

5667
	e1000_init_manageability_pt(adapter);
5668 5669 5670 5671 5672 5673

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5674 5675
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5676
	 * is up.  For all other cases, let the f/w know that the h/w is now
5677 5678
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5679
	if (!(adapter->flags & FLAG_HAS_AMT))
5680
		e1000e_get_hw_control(adapter);
5681 5682 5683

	return 0;
}
5684

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5758
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5759
#endif /* CONFIG_PM */
5760 5761 5762

static void e1000_shutdown(struct pci_dev *pdev)
{
5763 5764
	bool wake = false;

5765
	__e1000_shutdown(pdev, &wake, false);
5766 5767 5768

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5769 5770 5771
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5772 5773 5774 5775 5776 5777 5778

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5779 5780
		int vector, msix_irq;

5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5803 5804 5805 5806 5807 5808 5809 5810 5811
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5846 5847 5848
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5869
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5870
	int err;
J
Jesse Brandeburg 已提交
5871
	pci_ers_result_t result;
5872

5873 5874
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5875
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5876 5877 5878 5879
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5880
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5881
	if (err) {
5882 5883
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5884 5885 5886
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5887
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5888
		pci_restore_state(pdev);
5889

J
Jesse Brandeburg 已提交
5890 5891
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5892

J
Jesse Brandeburg 已提交
5893 5894 5895 5896
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5897

J
Jesse Brandeburg 已提交
5898 5899 5900
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5916
	e1000_init_manageability_pt(adapter);
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5928 5929
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5930
	 * is up.  For all other cases, let the f/w know that the h/w is now
5931 5932
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5933
	if (!(adapter->flags & FLAG_HAS_AMT))
5934
		e1000e_get_hw_control(adapter);
5935 5936 5937 5938 5939 5940 5941

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5942 5943
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5944 5945

	/* print bus type/speed/width info */
5946
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5947 5948 5949 5950
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5951
	       netdev->dev_addr);
5952 5953
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5954 5955 5956
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5957
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5958 5959
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5960 5961
}

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5972 5973
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
5974
		/* Deep Smart Power Down (DSPD) */
5975 5976
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5977 5978 5979
	}
}

5980
static int e1000_set_features(struct net_device *netdev,
5981
			      netdev_features_t features)
5982 5983
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
5984
	netdev_features_t changed = features ^ netdev->features;
5985 5986 5987 5988 5989

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5990
			 NETIF_F_RXCSUM | NETIF_F_RXHASH)))
5991 5992
		return 0;

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
	/*
	 * IP payload checksum (enabled with jumbos/packet-split when Rx
	 * checksum is enabled) and generation of RSS hash is mutually
	 * exclusive in the hardware.
	 */
	if (adapter->rx_ps_pages &&
	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
		return -EINVAL;
	}

	netdev->features = features;

6006 6007 6008 6009 6010 6011 6012 6013
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6014 6015 6016
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6017
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6018
	.ndo_get_stats64	= e1000e_get_stats64,
6019
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6031
	.ndo_set_features = e1000_set_features,
6032 6033
};

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6052 6053
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6054 6055

	static int cards_found;
6056
	u16 aspm_disable_flag = 0;
6057 6058 6059 6060
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6061 6062
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6063
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6064 6065 6066
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6067

6068
	err = pci_enable_device_mem(pdev);
6069 6070 6071 6072
	if (err)
		return err;

	pci_using_dac = 0;
6073
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6074
	if (!err) {
6075
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6076 6077 6078
		if (!err)
			pci_using_dac = 1;
	} else {
6079
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6080
		if (err) {
6081 6082
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6083
			if (err) {
6084
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6085 6086 6087 6088 6089
				goto err_dma;
			}
		}
	}

6090
	err = pci_request_selected_regions_exclusive(pdev,
6091 6092
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6093 6094 6095
	if (err)
		goto err_pci_reg;

6096
	/* AER (Advanced Error Reporting) hooks */
6097
	pci_enable_pcie_error_reporting(pdev);
6098

6099
	pci_set_master(pdev);
6100 6101 6102 6103
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6104 6105 6106 6107 6108 6109 6110 6111

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6112 6113
	netdev->irq = pdev->irq;

