netdev.c 182.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64 65 66 67
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

68 69
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

70 71 72 73
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
74
	[board_82574]		= &e1000_82574_info,
75
	[board_82583]		= &e1000_82583_info,
76 77 78
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
79
	[board_ich10lan]	= &e1000_ich10_info,
80
	[board_pchlan]		= &e1000_pch_info,
81
	[board_pch2lan]		= &e1000_pch2_info,
82 83
};

84 85 86 87 88
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

89 90 91 92 93 94 95 96 97 98 99
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
100 101 102 103 104 105 106 107 108 109 110

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

111
	/* Rx Registers */
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

127
	/* Tx Registers */
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
145
	{0, NULL}
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
171 172
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
173 174 175 176
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
177
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
178 179 180
}

/*
181
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
182 183 184 185 186 187 188 189
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
190
	struct my_u0 {
191 192
		__le64 a;
		__le64 b;
193
	} *u0;
194 195 196
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
197
	union e1000_rx_desc_extended *rx_desc;
198
	struct my_u1 {
199 200 201 202
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
203
	} *u1;
204 205 206 207 208 209 210 211 212
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
213 214 215 216
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
217 218 219 220
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
221
	pr_info(" Register Name   Value\n");
222 223 224 225 226
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

227
	/* Print Tx Ring Summary */
228
	if (!netdev || !netif_running(netdev))
229
		return;
230

231
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
232
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
233
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234 235 236 237 238 239
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
240

241
	/* Print Tx Ring */
242 243 244
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

245
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
274 275 276
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
277
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
278
		const char *next_desc;
279 280 281 282
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
283
			next_desc = " NTC/U";
284
		else if (i == tx_ring->next_to_use)
285
			next_desc = " NTU";
286
		else if (i == tx_ring->next_to_clean)
287
			next_desc = " NTC";
288
		else
289 290 291 292 293 294 295 296 297 298 299
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
300 301 302

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
303 304
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
305 306
	}

307
	/* Print Rx Ring Summary */
308
rx_ring_summary:
309
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
310 311 312
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
313

314
	/* Print Rx Ring */
315
	if (!netif_msg_rx_status(adapter))
316
		return;
317

318
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
335
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
336 337 338 339 340 341 342 343 344 345 346
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
347
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
348
		for (i = 0; i < rx_ring->count; i++) {
349
			const char *next_desc;
350 351 352 353
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
354
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
355 356 357 358 359 360 361 362

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

363 364
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
365 366 367 368 369 370 371
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
372
			} else {
373 374 375 376 377 378 379 380
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
381 382 383 384 385 386 387 388 389 390 391

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
392
		/* Extended Receive Descriptor (Read) Format
393
		 *
394 395 396 397 398
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
399
		 */
400
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
401 402 403 404 405 406 407 408 409 410 411 412 413
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
414
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
415 416

		for (i = 0; i < rx_ring->count; i++) {
417 418
			const char *next_desc;

419
			buffer_info = &rx_ring->buffer_info[i];
420 421 422
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
423 424 425 426 427 428 429 430

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

431 432
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
433 434 435 436 437
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
438
			} else {
439 440 441 442 443 444
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
445 446 447 448 449 450 451 452 453 454

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
455 456 457 458
		}
	}
}

459 460 461 462 463 464 465 466 467 468 469 470
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
471
 * e1000_receive_skb - helper function to handle Rx indications
472 473 474 475 476 477
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
478
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
479
			      u8 status, __le16 vlan)
480
{
J
Jeff Kirsher 已提交
481
	u16 tag = le16_to_cpu(vlan);
482 483
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
484 485 486 487
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
488 489 490
}

/**
491
 * e1000_rx_checksum - Receive Checksum Offload
492 493 494 495
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
496 497
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
498
			      __le16 csum, struct sk_buff *skb)
499 500 501
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
502 503

	skb_checksum_none_assert(skb);
504

505 506 507 508
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

509 510 511
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
529 530 531
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
532 533
		 * and then put the value in host order for further stack use.
		 */
534
		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
A
Al Viro 已提交
535
		skb->csum = csum_unfold(~sum);
536 537 538 539 540
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
555
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

572
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
573
{
574
	struct e1000_adapter *adapter = rx_ring->adapter;
575 576
	struct e1000_hw *hw = &adapter->hw;

577
	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
578 579 580 581 582 583 584
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

585
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
586
{
587
	struct e1000_adapter *adapter = tx_ring->adapter;
588 589
	struct e1000_hw *hw = &adapter->hw;

590
	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
591 592 593 594 595 596 597
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

598
/**
599
 * e1000_alloc_rx_buffers - Replace used receive buffers
600
 * @rx_ring: Rx descriptor ring
601
 **/
602
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
603
				   int cleaned_count, gfp_t gfp)
604
{
605
	struct e1000_adapter *adapter = rx_ring->adapter;
606 607
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
608
	union e1000_rx_desc_extended *rx_desc;
609 610 611
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
612
	unsigned int bufsz = adapter->rx_buffer_len;
613 614 615 616 617 618 619 620 621 622 623

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

624
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
625 626 627 628 629 630 631 632
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
633
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
634
						  adapter->rx_buffer_len,
635 636
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
637
			dev_err(&pdev->dev, "Rx DMA map failed\n");
638 639 640 641
			adapter->rx_dma_failed++;
			break;
		}

642 643
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
644

645 646 647 648 649 650 651 652
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
653
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
654
				e1000e_update_rdt_wa(rx_ring, i);
655
			else
656
				writel(i, rx_ring->tail);
657
		}
658 659 660 661 662 663
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

664
	rx_ring->next_to_use = i;
665 666 667 668
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
669
 * @rx_ring: Rx descriptor ring
670
 **/
671
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
672
				      int cleaned_count, gfp_t gfp)
673
{
674
	struct e1000_adapter *adapter = rx_ring->adapter;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
690 691 692
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
693 694
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
695 696 697
				continue;
			}
			if (!ps_page->page) {
698
				ps_page->page = alloc_page(gfp);
699
				if (!ps_page->page) {
A
Auke Kok 已提交
700 701 702
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
703 704 705 706 707 708
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
709
					dev_err(&adapter->pdev->dev,
710
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
711 712
					adapter->rx_dma_failed++;
					goto no_buffers;
713 714
				}
			}
A
Auke Kok 已提交
715 716 717 718 719
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
720 721
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
722 723
		}

724 725 726
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
727 728 729 730 731 732 733

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
734
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
735
						  adapter->rx_ps_bsize0,
736 737
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
738
			dev_err(&pdev->dev, "Rx DMA map failed\n");
739 740 741 742 743 744 745 746 747
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

748 749 750 751 752 753 754 755
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
756
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
757
				e1000e_update_rdt_wa(rx_ring, i << 1);
758
			else
759
				writel(i << 1, rx_ring->tail);
760 761
		}

762 763 764 765 766 767 768
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
769
	rx_ring->next_to_use = i;
770 771
}

772 773
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
774
 * @rx_ring: Rx descriptor ring
775 776 777
 * @cleaned_count: number of buffers to allocate this pass
 **/

778
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
779
					 int cleaned_count, gfp_t gfp)
780
{
781
	struct e1000_adapter *adapter = rx_ring->adapter;
782 783
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
784
	union e1000_rx_desc_extended *rx_desc;
785 786 787
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
788
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
789 790 791 792 793 794 795 796 797 798 799

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

800
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
801 802 803 804 805 806 807 808 809 810
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
811
			buffer_info->page = alloc_page(gfp);
812 813 814 815 816 817 818
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
819
			buffer_info->dma = dma_map_page(&pdev->dev,
820 821
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
822
							DMA_FROM_DEVICE);
823

824 825
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
842
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
843
			e1000e_update_rdt_wa(rx_ring, i);
844
		else
845
			writel(i, rx_ring->tail);
846 847 848
	}
}

849 850 851 852 853 854 855
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

856
/**
857 858
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
859 860 861 862
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
863 864
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
865
{
866
	struct e1000_adapter *adapter = rx_ring->adapter;
867 868
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
869
	struct e1000_hw *hw = &adapter->hw;
870
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
871
	struct e1000_buffer *buffer_info, *next_buffer;
872
	u32 length, staterr;
873 874
	unsigned int i;
	int cleaned_count = 0;
875
	bool cleaned = false;
876 877 878
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
879 880
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
881 882
	buffer_info = &rx_ring->buffer_info[i];

883
	while (staterr & E1000_RXD_STAT_DD) {
884 885 886 887 888
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
889
		rmb();	/* read descriptor and rx_buffer_info after status DD */
890 891 892 893 894 895 896 897 898

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
899
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
900 901 902 903
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

904
		cleaned = true;
905
		cleaned_count++;
906
		dma_unmap_single(&pdev->dev,
907 908
				 buffer_info->dma,
				 adapter->rx_buffer_len,
909
				 DMA_FROM_DEVICE);
910 911
		buffer_info->dma = 0;

912
		length = le16_to_cpu(rx_desc->wb.upper.length);
913

914 915 916 917 918 919 920
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
921
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
922 923 924
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
925
			/* All receives must fit into a single buffer */
926
			e_dbg("Receive packet consumed multiple buffers\n");
927 928
			/* recycle */
			buffer_info->skb = skb;
929
			if (staterr & E1000_RXD_STAT_EOP)
930
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
931 932 933
			goto next_desc;
		}

B
Ben Greear 已提交
934 935
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
936 937 938 939 940
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
941
		/* adjust length to remove Ethernet CRC */
B
Ben Greear 已提交
942 943 944 945 946 947 948 949 950 951
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			/* If configured to store CRC, don't subtract FCS,
			 * but keep the FCS bytes out of the total_rx_bytes
			 * counter
			 */
			if (netdev->features & NETIF_F_RXFCS)
				total_rx_bytes -= 4;
			else
				length -= 4;
		}
J
Jeff Kirsher 已提交
952

953 954 955
		total_rx_bytes += length;
		total_rx_packets++;

956 957
		/*
		 * code added for copybreak, this should improve
958
		 * performance for small packets with large amounts
959 960
		 * of reassembly being done in the stack
		 */
961 962
		if (length < copybreak) {
			struct sk_buff *new_skb =
963
			    netdev_alloc_skb_ip_align(netdev, length);
964
			if (new_skb) {
965 966 967 968 969 970
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
971 972 973 974 975 976 977 978 979 980
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
981
		e1000_rx_checksum(adapter, staterr,
982
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
983

984 985
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

986 987
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
988 989

next_desc:
990
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
991 992 993

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
994
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
995
					      GFP_ATOMIC);
996 997 998 999 1000 1001
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1002 1003

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1004 1005 1006 1007 1008
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1009
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1010 1011

	adapter->total_rx_bytes += total_rx_bytes;
1012
	adapter->total_rx_packets += total_rx_packets;
1013 1014 1015
	return cleaned;
}

1016 1017
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
1018
{
1019 1020
	struct e1000_adapter *adapter = tx_ring->adapter;

1021 1022
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1023 1024
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1025
		else
1026 1027
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1028 1029
		buffer_info->dma = 0;
	}
1030 1031 1032 1033
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1034
	buffer_info->time_stamp = 0;
1035 1036
}

1037
static void e1000_print_hw_hang(struct work_struct *work)
1038
{
1039 1040 1041
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1042
	struct net_device *netdev = adapter->netdev;
1043 1044 1045 1046
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1047 1048 1049 1050
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1051 1052 1053
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
		/* May be block on write-back, flush and detect again
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1069 1070 1071
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1072

1073 1074 1075 1076
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1077 1078 1079 1080 1081 1082 1083 1084
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1085 1086 1087 1088 1089 1090
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1091 1092
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1093 1094 1095 1096 1097
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1098 1099 1100 1101 1102 1103
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1104 1105 1106 1107
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1108
 * @tx_ring: Tx descriptor ring
1109 1110 1111 1112
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1113
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1114
{
1115
	struct e1000_adapter *adapter = tx_ring->adapter;
1116 1117 1118 1119 1120 1121 1122
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1123
	unsigned int bytes_compl = 0, pkts_compl = 0;
1124 1125 1126 1127 1128

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1129 1130
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1131
		bool cleaned = false;
1132
		rmb(); /* read buffer_info after eop_desc */
1133
		for (; !cleaned; count++) {
1134 1135 1136 1137 1138
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1139 1140
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1141 1142 1143 1144
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1145 1146
			}

1147
			e1000_put_txbuf(tx_ring, buffer_info);
1148 1149 1150 1151 1152 1153 1154
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1155 1156
		if (i == tx_ring->next_to_use)
			break;
1157 1158 1159 1160 1161 1162
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1163 1164
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1165
#define TX_WAKE_THRESHOLD 32
1166 1167
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1181 1182 1183 1184
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1185
		adapter->detect_tx_hung = false;
1186 1187
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1188
			       + (adapter->tx_timeout_factor * HZ)) &&
1189
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1190
			schedule_work(&adapter->print_hang_task);
1191 1192
		else
			adapter->tx_hang_recheck = false;
1193 1194 1195
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1196
	return count < tx_ring->count;
1197 1198 1199 1200
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1201
 * @rx_ring: Rx descriptor ring
1202 1203 1204 1205
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1206 1207
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1208
{
1209
	struct e1000_adapter *adapter = rx_ring->adapter;
1210
	struct e1000_hw *hw = &adapter->hw;
1211 1212 1213 1214 1215 1216 1217 1218 1219
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1220
	bool cleaned = false;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1233
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1246
		cleaned = true;
1247
		cleaned_count++;
1248
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1249
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1250 1251
		buffer_info->dma = 0;

1252
		/* see !EOP comment in other Rx routine */
1253 1254 1255 1256
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1257
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1258
			dev_kfree_skb_irq(skb);
1259 1260
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1261 1262 1263
			goto next_desc;
		}

B
Ben Greear 已提交
1264 1265
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
1266 1267 1268 1269 1270 1271 1272
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1273
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1274 1275 1276 1277 1278 1279 1280 1281
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1282 1283 1284 1285 1286
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1287

1288
			/*
1289 1290 1291 1292
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1293
			 */
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
1309
				vaddr = kmap_atomic(ps_page->page);
1310
				memcpy(skb_tail_pointer(skb), vaddr, l1);
1311
				kunmap_atomic(vaddr);
1312 1313 1314 1315 1316 1317
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
B
Ben Greear 已提交
1318 1319 1320 1321
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
					if (!(netdev->features & NETIF_F_RXFCS))
						l1 -= 4;
				}
1322 1323 1324 1325

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1326 1327 1328 1329 1330 1331 1332
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1333
			ps_page = &buffer_info->ps_pages[j];
1334 1335
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1336 1337 1338 1339 1340
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1341
			skb->truesize += PAGE_SIZE;
1342 1343
		}

J
Jeff Kirsher 已提交
1344 1345 1346
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
B
Ben Greear 已提交
1347 1348 1349 1350
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			if (!(netdev->features & NETIF_F_RXFCS))
				pskb_trim(skb, skb->len - 4);
		}
J
Jeff Kirsher 已提交
1351

1352 1353 1354 1355
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1356 1357
		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1358

1359 1360
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1374
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1375
					      GFP_ATOMIC);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1389
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1390 1391

	adapter->total_rx_bytes += total_rx_bytes;
1392
	adapter->total_rx_packets += total_rx_packets;
1393 1394 1395
	return cleaned;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1405
	skb->truesize += PAGE_SIZE;
1406 1407 1408 1409 1410 1411 1412 1413 1414
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1415 1416
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1417
{
1418
	struct e1000_adapter *adapter = rx_ring->adapter;
1419 1420
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1421
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1422
	struct e1000_buffer *buffer_info, *next_buffer;
1423
	u32 length, staterr;
1424 1425 1426 1427 1428 1429
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1430 1431
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1432 1433
	buffer_info = &rx_ring->buffer_info[i];

1434
	while (staterr & E1000_RXD_STAT_DD) {
1435 1436 1437 1438 1439
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1440
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1441 1442 1443 1444 1445 1446 1447

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1448
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1449 1450 1451 1452 1453 1454
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1455 1456
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1457 1458
		buffer_info->dma = 0;

1459
		length = le16_to_cpu(rx_desc->wb.upper.length);
1460 1461

		/* errors is only valid for DD + EOP descriptors */
1462
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
B
Ben Greear 已提交
1463 1464
			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			      !(netdev->features & NETIF_F_RXALL)))) {
1465 1466 1467 1468 1469 1470 1471
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1472 1473
		}

1474
#define rxtop (rx_ring->rx_skb_top)
1475
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
1510
					vaddr = kmap_atomic(buffer_info->page);
1511 1512
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
1513
					kunmap_atomic(vaddr);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1528
		e1000_rx_checksum(adapter, staterr,
1529
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1530

1531 1532
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1533 1534 1535 1536 1537 1538
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1539
			e_err("pskb_may_pull failed.\n");
1540
			dev_kfree_skb_irq(skb);
1541 1542 1543
			goto next_desc;
		}

1544 1545
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1546 1547

next_desc:
1548
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1549 1550 1551

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1552
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1553
					      GFP_ATOMIC);
1554 1555 1556 1557 1558 1559
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1560 1561

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1562 1563 1564 1565 1566
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1567
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1568 1569 1570 1571 1572 1573

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1574 1575
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1576
 * @rx_ring: Rx descriptor ring
1577
 **/
1578
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1579
{
1580
	struct e1000_adapter *adapter = rx_ring->adapter;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1591
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1592
						 adapter->rx_buffer_len,
1593
						 DMA_FROM_DEVICE);
1594
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1595
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1596
				               PAGE_SIZE,
1597
					       DMA_FROM_DEVICE);
1598
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1599
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1600
						 adapter->rx_ps_bsize0,
1601
						 DMA_FROM_DEVICE);
1602 1603 1604
			buffer_info->dma = 0;
		}

1605 1606 1607 1608 1609
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1610 1611 1612 1613 1614 1615
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1616
			ps_page = &buffer_info->ps_pages[j];
1617 1618
			if (!ps_page->page)
				break;
1619 1620
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1638
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1639

1640 1641
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
1642 1643
}

1644 1645 1646 1647 1648
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1649 1650 1651
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1652 1653 1654
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1667 1668 1669
	/*
	 * read ICR disables interrupts using IAM
	 */
1670

1671
	if (icr & E1000_ICR_LSC) {
1672
		hw->mac.get_link_status = true;
1673 1674 1675 1676
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1677 1678
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1679
			schedule_work(&adapter->downshift_task);
1680

1681 1682
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1683
		 * link down event; disable receives here in the ISR and reset
1684 1685
		 * adapter in watchdog
		 */
1686 1687 1688 1689 1690
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1691
			adapter->flags |= FLAG_RX_RESTART_NOW;
1692 1693 1694 1695 1696 1697
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1698
	if (napi_schedule_prep(&adapter->napi)) {
1699 1700 1701 1702
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1703
		__napi_schedule(&adapter->napi);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1720

1721
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1722 1723
		return IRQ_NONE;  /* Not our interrupt */

1724 1725 1726 1727
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1728 1729 1730
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1731 1732 1733 1734 1735
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1736

1737
	if (icr & E1000_ICR_LSC) {
1738
		hw->mac.get_link_status = true;
1739 1740 1741 1742
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1743 1744
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1745
			schedule_work(&adapter->downshift_task);
1746

1747 1748
		/*
		 * 80003ES2LAN workaround--
1749 1750 1751 1752 1753 1754 1755 1756 1757
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1758
			adapter->flags |= FLAG_RX_RESTART_NOW;
1759 1760 1761 1762 1763 1764
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1765
	if (napi_schedule_prep(&adapter->napi)) {
1766 1767 1768 1769
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1770
		__napi_schedule(&adapter->napi);
1771 1772 1773 1774 1775
	}

	return IRQ_HANDLED;
}

1776 1777 1778 1779 1780 1781 1782 1783
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1784 1785
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1786 1787 1788 1789 1790 1791 1792 1793 1794
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
1795
		hw->mac.get_link_status = true;
1796 1797 1798 1799 1800 1801
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1802 1803
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1820
	if (!e1000_clean_tx_irq(tx_ring))
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1831
	struct e1000_ring *rx_ring = adapter->rx_ring;
1832 1833 1834 1835

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1836 1837 1838 1839
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1840 1841
	}

1842
	if (napi_schedule_prep(&adapter->napi)) {
1843 1844
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1845
		__napi_schedule(&adapter->napi);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1879
		       rx_ring->itr_register);
1880
	else
1881
		writel(1, rx_ring->itr_register);
1882 1883 1884 1885 1886 1887 1888
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1889
		       tx_ring->itr_register);
1890
	else
1891
		writel(1, tx_ring->itr_register);
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1942
	int i;
1943 1944 1945 1946

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1947 1948
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1949 1950 1951
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1952
				for (i = 0; i < adapter->num_vectors; i++)
1953 1954 1955 1956
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1957
						      adapter->num_vectors);
B
Bruce Allan 已提交
1958
				if (err == 0)
1959 1960 1961
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1962
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1963 1964 1965 1966 1967 1968 1969 1970 1971
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1972
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1973 1974 1975 1976 1977 1978
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1979 1980 1981

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1996 1997 1998
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1999 2000 2001
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2002
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2003 2004
			  netdev);
	if (err)
2005
		return err;
2006 2007
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2008 2009 2010 2011
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2012 2013 2014
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
2015 2016 2017
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2018
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2019 2020
			  netdev);
	if (err)
2021
		return err;
2022 2023
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2024 2025 2026 2027
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2028
			  e1000_msix_other, 0, netdev->name, netdev);
2029
	if (err)
2030
		return err;
2031 2032

	e1000_configure_msix(adapter);
2033

2034 2035 2036
	return 0;
}

2037 2038 2039 2040 2041 2042
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2043 2044 2045 2046 2047
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2048 2049 2050 2051 2052 2053 2054 2055
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2056
	}
2057
	if (adapter->flags & FLAG_MSI_ENABLED) {
2058
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2059 2060 2061
				  netdev->name, netdev);
		if (!err)
			return err;
2062

2063 2064 2065
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2066 2067
	}

2068
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2069 2070 2071 2072
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2073 2074 2075 2076 2077 2078 2079
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2092
	}
2093 2094

	free_irq(adapter->pdev->irq, netdev);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2105 2106
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2107
	e1e_flush();
2108 2109 2110 2111 2112 2113 2114 2115

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2116 2117 2118 2119 2120 2121 2122 2123 2124
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2125 2126 2127 2128 2129 2130
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2131
	e1e_flush();
2132 2133 2134
}

/**
2135
 * e1000e_get_hw_control - get control of the h/w from f/w
2136 2137
 * @adapter: address of board private structure
 *
2138
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2139 2140 2141 2142
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2143
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2155
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2156 2157 2158 2159
	}
}

/**
2160
 * e1000e_release_hw_control - release control of the h/w to f/w
2161 2162
 * @adapter: address of board private structure
 *
2163
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2164 2165 2166 2167 2168
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2169
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2181
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2203
 * @tx_ring: Tx descriptor ring
2204 2205 2206
 *
 * Return 0 on success, negative on failure
 **/
2207
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2208
{
2209
	struct e1000_adapter *adapter = tx_ring->adapter;
2210 2211 2212
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2213
	tx_ring->buffer_info = vzalloc(size);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2231
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2232 2233 2234 2235 2236
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2237
 * @rx_ring: Rx descriptor ring
2238 2239 2240
 *
 * Returns 0 on success, negative on failure
 **/
2241
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2242
{
2243
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2244 2245
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2246 2247

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2248
	rx_ring->buffer_info = vzalloc(size);
2249 2250 2251
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2252 2253 2254 2255 2256 2257 2258 2259
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2260 2261 2262 2263 2264 2265 2266 2267 2268

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2269
		goto err_pages;
2270 2271 2272 2273 2274 2275

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2276 2277 2278 2279 2280 2281

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2282 2283
err:
	vfree(rx_ring->buffer_info);
2284
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2285 2286 2287 2288 2289
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2290
 * @tx_ring: Tx descriptor ring
2291
 **/
2292
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2293
{
2294
	struct e1000_adapter *adapter = tx_ring->adapter;
2295 2296 2297 2298 2299 2300
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2301
		e1000_put_txbuf(tx_ring, buffer_info);
2302 2303
	}

2304
	netdev_reset_queue(adapter->netdev);
2305 2306 2307 2308 2309 2310 2311 2312
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2313 2314
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2315 2316 2317 2318
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2319
 * @tx_ring: Tx descriptor ring
2320 2321 2322
 *
 * Free all transmit software resources
 **/
2323
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2324
{
2325
	struct e1000_adapter *adapter = tx_ring->adapter;
2326 2327
	struct pci_dev *pdev = adapter->pdev;

2328
	e1000_clean_tx_ring(tx_ring);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2340
 * @rx_ring: Rx descriptor ring
2341 2342 2343
 *
 * Free all receive software resources
 **/
2344
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2345
{
2346
	struct e1000_adapter *adapter = rx_ring->adapter;
2347
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2348
	int i;
2349

2350
	e1000_clean_rx_ring(rx_ring);
2351

B
Bruce Allan 已提交
2352
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2353 2354
		kfree(rx_ring->buffer_info[i].ps_pages);

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2365 2366 2367 2368 2369
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2370 2371 2372 2373 2374 2375
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2376 2377
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2378 2379 2380 2381 2382 2383 2384 2385
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
2386
		return itr_setting;
2387 2388 2389 2390 2391 2392

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2393
		else if ((packets < 5) && (bytes > 512))
2394 2395 2396 2397 2398
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2399
			if (bytes/packets > 8000)
2400
				retval = bulk_latency;
B
Bruce Allan 已提交
2401
			else if ((packets < 10) || ((bytes/packets) > 1200))
2402
				retval = bulk_latency;
B
Bruce Allan 已提交
2403
			else if ((packets > 35))
2404 2405 2406 2407 2408 2409 2410 2411 2412
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2413
			if (packets > 35)
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2437 2438 2439 2440 2441
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2477 2478
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2479
		 * by adding intermediate steps when interrupt rate is
2480 2481
		 * increasing
		 */
2482 2483 2484 2485
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2486 2487 2488 2489
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2490 2491 2492 2493
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2494 2495 2496
	}
}

2497 2498 2499 2500 2501 2502
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2503 2504 2505
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2506 2507
	if (!adapter->tx_ring)
		goto err;
2508 2509
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2510

2511
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2512 2513
	if (!adapter->rx_ring)
		goto err;
2514 2515
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2516 2517 2518 2519 2520 2521 2522 2523 2524

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2525 2526
/**
 * e1000_clean - NAPI Rx polling callback
2527
 * @napi: struct associated with this polling callback
2528
 * @budget: amount of packets driver is allowed to process this poll
2529 2530 2531 2532
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2533
	struct e1000_hw *hw = &adapter->hw;
2534
	struct net_device *poll_dev = adapter->netdev;
2535
	int tx_cleaned = 1, work_done = 0;
2536

2537
	adapter = netdev_priv(poll_dev);
2538

2539 2540 2541 2542
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2543
	tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2544

2545
clean_rx:
2546
	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2547

2548
	if (!tx_cleaned)
2549
		work_done = budget;
2550

2551 2552
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2553 2554
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2555
		napi_complete(napi);
2556 2557 2558 2559 2560 2561
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2562 2563 2564 2565 2566
	}

	return work_done;
}

2567
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2568 2569 2570 2571 2572 2573 2574 2575 2576
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2577
		return 0;
2578

2579
	/* add VID to filter table */
2580 2581 2582 2583 2584 2585
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2586 2587

	set_bit(vid, adapter->active_vlans);
2588 2589

	return 0;
2590 2591
}

2592
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2593 2594 2595 2596 2597 2598 2599 2600 2601
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2602
		e1000e_release_hw_control(adapter);
2603
		return 0;
2604 2605 2606
	}

	/* remove VID from filter table */
2607 2608 2609 2610 2611 2612
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2613 2614

	clear_bit(vid, adapter->active_vlans);
2615 2616

	return 0;
2617 2618
}

J
Jeff Kirsher 已提交
2619 2620 2621 2622 2623
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2624 2625
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2626 2627
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2628

J
Jeff Kirsher 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2638 2639 2640 2641
		}
	}
}

J
Jeff Kirsher 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2659

J
Jeff Kirsher 已提交
2660 2661 2662 2663 2664
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2665 2666
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2667
	u32 ctrl;
2668

J
Jeff Kirsher 已提交
2669 2670 2671 2672 2673
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2674

J
Jeff Kirsher 已提交
2675 2676 2677 2678 2679 2680 2681 2682
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2683

J
Jeff Kirsher 已提交
2684 2685 2686 2687 2688
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2689

J
Jeff Kirsher 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2700 2701
	}

J
Jeff Kirsher 已提交
2702 2703
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2704 2705 2706 2707 2708 2709
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2710
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2711

J
Jeff Kirsher 已提交
2712
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2713 2714 2715
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2716
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2717 2718
{
	struct e1000_hw *hw = &adapter->hw;
2719
	u32 manc, manc2h, mdef, i, j;
2720 2721 2722 2723 2724 2725

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2726 2727
	/*
	 * enable receiving management packets to the host. this will probably
2728
	 * generate destination unreachable messages from the host OS, but
2729 2730
	 * the packets will be handled on SMBUS
	 */
2731 2732
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2748
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2776 2777 2778 2779 2780
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2781
 * e1000_configure_tx - Configure Transmit Unit after Reset
2782 2783 2784 2785 2786 2787 2788 2789 2790
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2791
	u32 tdlen, tarc;
2792 2793 2794 2795

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2796
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2797 2798 2799 2800
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
2801 2802
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2803 2804 2805

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2806
	/* Tx irq moderation */
2807 2808
	ew32(TADV, adapter->tx_abs_int_delay);

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2821
		 * there are Tx hangs or other Tx related bugs
2822 2823 2824 2825
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2826 2827
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2828

2829
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2830
		tarc = er32(TARC(0));
2831 2832 2833 2834
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2835 2836
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2837
		ew32(TARC(0), tarc);
2838 2839 2840 2841
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2842
		tarc = er32(TARC(0));
2843
		tarc |= 1;
2844 2845
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2846
		tarc |= 1;
2847
		ew32(TARC(1), tarc);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2860
	hw->mac.ops.config_collision_dist(hw);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2875 2876 2877 2878 2879 2880 2881 2882
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2883 2884 2885

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2886 2887
	}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2904 2905 2906 2907 2908 2909
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2948 2949 2950 2951
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2968
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2969
		adapter->rx_ps_pages = pages;
2970 2971
	else
		adapter->rx_ps_pages = 0;
2972 2973

	if (adapter->rx_ps_pages) {
2974 2975
		u32 psrctl = 0;

2976 2977 2978 2979
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2980 2981 2982
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2983 2984
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

B
Ben Greear 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3021
	ew32(RFCTL, rfctl);
3022
	ew32(RCTL, rctl);
3023 3024
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3043
		    sizeof(union e1000_rx_desc_packet_split);
3044 3045
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3046
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3047
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3048 3049
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3050
	} else {
3051
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3052 3053 3054 3055 3056 3057
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3058 3059
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3060
	e1e_flush();
3061
	usleep_range(10000, 20000);
3062

3063 3064 3065 3066
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3067
		 * enable prefetching of 0x20 Rx descriptors
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3086 3087 3088 3089 3090
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3091
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3092
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3093 3094 3095 3096 3097 3098 3099 3100

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3101 3102 3103 3104
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3105
	rdba = rx_ring->dma;
3106
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3107 3108 3109 3110
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
3111 3112
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3113 3114 3115

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3116
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3117 3118
		rxcsum |= E1000_RXCSUM_TUOFL;

3119 3120 3121 3122
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3123 3124 3125 3126 3127 3128 3129 3130
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3131 3132 3133 3134 3135
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3136 3137 3138
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3139
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3140
		} else {
3141 3142
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3143
		}
3144
	}
3145 3146 3147 3148 3149 3150

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3151 3152
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3153
 *
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3191
 *
3192 3193 3194 3195
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3196
 **/
3197
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3198
{
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3238 3239 3240
}

/**
3241
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3242 3243
 * @netdev: network interface device structure
 *
3244 3245 3246
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3247 3248
 * promiscuous mode, and all-multi behavior.
 **/
3249
static void e1000e_set_rx_mode(struct net_device *netdev)
3250 3251 3252 3253 3254 3255 3256 3257
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3258 3259 3260
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3261 3262
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3263 3264
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3265
	} else {
3266
		int count;
3267

3268 3269 3270
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3271 3272 3273 3274 3275 3276 3277 3278
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3279
		}
J
Jeff Kirsher 已提交
3280
		e1000e_vlan_filter_enable(adapter);
3281
		/*
3282 3283 3284
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3285
		 */
3286 3287 3288
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3289
	}
J
Jeff Kirsher 已提交
3290

3291 3292
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3293 3294 3295 3296
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3297 3298
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3335
/**
3336
 * e1000_configure - configure the hardware for Rx and Tx
3337 3338 3339 3340
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3341 3342
	struct e1000_ring *rx_ring = adapter->rx_ring;

3343
	e1000e_set_rx_mode(adapter->netdev);
3344 3345

	e1000_restore_vlan(adapter);
3346
	e1000_init_manageability_pt(adapter);
3347 3348

	e1000_configure_tx(adapter);
3349 3350 3351

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3352 3353
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3354
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3367 3368
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3369 3370 3371 3372 3373 3374 3375

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3376 3377
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3378 3379 3380 3381
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3382
	if (adapter->wol)
3383 3384
		return;

3385 3386
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3387 3388 3389 3390 3391 3392 3393 3394
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3395
 * properly configured for Rx, Tx etc.
3396 3397 3398 3399
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3400
	struct e1000_fc_info *fc = &adapter->hw.fc;
3401 3402
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3403
	u32 pba = adapter->pba;
3404 3405
	u16 hwm;

3406
	/* reset Packet Buffer Allocation to default */
3407
	ew32(PBA, pba);
3408

3409
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3410 3411
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3412 3413 3414 3415
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3416 3417
		 * expressed in KB.
		 */
3418
		pba = er32(PBA);
3419
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3420
		tx_space = pba >> 16;
3421
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3422
		pba &= 0xffff;
3423
		/*
3424
		 * the Tx fifo also stores 16 bytes of information about the Tx
3425
		 * but don't include ethernet FCS because hardware appends it
3426 3427
		 */
		min_tx_space = (adapter->max_frame_size +
3428 3429 3430 3431 3432
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3433
		min_rx_space = adapter->max_frame_size;
3434 3435 3436
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3437 3438
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3439
		 * and the min Tx FIFO size is less than the current Rx FIFO
3440 3441
		 * allocation, take space away from current Rx allocation
		 */
3442 3443 3444
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3445

3446
			/*
3447
			 * if short on Rx space, Rx wins and must trump Tx
3448 3449
			 * adjustment or use Early Receive if available
			 */
3450
			if (pba < min_rx_space)
3451
				pba = min_rx_space;
3452
		}
3453 3454

		ew32(PBA, pba);
3455 3456
	}

3457 3458 3459
	/*
	 * flow control settings
	 *
3460
	 * The high water mark must be low enough to fit one full frame
3461 3462 3463
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3464
	 * - the full Rx FIFO size minus one full frame
3465
	 */
3466 3467 3468 3469
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
3470
	fc->send_xon = true;
3471 3472 3473
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3484
	default:
3485 3486
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3487 3488 3489 3490 3491

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3503
		fc->refresh_time = 0x1000;
3504 3505 3506 3507 3508 3509
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3510 3511 3512 3513
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3514
		break;
3515
	}
3516

3517 3518
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3519
	 * fit in receive buffer.
3520 3521
	 */
	if (adapter->itr_setting & 0x3) {
3522
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3538 3539
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3540 3541 3542 3543 3544

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3545
	if (adapter->flags & FLAG_HAS_AMT)
3546
		e1000e_get_hw_control(adapter);
3547

3548 3549 3550
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3551
		e_err("Hardware Error\n");
3552 3553 3554 3555 3556 3557 3558

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3559 3560 3561 3562 3563 3564 3565

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3566 3567
	e1000_get_phy_info(hw);

3568 3569
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3570
		u16 phy_data = 0;
3571 3572
		/*
		 * speed up time to link by disabling smart power down, ignore
3573
		 * the return value of this function because there is nothing
3574 3575
		 * different we would do if it failed
		 */
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3591 3592
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3593 3594
	e1000_irq_enable(adapter);

3595
	netif_start_queue(adapter->netdev);
3596

3597
	/* fire a link change interrupt to start the watchdog */
3598 3599 3600 3601 3602
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3603 3604 3605
	return 0;
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3621 3622
static void e1000e_update_stats(struct e1000_adapter *adapter);

3623 3624 3625 3626 3627 3628
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3629 3630 3631 3632
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3633 3634 3635 3636
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3637 3638
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3639 3640
	/* flush and sleep below */

3641
	netif_stop_queue(netdev);
3642 3643 3644 3645 3646

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3647

3648 3649
	/* flush both disables and wait for them to finish */
	e1e_flush();
3650
	usleep_range(10000, 20000);
3651 3652 3653 3654 3655 3656 3657

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3658 3659 3660 3661 3662

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3663
	e1000e_flush_descriptors(adapter);
3664 3665
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3666

3667 3668 3669
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3670 3671
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3672

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3683
		usleep_range(1000, 2000);
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3703 3704
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3705 3706
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3707

J
Jeff Kirsher 已提交
3708 3709
	spin_lock_init(&adapter->stats64_lock);

3710
	e1000e_set_interrupt_capability(adapter);
3711

3712 3713
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3714 3715 3716 3717 3718 3719 3720 3721

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3734
	e_dbg("icr is %08X\n", icr);
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3761
	e1000e_reset_interrupt_capability(adapter);
3762 3763 3764 3765 3766 3767 3768 3769 3770

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3771
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3792
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3793
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3794
	} else {
3795
		e_dbg("MSI interrupt test succeeded!\n");
3796
	}
3797 3798 3799 3800 3801

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3802
	e1000e_set_interrupt_capability(adapter);
3803
	return e1000_request_irq(adapter);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3822 3823 3824
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3825 3826 3827

	err = e1000_test_msi_interrupt(adapter);

3828 3829 3830 3831 3832 3833
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3834 3835 3836 3837

	return err;
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3854
	struct pci_dev *pdev = adapter->pdev;
3855 3856 3857 3858 3859 3860
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3861 3862
	pm_runtime_get_sync(&pdev->dev);

3863 3864
	netif_carrier_off(netdev);

3865
	/* allocate transmit descriptors */
3866
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3867 3868 3869 3870
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3871
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3872 3873 3874
	if (err)
		goto err_setup_rx;

3875 3876 3877 3878 3879
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3880
		e1000e_get_hw_control(adapter);
3881 3882 3883
		e1000e_reset(adapter);
	}

3884 3885 3886 3887 3888 3889 3890
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3891 3892
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3893 3894 3895
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3896

3897 3898
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3899 3900
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3901 3902
	 * clean_rx handler before we do so.
	 */
3903 3904 3905 3906 3907 3908
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3909 3910 3911 3912 3913
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3914
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3915 3916 3917 3918 3919 3920 3921
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3922 3923 3924 3925 3926 3927 3928
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3929
	adapter->tx_hang_recheck = false;
3930
	netif_start_queue(netdev);
3931

3932 3933 3934
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3935
	/* fire a link status change interrupt to start the watchdog */
3936 3937 3938 3939
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3940 3941 3942 3943

	return 0;

err_req_irq:
3944
	e1000e_release_hw_control(adapter);
3945
	e1000_power_down_phy(adapter);
3946
	e1000e_free_rx_resources(adapter->rx_ring);
3947
err_setup_rx:
3948
	e1000e_free_tx_resources(adapter->tx_ring);
3949 3950
err_setup_tx:
	e1000e_reset(adapter);
3951
	pm_runtime_put_sync(&pdev->dev);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3970
	struct pci_dev *pdev = adapter->pdev;
3971 3972

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3973 3974 3975

	pm_runtime_get_sync(&pdev->dev);

3976 3977
	napi_disable(&adapter->napi);

3978 3979 3980 3981
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3982 3983
	e1000_power_down_phy(adapter);

3984 3985
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
3986

3987 3988 3989 3990
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3991 3992
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3993 3994
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3995 3996 3997 3998
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3999 4000 4001
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
4002

4003
	if (adapter->hw.mac.type == e1000_pch2lan)
4004
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4005

4006 4007
	pm_runtime_put_sync(&pdev->dev);

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4034 4035
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4036 4037 4038 4039
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4040 4041
		 * RAR[14]
		 */
4042 4043 4044 4045 4046 4047 4048 4049
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4062 4063 4064 4065

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4066 4067 4068
	e1000_get_phy_info(&adapter->hw);
}

4069 4070 4071 4072
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4073 4074 4075
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4076 4077 4078 4079

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4080
	schedule_work(&adapter->update_phy_task);
4081 4082
}

4083 4084 4085
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4086 4087
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4103
	hw->phy.addr = 1;
4104 4105 4106 4107
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4108 4109 4110
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4111 4112 4113 4114 4115
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4116 4117
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4118 4119 4120 4121
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4122 4123
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4124 4125 4126 4127
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4128 4129
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4130 4131 4132 4133
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4134 4135
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4136 4137 4138 4139
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4140 4141
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4142 4143 4144 4145
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4146 4147
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4148 4149 4150 4151
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4152 4153
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4154 4155 4156 4157 4158 4159 4160
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4161 4162 4163 4164
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4165
static void e1000e_update_stats(struct e1000_adapter *adapter)
4166
{
4167
	struct net_device *netdev = adapter->netdev;
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4182 4183
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4184 4185 4186 4187 4188
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4208
	}
4209

4210 4211 4212 4213 4214
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4215 4216
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4235 4236
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4237 4238 4239

	/* Rx Errors */

4240 4241 4242 4243
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4244
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4245 4246 4247
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4248
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4249
					      adapter->stats.roc;
4250 4251 4252
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4253 4254

	/* Tx Errors */
4255
	netdev->stats.tx_errors = adapter->stats.ecol +
4256
				       adapter->stats.latecol;
4257 4258 4259
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4260 4261 4262 4263 4264 4265 4266 4267 4268

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4280 4281
		int ret_val;

4282 4283 4284 4285 4286 4287 4288 4289 4290
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4291
			e_warn("Error reading PHY register\n");
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4311 4312 4313 4314 4315
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4316
	/* Link status message must follow this format for user tools */
4317 4318 4319 4320 4321 4322 4323
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4324 4325
}

4326
static bool e1000e_has_link(struct e1000_adapter *adapter)
4327 4328
{
	struct e1000_hw *hw = &adapter->hw;
4329
	bool link_active = false;
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4344
			link_active = true;
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4363
		e_info("Gigabit has been disabled, downgrading speed\n");
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4420
	struct e1000_phy_info *phy = &adapter->hw.phy;
4421 4422 4423 4424
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4425 4426 4427
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4428
	link = e1000e_has_link(adapter);
4429
	if ((netif_carrier_ok(netdev)) && link) {
4430 4431 4432
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4433
		e1000e_enable_receives(adapter);
4434 4435 4436 4437 4438 4439 4440 4441 4442
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4443
			bool txb2b = true;
4444 4445 4446 4447

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4448
			/* update snapshot of PHY registers on LSC */
4449
			e1000_phy_read_status(adapter);
4450 4451 4452 4453
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4469
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4470 4471
			}

4472
			/* adjust timeout factor according to speed/duplex */
4473 4474 4475
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4476
				txb2b = false;
4477
				adapter->tx_timeout_factor = 16;
4478 4479
				break;
			case SPEED_100:
4480
				txb2b = false;
4481
				adapter->tx_timeout_factor = 10;
4482 4483 4484
				break;
			}

4485 4486 4487 4488
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4489 4490 4491
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4492
				tarc0 = er32(TARC(0));
4493
				tarc0 &= ~SPEED_MODE_BIT;
4494
				ew32(TARC(0), tarc0);
4495 4496
			}

4497 4498 4499 4500
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4501 4502 4503 4504
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4505
					e_info("10/100 speed: disabling TSO\n");
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4519 4520 4521 4522
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4523 4524 4525 4526
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4527 4528 4529 4530 4531 4532 4533
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4544 4545 4546
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4547 4548 4549 4550 4551 4552 4553
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4554 4555 4556
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4557 4558 4559 4560
		}
	}

link_up:
J
Jeff Kirsher 已提交
4561
	spin_lock(&adapter->stats64_lock);
4562 4563 4564 4565 4566 4567 4568
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4569 4570 4571 4572
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4573
	spin_unlock(&adapter->stats64_lock);
4574 4575 4576

	e1000e_update_adaptive(&adapter->hw);

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4588 4589
	}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4606
	/* Cause software interrupt to ensure Rx ring is cleaned */
4607 4608 4609 4610
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4611

4612 4613 4614
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4615
	/* Force detection of hung controller every watchdog period */
4616
	adapter->detect_tx_hung = true;
4617

4618 4619 4620 4621
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4622 4623 4624
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4625 4626 4627
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
4638
#define E1000_TX_FLAGS_NO_FCS		0x00000010
4639 4640 4641
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4642
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4643 4644 4645 4646 4647 4648 4649 4650
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4651 4652
	if (!skb_is_gso(skb))
		return 0;
4653

4654
	if (skb_header_cloned(skb)) {
4655 4656
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4657 4658
		if (err)
			return err;
4659 4660
	}

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4671
	} else if (skb_is_gso_v6(skb)) {
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4710 4711
}

4712
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4713
{
4714
	struct e1000_adapter *adapter = tx_ring->adapter;
4715 4716 4717 4718
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4719
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4720
	__be16 protocol;
4721

4722 4723
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4724

4725 4726 4727 4728 4729
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4730
	switch (protocol) {
4731
	case cpu_to_be16(ETH_P_IP):
4732 4733 4734
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4735
	case cpu_to_be16(ETH_P_IPV6):
4736 4737 4738 4739 4740 4741
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4742 4743
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4744
		break;
4745 4746
	}

4747
	css = skb_checksum_start_offset(skb);
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4770 4771 4772 4773 4774
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4775 4776 4777
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4778
{
4779
	struct e1000_adapter *adapter = tx_ring->adapter;
4780
	struct pci_dev *pdev = adapter->pdev;
4781
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4782
	unsigned int len = skb_headlen(skb);
4783
	unsigned int offset = 0, size, count = 0, i;
4784
	unsigned int f, bytecount, segs;
4785 4786 4787 4788

	i = tx_ring->next_to_use;

	while (len) {
4789
		buffer_info = &tx_ring->buffer_info[i];
4790 4791 4792 4793 4794
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4795 4796
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4797
						  size, DMA_TO_DEVICE);
4798
		buffer_info->mapped_as_page = false;
4799
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4800
			goto dma_error;
4801 4802 4803

		len -= size;
		offset += size;
4804
		count++;
4805 4806 4807 4808 4809 4810

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4811 4812 4813
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4814
		const struct skb_frag_struct *frag;
4815 4816

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4817
		len = skb_frag_size(frag);
4818
		offset = 0;
4819 4820

		while (len) {
4821 4822 4823 4824
			i++;
			if (i == tx_ring->count)
				i = 0;

4825 4826 4827 4828 4829 4830
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4831 4832
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4833
			buffer_info->mapped_as_page = true;
4834
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4835
				goto dma_error;
4836 4837 4838 4839 4840 4841 4842

			len -= size;
			offset += size;
			count++;
		}
	}

4843
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4844 4845 4846
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4847
	tx_ring->buffer_info[i].skb = skb;
4848 4849
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4850 4851 4852
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4853 4854

dma_error:
4855
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4856
	buffer_info->dma = 0;
4857
	if (count)
4858
		count--;
4859 4860

	while (count--) {
4861
		if (i == 0)
4862
			i += tx_ring->count;
4863
		i--;
4864
		buffer_info = &tx_ring->buffer_info[i];
4865
		e1000_put_txbuf(tx_ring, buffer_info);
4866 4867 4868
	}

	return 0;
4869 4870
}

4871
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4872
{
4873
	struct e1000_adapter *adapter = tx_ring->adapter;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

4898 4899 4900
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		txd_lower &= ~(E1000_TXD_CMD_IFCS);

4901 4902
	i = tx_ring->next_to_use;

4903
	do {
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4914
	} while (--count > 0);
4915 4916 4917

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4918 4919 4920 4921
	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));

4922 4923
	/*
	 * Force memory writes to complete before letting h/w
4924 4925
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4926 4927
	 * such as IA-64).
	 */
4928 4929 4930
	wmb();

	tx_ring->next_to_use = i;
4931 4932

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4933
		e1000e_update_tdt_wa(tx_ring, i);
4934
	else
4935
		writel(i, tx_ring->tail);
4936

4937 4938 4939 4940
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4952 4953
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

4983
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4984
{
4985
	struct e1000_adapter *adapter = tx_ring->adapter;
4986

4987
	netif_stop_queue(adapter->netdev);
4988 4989
	/*
	 * Herbert's original patch had:
4990
	 *  smp_mb__after_netif_stop_queue();
4991 4992
	 * but since that doesn't exist yet, just open code it.
	 */
4993 4994
	smp_mb();

4995 4996 4997 4998
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4999
	if (e1000_desc_unused(tx_ring) < size)
5000 5001 5002
		return -EBUSY;

	/* A reprieve! */
5003
	netif_start_queue(adapter->netdev);
5004 5005 5006 5007
	++adapter->restart_queue;
	return 0;
}

5008
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5009
{
5010
	if (e1000_desc_unused(tx_ring) >= size)
5011
		return 0;
5012
	return __e1000_maybe_stop_tx(tx_ring, size);
5013 5014
}

5015
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5016 5017
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
5018 5019 5020 5021 5022 5023 5024
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
5025
	unsigned int len = skb_headlen(skb);
5026 5027
	unsigned int nr_frags;
	unsigned int mss;
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5043 5044
	/*
	 * The controller does a simple calculation to
5045 5046 5047 5048
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5049 5050
	 * drops.
	 */
5051 5052 5053 5054 5055
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5056 5057 5058 5059 5060
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5061
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5062 5063 5064 5065
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5066
		if (skb->data_len && (hdr_len == len)) {
5067 5068
			unsigned int pull_size;

5069
			pull_size = min_t(unsigned int, 4, skb->data_len);
5070
			if (!__pskb_pull_tail(skb, pull_size)) {
5071
				e_err("__pskb_pull_tail failed.\n");
5072 5073 5074
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5075
			len = skb_headlen(skb);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5088
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5089 5090 5091 5092 5093
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5094 5095 5096 5097
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5098
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5099 5100
		return NETDEV_TX_BUSY;

5101
	if (vlan_tx_tag_present(skb)) {
5102 5103 5104 5105 5106 5107
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5108
	tso = e1000_tso(tx_ring, skb);
5109 5110 5111 5112 5113 5114 5115
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5116
	else if (e1000_tx_csum(tx_ring, skb))
5117 5118
		tx_flags |= E1000_TX_FLAGS_CSUM;

5119 5120
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5121
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5122 5123
	 * no longer assume, we must.
	 */
5124 5125 5126
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

5127 5128 5129
	if (unlikely(skb->no_fcs))
		tx_flags |= E1000_TX_FLAGS_NO_FCS;

L
Lucas De Marchi 已提交
5130
	/* if count is 0 then mapping error has occurred */
5131
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5132
	if (count) {
5133
		netdev_sent_queue(netdev, skb->len);
5134
		e1000_tx_queue(tx_ring, tx_flags, count);
5135
		/* Make sure there is space in the ring for the next send. */
5136
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5137 5138

	} else {
5139
		dev_kfree_skb_any(skb);
5140 5141
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5165 5166 5167 5168
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5169 5170 5171 5172 5173
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5174 5175 5176 5177
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5178
 * e1000_get_stats64 - Get System Network Statistics
5179
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5180
 * @stats: rtnl_link_stats64 pointer
5181 5182 5183
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5184 5185
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5186
{
J
Jeff Kirsher 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5241
	/* Jumbo frame support */
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
			e_err("Jumbo Frames not supported.\n");
			return -EINVAL;
		}

		/*
		 * IP payload checksum (enabled with jumbos/packet-split when
		 * Rx checksum is enabled) and generation of RSS hash is
		 * mutually exclusive in the hardware.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) &&
		    (netdev->features & NETIF_F_RXHASH)) {
			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
			return -EINVAL;
		}
5258 5259
	}

5260 5261 5262 5263
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5264 5265 5266
		return -EINVAL;
	}

5267 5268 5269 5270
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5271
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5272 5273 5274
		return -EINVAL;
	}

5275 5276 5277 5278 5279 5280 5281 5282
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5283
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5284
		usleep_range(1000, 2000);
5285
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5286
	adapter->max_frame_size = max_frame;
5287 5288
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5289 5290 5291
	if (netif_running(netdev))
		e1000e_down(adapter);

5292 5293
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5294 5295
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5296
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5297 5298
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5299
	 */
5300

5301
	if (max_frame <= 2048)
5302 5303 5304 5305 5306 5307 5308 5309
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5310
					 + ETH_FCS_LEN;
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5328
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5329 5330 5331 5332 5333 5334 5335
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5336 5337
		e1000_phy_read_status(adapter);

5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5392 5393 5394 5395
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5396
	u16 phy_reg, wuc_enable;
5397 5398 5399
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5400
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5401

5402 5403 5404 5405 5406 5407 5408 5409 5410
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
5411
		goto release;
5412 5413

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5414 5415
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5416 5417 5418 5419
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5420 5421 5422
	}

	/* configure PHY Rx Control register */
5423
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5440
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5441 5442 5443 5444 5445 5446

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5447 5448
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5449 5450

	/* activate PHY wakeup */
5451 5452
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5453 5454
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
5455
release:
5456
	hw->phy.ops.release(hw);
5457 5458 5459 5460

	return retval;
}

5461 5462
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5463 5464 5465 5466 5467
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5468 5469
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5470 5471 5472 5473 5474 5475 5476 5477 5478
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5479
	e1000e_reset_interrupt_capability(adapter);
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5491
		e1000e_set_rx_mode(netdev);
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5505 5506 5507
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5508 5509
		ew32(CTRL, ctrl);

5510 5511 5512
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5513 5514
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5515
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5516 5517 5518
			ew32(CTRL_EXT, ctrl_ext);
		}

5519
		if (adapter->flags & FLAG_IS_ICH)
5520
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5521

5522 5523 5524
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5525
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5526 5527 5528 5529 5530 5531 5532 5533 5534
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5535 5536 5537 5538 5539
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5540 5541
	*enable_wake = !!wufc;

5542
	/* make sure adapter isn't asleep if manageability is enabled */
5543 5544
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5545
		*enable_wake = true;
5546 5547 5548 5549

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5550 5551 5552 5553
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5554
	e1000e_release_hw_control(adapter);
5555 5556 5557

	pci_disable_device(pdev);

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5578 5579 5580 5581 5582 5583 5584 5585
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5586
		int pos = pci_pcie_cap(us_dev);
5587 5588 5589 5590 5591 5592
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5593
		e1000_power_off(pdev, sleep, wake);
5594 5595 5596

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5597
		e1000_power_off(pdev, sleep, wake);
5598
	}
5599 5600
}

5601 5602 5603
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5604
	pci_disable_link_state_locked(pdev, state);
5605 5606 5607
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5608 5609
{
	int pos;
5610
	u16 reg16;
5611 5612

	/*
5613 5614
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5615
	 */
5616 5617 5618 5619 5620
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5621 5622 5623
	if (!pdev->bus->self)
		return;

5624 5625 5626 5627 5628 5629
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5630
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5631 5632 5633 5634 5635 5636
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5637 5638
}

R
Rafael J. Wysocki 已提交
5639
#ifdef CONFIG_PM
5640
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5641
{
5642
	return !!adapter->tx_ring->buffer_info;
5643 5644
}

5645
static int __e1000_resume(struct pci_dev *pdev)
5646 5647 5648 5649
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5650
	u16 aspm_disable_flag = 0;
5651 5652
	u32 err;

5653 5654 5655 5656 5657 5658 5659
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5660 5661
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5662
	pci_save_state(pdev);
T
Taku Izumi 已提交
5663

5664
	e1000e_set_interrupt_capability(adapter);
5665 5666 5667 5668 5669 5670
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5671 5672 5673
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5674
	e1000e_power_up_phy(adapter);
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5687 5688
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5705 5706
	e1000e_reset(adapter);

5707
	e1000_init_manageability_pt(adapter);
5708 5709 5710 5711 5712 5713

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5714 5715
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5716
	 * is up.  For all other cases, let the f/w know that the h/w is now
5717 5718
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5719
	if (!(adapter->flags & FLAG_HAS_AMT))
5720
		e1000e_get_hw_control(adapter);
5721 5722 5723

	return 0;
}
5724

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5798
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5799
#endif /* CONFIG_PM */
5800 5801 5802

static void e1000_shutdown(struct pci_dev *pdev)
{
5803 5804
	bool wake = false;

5805
	__e1000_shutdown(pdev, &wake, false);
5806 5807 5808

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5809 5810 5811
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5812 5813 5814 5815 5816 5817 5818

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5819 5820
		int vector, msix_irq;

5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5843 5844 5845 5846 5847 5848 5849 5850 5851
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5886 5887 5888
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5909
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5910
	int err;
J
Jesse Brandeburg 已提交
5911
	pci_ers_result_t result;
5912

5913 5914
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5915
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5916 5917 5918 5919
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5920
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5921
	if (err) {
5922 5923
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5924 5925 5926
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5927
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5928
		pci_restore_state(pdev);
5929

J
Jesse Brandeburg 已提交
5930 5931
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5932

J
Jesse Brandeburg 已提交
5933 5934 5935 5936
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5937

J
Jesse Brandeburg 已提交
5938 5939 5940
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5956
	e1000_init_manageability_pt(adapter);
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5968 5969
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5970
	 * is up.  For all other cases, let the f/w know that the h/w is now
5971 5972
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5973
	if (!(adapter->flags & FLAG_HAS_AMT))
5974
		e1000e_get_hw_control(adapter);
5975 5976 5977 5978 5979 5980 5981

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5982 5983
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5984 5985

	/* print bus type/speed/width info */
5986
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5987 5988 5989 5990
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5991
	       netdev->dev_addr);
5992 5993
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5994 5995 5996
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5997
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5998 5999
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
6000 6001
}

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6012 6013
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
6014
		/* Deep Smart Power Down (DSPD) */
6015 6016
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
6017 6018 6019
	}
}

6020
static int e1000_set_features(struct net_device *netdev,
6021
			      netdev_features_t features)
6022 6023
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
6024
	netdev_features_t changed = features ^ netdev->features;
6025 6026 6027 6028 6029

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
B
Ben Greear 已提交
6030 6031
			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
			 NETIF_F_RXALL)))
6032 6033
		return 0;

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	/*
	 * IP payload checksum (enabled with jumbos/packet-split when Rx
	 * checksum is enabled) and generation of RSS hash is mutually
	 * exclusive in the hardware.
	 */
	if (adapter->rx_ps_pages &&
	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
		return -EINVAL;
	}

B
Ben Greear 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
	if (changed & NETIF_F_RXFCS) {
		if (features & NETIF_F_RXFCS) {
			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		} else {
			/* We need to take it back to defaults, which might mean
			 * stripping is still disabled at the adapter level.
			 */
			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
				adapter->flags2 |= FLAG2_CRC_STRIPPING;
			else
				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		}
	}

6059 6060
	netdev->features = features;

6061 6062 6063 6064 6065 6066 6067 6068
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6069 6070 6071
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6072
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6073
	.ndo_get_stats64	= e1000e_get_stats64,
6074
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6086
	.ndo_set_features = e1000_set_features,
6087 6088
};

6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6107 6108
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6109
	static int cards_found;
6110
	u16 aspm_disable_flag = 0;
6111 6112 6113 6114
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6115 6116
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6117
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6118 6119 6120
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6121

6122
	err = pci_enable_device_mem(pdev);
6123 6124 6125 6126
	if (err)
		return err;

	pci_using_dac = 0;
6127
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6128
	if (!err) {
6129
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6130 6131 6132
		if (!err)
			pci_using_dac = 1;
	} else {
6133
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6134
		if (err) {
6135 6136
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6137
			if (err) {
6138
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6139 6140 6141 6142 6143
				goto err_dma;
			}
		}
	}

6144
	err = pci_request_selected_regions_exclusive(pdev,
6145 6146
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6147 6148 6149
	if (err)
		goto err_pci_reg;

6150
	/* AER (Advanced Error Reporting) hooks */
6151
	pci_enable_pcie_error_reporting(pdev);
6152

6153
	pci_set_master(pdev);
6154 6155 6156 6157
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6158 6159 6160 6161 6162 6163 6164 6165

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6166 6167
	netdev->irq = pdev->irq;

6168 6169 6170 6171 6172 6173 6174 6175
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6176
	adapter->flags2 = ei->flags2;
6177 6178
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6179
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6180
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6200
	netdev->netdev_ops		= &e1000e_netdev_ops;
6201 6202 6203
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6204
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6205 6206 6207 6208 6209 6210

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6211 6212
	e1000e_check_options(adapter);

6213 6214 6215 6216 6217 6218 6219 6220 6221
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6222
	err = ei->get_variants(adapter);
6223 6224 6225
	if (err)
		goto err_hw_init;

6226 6227 6228 6229
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6230 6231
	hw->mac.ops.get_bus_info(&adapter->hw);

6232
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6233 6234

	/* Copper options */
6235
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6236 6237 6238 6239 6240
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

6241
	if (hw->phy.ops.check_reset_block(hw))
6242
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6243

6244 6245 6246 6247 6248 6249
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6250
			    NETIF_F_RXHASH |
6251 6252 6253 6254 6255
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
B
Ben Greear 已提交
6256
	netdev->hw_features |= NETIF_F_RXFCS;
6257
	netdev->priv_flags |= IFF_SUPP_NOFCS;
B
Ben Greear 已提交
6258
	netdev->hw_features |= NETIF_F_RXALL;
6259 6260 6261 6262

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6263 6264 6265 6266
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6267

6268 6269
	netdev->priv_flags |= IFF_UNICAST_FLT;

6270
	if (pci_using_dac) {
6271
		netdev->features |= NETIF_F_HIGHDMA;
6272 6273
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6274 6275 6276 6277

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6278 6279 6280 6281
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6292
			e_err("The NVM Checksum Is Not Valid\n");
6293 6294 6295 6296 6297
			err = -EIO;
			goto err_eeprom;
		}
	}

6298 6299
	e1000_eeprom_checks(adapter);

6300
	/* copy the MAC address */
6301
	if (e1000e_read_mac_addr(&adapter->hw))
6302
		e_err("NVM Read Error while reading MAC address\n");
6303 6304 6305 6306 6307

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6308
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6309 6310 6311 6312 6313
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6314
	adapter->watchdog_timer.function = e1000_watchdog;
6315 6316 6317
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6318
	adapter->phy_info_timer.function = e1000_update_phy_info;
6319 6320 6321 6322
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6323 6324
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6325
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6326 6327 6328

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6329
	adapter->fc_autoneg = true;
6330 6331
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6346 6347
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6348
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6349 6350 6351
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
6352 6353
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
				       1, &eeprom_data);
6354
		else
6355 6356
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
				       1, &eeprom_data);
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6373
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6374

6375 6376 6377
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6378 6379 6380
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6381 6382
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6383
	 * is up.  For all other cases, let the f/w know that the h/w is now
6384 6385
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6386
	if (!(adapter->flags & FLAG_HAS_AMT))
6387
		e1000e_get_hw_control(adapter);
6388

6389
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6390 6391 6392 6393
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6394 6395 6396
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6397 6398
	e1000_print_device_info(adapter);

6399 6400
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6401

6402 6403 6404
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6405
	if (!(adapter->flags & FLAG_HAS_AMT))
6406
		e1000e_release_hw_control(adapter);
6407
err_eeprom:
6408
	if (!hw->phy.ops.check_reset_block(hw))
6409
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6410
err_hw_init:
6411 6412 6413
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6414 6415
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6416
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6417
err_flashmap:
6418 6419 6420 6421
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6422 6423
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6443 6444
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6445
	/*
6446 6447
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6448
	 */
6449 6450
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6451 6452 6453
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6454 6455 6456 6457 6458
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6459

6460 6461 6462
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6463 6464 6465
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6466 6467
	unregister_netdev(netdev);

6468 6469
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6470

6471 6472 6473 6474
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6475
	e1000e_release_hw_control(adapter);
6476

6477
	e1000e_reset_interrupt_capability(adapter);
6478 6479 6480 6481 6482 6483
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6484 6485
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6486 6487 6488

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6489
	/* AER disable */
6490
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6491

6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6502
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6503 6504 6505 6506 6507 6508
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6509 6510 6511
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6512

6513 6514 6515 6516
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6517

6518 6519 6520
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6521

6522
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6523
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6524
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6525

6526 6527 6528 6529 6530 6531 6532 6533
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6534

6535 6536 6537 6538 6539 6540 6541
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6542
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6543

6544 6545 6546 6547 6548
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6549
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6550 6551 6552 6553 6554 6555 6556
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6557

6558 6559
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6560
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6561

6562 6563 6564 6565 6566
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6567 6568 6569
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6570
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6571 6572 6573
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6574
#ifdef CONFIG_PM
6575
static const struct dev_pm_ops e1000_pm_ops = {
6576 6577 6578
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6579
};
6580
#endif
6581

6582 6583 6584 6585 6586 6587
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6588
#ifdef CONFIG_PM
6589 6590 6591
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6606 6607
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6608
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6609
	ret = pci_register_driver(&e1000_driver);
6610

6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

6633
/* netdev.c */