6114 6115 6116 6117 6118 6119 6120 6121
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6122
	adapter->flags2 = ei->flags2;
6123 6124
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6125
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6146
	netdev->netdev_ops		= &e1000e_netdev_ops;
6147 6148 6149
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6150
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6151 6152 6153 6154 6155 6156

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6157 6158
	e1000e_check_options(adapter);

6159 6160 6161 6162 6163 6164 6165 6166 6167
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6168
	err = ei->get_variants(adapter);
6169 6170 6171
	if (err)
		goto err_hw_init;

6172 6173 6174 6175
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6176 6177
	hw->mac.ops.get_bus_info(&adapter->hw);

6178
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6179 6180

	/* Copper options */
6181
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6182 6183 6184 6185 6186 6187
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
6188
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6189

6190 6191 6192 6193 6194 6195
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6196
			    NETIF_F_RXHASH |
6197 6198 6199 6200 6201
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
6202 6203 6204 6205

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6206 6207 6208 6209
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6210

6211 6212
	netdev->priv_flags |= IFF_UNICAST_FLT;

6213
	if (pci_using_dac) {
6214
		netdev->features |= NETIF_F_HIGHDMA;
6215 6216
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6217 6218 6219 6220

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6221 6222 6223 6224
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6235
			e_err("The NVM Checksum Is Not Valid\n");
6236 6237 6238 6239 6240
			err = -EIO;
			goto err_eeprom;
		}
	}

6241 6242
	e1000_eeprom_checks(adapter);

6243
	/* copy the MAC address */
6244
	if (e1000e_read_mac_addr(&adapter->hw))
6245
		e_err("NVM Read Error while reading MAC address\n");
6246 6247 6248 6249 6250

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6251
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6252 6253 6254 6255 6256
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6257
	adapter->watchdog_timer.function = e1000_watchdog;
6258 6259 6260
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6261
	adapter->phy_info_timer.function = e1000_update_phy_info;
6262 6263 6264 6265
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6266 6267
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6268
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6269 6270 6271

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6272
	adapter->fc_autoneg = true;
6273 6274
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6289 6290
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6291
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6316
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6317

6318 6319 6320
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6321 6322 6323
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6324 6325
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6326
	 * is up.  For all other cases, let the f/w know that the h/w is now
6327 6328
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6329
	if (!(adapter->flags & FLAG_HAS_AMT))
6330
		e1000e_get_hw_control(adapter);
6331

6332
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6333 6334 6335 6336
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6337 6338 6339
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6340 6341
	e1000_print_device_info(adapter);

6342 6343
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6344

6345 6346 6347
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6348
	if (!(adapter->flags & FLAG_HAS_AMT))
6349
		e1000e_release_hw_control(adapter);
6350 6351 6352
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6353
err_hw_init:
6354 6355 6356
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6357 6358
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6359
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6360
err_flashmap:
6361 6362 6363 6364
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6365 6366
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6386 6387
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6388
	/*
6389 6390
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6391
	 */
6392 6393
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6394 6395 6396
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6397 6398 6399 6400 6401
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6402

6403 6404 6405
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6406 6407 6408
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6409 6410
	unregister_netdev(netdev);

6411 6412
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6413

6414 6415 6416 6417
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6418
	e1000e_release_hw_control(adapter);
6419

6420
	e1000e_reset_interrupt_capability(adapter);
6421 6422 6423 6424 6425 6426
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6427 6428
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6429 6430 6431

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6432
	/* AER disable */
6433
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6434

6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6445
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6446 6447 6448 6449 6450 6451
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6452 6453 6454
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6455

6456 6457 6458 6459
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6460

6461 6462 6463
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6464

6465
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6466
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6467
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6468

6469 6470 6471 6472 6473 6474 6475 6476
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6477

6478 6479 6480 6481 6482 6483 6484
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6485
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6486

6487 6488 6489 6490 6491
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6492
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6493 6494 6495 6496 6497 6498 6499
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6500

6501 6502
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6503
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6504

6505 6506 6507 6508 6509
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6510 6511 6512
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6513
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6514 6515 6516
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6517
#ifdef CONFIG_PM
6518
static const struct dev_pm_ops e1000_pm_ops = {
6519 6520 6521
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6522
};
6523
#endif
6524

6525 6526 6527 6528 6529 6530
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6531
#ifdef CONFIG_PM
6532 6533 6534
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6549 6550
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6551
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6552
	ret = pci_register_driver(&e1000_driver);
6553

6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */