spi-atmel.c 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Driver for Atmel AT32 and AT91 SPI Controllers
 *
 * Copyright (C) 2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
17
#include <linux/dmaengine.h>
18 19 20
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
21
#include <linux/slab.h>
22
#include <linux/platform_data/atmel.h>
23
#include <linux/platform_data/dma-atmel.h>
24
#include <linux/of.h>
25

26 27
#include <linux/io.h>
#include <linux/gpio.h>
W
Wenyou Yang 已提交
28
#include <linux/pinctrl/consumer.h>
29
#include <linux/pm_runtime.h>
30

G
Grant Likely 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
/* SPI register offsets */
#define SPI_CR					0x0000
#define SPI_MR					0x0004
#define SPI_RDR					0x0008
#define SPI_TDR					0x000c
#define SPI_SR					0x0010
#define SPI_IER					0x0014
#define SPI_IDR					0x0018
#define SPI_IMR					0x001c
#define SPI_CSR0				0x0030
#define SPI_CSR1				0x0034
#define SPI_CSR2				0x0038
#define SPI_CSR3				0x003c
44
#define SPI_VERSION				0x00fc
G
Grant Likely 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#define SPI_RPR					0x0100
#define SPI_RCR					0x0104
#define SPI_TPR					0x0108
#define SPI_TCR					0x010c
#define SPI_RNPR				0x0110
#define SPI_RNCR				0x0114
#define SPI_TNPR				0x0118
#define SPI_TNCR				0x011c
#define SPI_PTCR				0x0120
#define SPI_PTSR				0x0124

/* Bitfields in CR */
#define SPI_SPIEN_OFFSET			0
#define SPI_SPIEN_SIZE				1
#define SPI_SPIDIS_OFFSET			1
#define SPI_SPIDIS_SIZE				1
#define SPI_SWRST_OFFSET			7
#define SPI_SWRST_SIZE				1
#define SPI_LASTXFER_OFFSET			24
#define SPI_LASTXFER_SIZE			1

/* Bitfields in MR */
#define SPI_MSTR_OFFSET				0
#define SPI_MSTR_SIZE				1
#define SPI_PS_OFFSET				1
#define SPI_PS_SIZE				1
#define SPI_PCSDEC_OFFSET			2
#define SPI_PCSDEC_SIZE				1
#define SPI_FDIV_OFFSET				3
#define SPI_FDIV_SIZE				1
#define SPI_MODFDIS_OFFSET			4
#define SPI_MODFDIS_SIZE			1
77 78
#define SPI_WDRBT_OFFSET			5
#define SPI_WDRBT_SIZE				1
G
Grant Likely 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#define SPI_LLB_OFFSET				7
#define SPI_LLB_SIZE				1
#define SPI_PCS_OFFSET				16
#define SPI_PCS_SIZE				4
#define SPI_DLYBCS_OFFSET			24
#define SPI_DLYBCS_SIZE				8

/* Bitfields in RDR */
#define SPI_RD_OFFSET				0
#define SPI_RD_SIZE				16

/* Bitfields in TDR */
#define SPI_TD_OFFSET				0
#define SPI_TD_SIZE				16

/* Bitfields in SR */
#define SPI_RDRF_OFFSET				0
#define SPI_RDRF_SIZE				1
#define SPI_TDRE_OFFSET				1
#define SPI_TDRE_SIZE				1
#define SPI_MODF_OFFSET				2
#define SPI_MODF_SIZE				1
#define SPI_OVRES_OFFSET			3
#define SPI_OVRES_SIZE				1
#define SPI_ENDRX_OFFSET			4
#define SPI_ENDRX_SIZE				1
#define SPI_ENDTX_OFFSET			5
#define SPI_ENDTX_SIZE				1
#define SPI_RXBUFF_OFFSET			6
#define SPI_RXBUFF_SIZE				1
#define SPI_TXBUFE_OFFSET			7
#define SPI_TXBUFE_SIZE				1
#define SPI_NSSR_OFFSET				8
#define SPI_NSSR_SIZE				1
#define SPI_TXEMPTY_OFFSET			9
#define SPI_TXEMPTY_SIZE			1
#define SPI_SPIENS_OFFSET			16
#define SPI_SPIENS_SIZE				1

/* Bitfields in CSR0 */
#define SPI_CPOL_OFFSET				0
#define SPI_CPOL_SIZE				1
#define SPI_NCPHA_OFFSET			1
#define SPI_NCPHA_SIZE				1
#define SPI_CSAAT_OFFSET			3
#define SPI_CSAAT_SIZE				1
#define SPI_BITS_OFFSET				4
#define SPI_BITS_SIZE				4
#define SPI_SCBR_OFFSET				8
#define SPI_SCBR_SIZE				8
#define SPI_DLYBS_OFFSET			16
#define SPI_DLYBS_SIZE				8
#define SPI_DLYBCT_OFFSET			24
#define SPI_DLYBCT_SIZE				8

/* Bitfields in RCR */
#define SPI_RXCTR_OFFSET			0
#define SPI_RXCTR_SIZE				16

/* Bitfields in TCR */
#define SPI_TXCTR_OFFSET			0
#define SPI_TXCTR_SIZE				16

/* Bitfields in RNCR */
#define SPI_RXNCR_OFFSET			0
#define SPI_RXNCR_SIZE				16

/* Bitfields in TNCR */
#define SPI_TXNCR_OFFSET			0
#define SPI_TXNCR_SIZE				16

/* Bitfields in PTCR */
#define SPI_RXTEN_OFFSET			0
#define SPI_RXTEN_SIZE				1
#define SPI_RXTDIS_OFFSET			1
#define SPI_RXTDIS_SIZE				1
#define SPI_TXTEN_OFFSET			8
#define SPI_TXTEN_SIZE				1
#define SPI_TXTDIS_OFFSET			9
#define SPI_TXTDIS_SIZE				1

/* Constants for BITS */
#define SPI_BITS_8_BPT				0
#define SPI_BITS_9_BPT				1
#define SPI_BITS_10_BPT				2
#define SPI_BITS_11_BPT				3
#define SPI_BITS_12_BPT				4
#define SPI_BITS_13_BPT				5
#define SPI_BITS_14_BPT				6
#define SPI_BITS_15_BPT				7
#define SPI_BITS_16_BPT				8

/* Bit manipulation macros */
#define SPI_BIT(name) \
	(1 << SPI_##name##_OFFSET)
174
#define SPI_BF(name, value) \
G
Grant Likely 已提交
175
	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176
#define SPI_BFEXT(name, value) \
G
Grant Likely 已提交
177
	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 179 180
#define SPI_BFINS(name, value, old) \
	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
	  | SPI_BF(name, value))
G
Grant Likely 已提交
181 182

/* Register access macros */
B
Ben Dooks 已提交
183
#ifdef CONFIG_AVR32
184
#define spi_readl(port, reg) \
G
Grant Likely 已提交
185
	__raw_readl((port)->regs + SPI_##reg)
186
#define spi_writel(port, reg, value) \
G
Grant Likely 已提交
187
	__raw_writel((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
188 189 190 191 192 193
#else
#define spi_readl(port, reg) \
	readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
	writel_relaxed((value), (port)->regs + SPI_##reg)
#endif
194 195 196 197 198
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 * cache operations; better heuristics consider wordsize and bitrate.
 */
#define DMA_MIN_BYTES	16

199 200
#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))

201 202
#define AUTOSUSPEND_TIMEOUT	2000

203 204 205 206 207 208 209 210 211 212 213
struct atmel_spi_dma {
	struct dma_chan			*chan_rx;
	struct dma_chan			*chan_tx;
	struct scatterlist		sgrx;
	struct scatterlist		sgtx;
	struct dma_async_tx_descriptor	*data_desc_rx;
	struct dma_async_tx_descriptor	*data_desc_tx;

	struct at_dma_slave	dma_slave;
};

214 215 216 217 218
struct atmel_spi_caps {
	bool	is_spi2;
	bool	has_wdrbt;
	bool	has_dma_support;
};
219 220 221 222 223 224 225 226

/*
 * The core SPI transfer engine just talks to a register bank to set up
 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 * framework provides the base clock, subdivided for each spi_device.
 */
struct atmel_spi {
	spinlock_t		lock;
227
	unsigned long		flags;
228

229
	phys_addr_t		phybase;
230 231 232 233 234 235
	void __iomem		*regs;
	int			irq;
	struct clk		*clk;
	struct platform_device	*pdev;

	struct spi_transfer	*current_transfer;
236
	int			current_remaining_bytes;
237
	int			done_status;
238

239 240
	struct completion	xfer_completion;

241
	/* scratch buffer */
242 243
	void			*buffer;
	dma_addr_t		buffer_dma;
244 245

	struct atmel_spi_caps	caps;
246 247 248

	bool			use_dma;
	bool			use_pdc;
249
	bool			use_cs_gpios;
250 251
	/* dmaengine data */
	struct atmel_spi_dma	dma;
252 253 254

	bool			keep_cs;
	bool			cs_active;
255 256
};

257 258 259 260 261 262
/* Controller-specific per-slave state */
struct atmel_spi_device {
	unsigned int		npcs_pin;
	u32			csr;
};

263 264 265
#define BUFFER_SIZE		PAGE_SIZE
#define INVALID_DMA_ADDRESS	0xffffffff

266 267 268 269 270 271 272 273
/*
 * Version 2 of the SPI controller has
 *  - CR.LASTXFER
 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 *  - SPI_CSRx.CSAAT
 *  - SPI_CSRx.SBCR allows faster clocking
 */
274
static bool atmel_spi_is_v2(struct atmel_spi *as)
275
{
276
	return as->caps.is_spi2;
277 278
}

279 280 281
/*
 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 * they assume that spi slave device state will not change on deselect, so
282 283 284
 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 * controllers have CSAAT and friends.
285
 *
286 287 288 289 290 291 292 293 294 295 296
 * Since the CSAAT functionality is a bit weird on newer controllers as
 * well, we use GPIO to control nCSx pins on all controllers, updating
 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 * support active-high chipselects despite the controller's belief that
 * only active-low devices/systems exists.
 *
 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 * Master on Chip Select 0.")  No workaround exists for that ... so for
 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 * and (c) will trigger that first erratum in some cases.
297 298
 */

299
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
300
{
301
	struct atmel_spi_device *asd = spi->controller_state;
302
	unsigned active = spi->mode & SPI_CS_HIGH;
303 304
	u32 mr;

305
	if (atmel_spi_is_v2(as)) {
306 307 308
		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
		/* For the low SPI version, there is a issue that PDC transfer
		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
309 310
		 */
		spi_writel(as, CSR0, asd->csr);
311
		if (as->caps.has_wdrbt) {
312 313 314 315 316
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(WDRBT)
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
317
		} else {
318 319 320 321
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
322
		}
323

324
		mr = spi_readl(as, MR);
325 326
		if (as->use_cs_gpios)
			gpio_set_value(asd->npcs_pin, active);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	} else {
		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
		int i;
		u32 csr;

		/* Make sure clock polarity is correct */
		for (i = 0; i < spi->master->num_chipselect; i++) {
			csr = spi_readl(as, CSR0 + 4 * i);
			if ((csr ^ cpol) & SPI_BIT(CPOL))
				spi_writel(as, CSR0 + 4 * i,
						csr ^ SPI_BIT(CPOL));
		}

		mr = spi_readl(as, MR);
		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
342
		if (as->use_cs_gpios && spi->chip_select != 0)
343 344 345
			gpio_set_value(asd->npcs_pin, active);
		spi_writel(as, MR, mr);
	}
346 347

	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
348
			asd->npcs_pin, active ? " (high)" : "",
349
			mr);
350 351
}

352
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
353
{
354
	struct atmel_spi_device *asd = spi->controller_state;
355
	unsigned active = spi->mode & SPI_CS_HIGH;
356 357 358 359 360 361 362 363 364 365
	u32 mr;

	/* only deactivate *this* device; sometimes transfers to
	 * another device may be active when this routine is called.
	 */
	mr = spi_readl(as, MR);
	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
		mr = SPI_BFINS(PCS, 0xf, mr);
		spi_writel(as, MR, mr);
	}
366

367
	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
368
			asd->npcs_pin, active ? " (low)" : "",
369 370
			mr);

371 372 373
	if (!as->use_cs_gpios)
		spi_writel(as, CR, SPI_BIT(LASTXFER));
	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
374
		gpio_set_value(asd->npcs_pin, !active);
375 376
}

377
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
378 379 380 381
{
	spin_lock_irqsave(&as->lock, as->flags);
}

382
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
383 384 385 386
{
	spin_unlock_irqrestore(&as->lock, as->flags);
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
				struct spi_transfer *xfer)
{
	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}

static int atmel_spi_dma_slave_config(struct atmel_spi *as,
				struct dma_slave_config *slave_config,
				u8 bits_per_word)
{
	int err = 0;

	if (bits_per_word > 8) {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
	} else {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	}

	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
	slave_config->src_maxburst = 1;
	slave_config->dst_maxburst = 1;
	slave_config->device_fc = false;

	slave_config->direction = DMA_MEM_TO_DEV;
	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure tx dma channel\n");
		err = -EINVAL;
	}

	slave_config->direction = DMA_DEV_TO_MEM;
	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure rx dma channel\n");
		err = -EINVAL;
	}

	return err;
}

static int atmel_spi_configure_dma(struct atmel_spi *as)
{
	struct dma_slave_config	slave_config;
433
	struct device *dev = &as->pdev->dev;
434 435
	int err;

436 437 438
	dma_cap_mask_t mask;
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
439

440 441 442 443 444 445 446
	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
	if (IS_ERR(as->dma.chan_tx)) {
		err = PTR_ERR(as->dma.chan_tx);
		if (err == -EPROBE_DEFER) {
			dev_warn(dev, "no DMA channel available at the moment\n");
			return err;
		}
447 448 449 450
		dev_err(dev,
			"DMA TX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
		goto error;
451
	}
452

453 454 455 456
	/*
	 * No reason to check EPROBE_DEFER here since we have already requested
	 * tx channel. If it fails here, it's for another reason.
	 */
457
	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
458 459 460 461

	if (!as->dma.chan_rx) {
		dev_err(dev,
			"DMA RX channel not available, SPI unable to use DMA\n");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		err = -EBUSY;
		goto error;
	}

	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
	if (err)
		goto error;

	dev_info(&as->pdev->dev,
			"Using %s (tx) and %s (rx) for DMA transfers\n",
			dma_chan_name(as->dma.chan_tx),
			dma_chan_name(as->dma.chan_rx));
	return 0;
error:
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
478
	if (!IS_ERR(as->dma.chan_tx))
479 480 481 482 483 484 485
		dma_release_channel(as->dma.chan_tx);
	return err;
}

static void atmel_spi_stop_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
486
		dmaengine_terminate_all(as->dma.chan_rx);
487
	if (as->dma.chan_tx)
488
		dmaengine_terminate_all(as->dma.chan_tx);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

static void atmel_spi_release_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
	if (as->dma.chan_tx)
		dma_release_channel(as->dma.chan_tx);
}

/* This function is called by the DMA driver from tasklet context */
static void dma_callback(void *data)
{
	struct spi_master	*master = data;
	struct atmel_spi	*as = spi_master_get_devdata(master);

505
	complete(&as->xfer_completion);
506 507 508 509 510 511 512 513 514
}

/*
 * Next transfer using PIO.
 */
static void atmel_spi_next_xfer_pio(struct spi_master *master,
				struct spi_transfer *xfer)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
515
	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
516 517 518 519 520 521 522 523 524 525

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");

	/* Make sure data is not remaining in RDR */
	spi_readl(as, RDR);
	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
		spi_readl(as, RDR);
		cpu_relax();
	}

526
	if (xfer->tx_buf) {
527
		if (xfer->bits_per_word > 8)
528
			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
529
		else
530 531
			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
	} else {
532
		spi_writel(as, TDR, 0);
533
	}
534 535

	dev_dbg(master->dev.parent,
536 537 538
		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
}

/*
 * Submit next transfer for DMA.
 */
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
				struct spi_transfer *xfer,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	struct dma_chan		*rxchan = as->dma.chan_rx;
	struct dma_chan		*txchan = as->dma.chan_tx;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;
	struct dma_slave_config	slave_config;
	dma_cookie_t		cookie;
	u32	len = *plen;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

	/* release lock for DMA operations */
	atmel_spi_unlock(as);

	/* prepare the RX dma transfer */
	sg_init_table(&as->dma.sgrx, 1);
	if (xfer->rx_buf) {
		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
	} else {
		as->dma.sgrx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}

	/* prepare the TX dma transfer */
	sg_init_table(&as->dma.sgtx, 1);
	if (xfer->tx_buf) {
		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
	} else {
		as->dma.sgtx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
	}

	sg_dma_len(&as->dma.sgtx) = len;
	sg_dma_len(&as->dma.sgrx) = len;

	*plen = len;

	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
		goto err_exit;

	/* Send both scatterlists */
599 600 601
	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
					 DMA_FROM_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
602 603 604
	if (!rxdesc)
		goto err_dma;

605 606 607
	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
					 DMA_TO_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
608 609 610 611
	if (!txdesc)
		goto err_dma;

	dev_dbg(master->dev.parent,
612 613 614
		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(OVRES));

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = master;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
	cookie = rxdesc->tx_submit(rxdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	cookie = txdesc->tx_submit(txdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	rxchan->device->device_issue_pending(rxchan);
	txchan->device->device_issue_pending(txchan);

	/* take back lock */
	atmel_spi_lock(as);
	return 0;

err_dma:
	spi_writel(as, IDR, SPI_BIT(OVRES));
	atmel_spi_stop_dma(as);
err_exit:
	atmel_spi_lock(as);
	return -ENOMEM;
}

S
Silvester Erdeg 已提交
645 646 647 648 649 650 651 652 653 654 655
static void atmel_spi_next_xfer_data(struct spi_master *master,
				struct spi_transfer *xfer,
				dma_addr_t *tx_dma,
				dma_addr_t *rx_dma,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			len = *plen;

	/* use scratch buffer only when rx or tx data is unspecified */
	if (xfer->rx_buf)
656
		*rx_dma = xfer->rx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
657 658 659 660 661
	else {
		*rx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}
662

S
Silvester Erdeg 已提交
663
	if (xfer->tx_buf)
664
		*tx_dma = xfer->tx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
665 666 667 668 669 670 671 672 673 674 675 676
	else {
		*tx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
		dma_sync_single_for_device(&as->pdev->dev,
				as->buffer_dma, len, DMA_TO_DEVICE);
	}

	*plen = len;
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
				    struct spi_device *spi,
				    struct spi_transfer *xfer)
{
	u32			scbr, csr;
	unsigned long		bus_hz;

	/* v1 chips start out at half the peripheral bus speed. */
	bus_hz = clk_get_rate(as->clk);
	if (!atmel_spi_is_v2(as))
		bus_hz /= 2;

	/*
	 * Calculate the lowest divider that satisfies the
	 * constraint, assuming div32/fdiv/mbz == 0.
	 */
	if (xfer->speed_hz)
		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
	else
		/*
		 * This can happend if max_speed is null.
		 * In this case, we set the lowest possible speed
		 */
		scbr = 0xff;

	/*
	 * If the resulting divider doesn't fit into the
	 * register bitfield, we can't satisfy the constraint.
	 */
	if (scbr >= (1 << SPI_SCBR_SIZE)) {
		dev_err(&spi->dev,
			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz/255);
		return -EINVAL;
	}
	if (scbr == 0) {
		dev_err(&spi->dev,
			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz);
		return -EINVAL;
	}
	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
	csr = SPI_BFINS(SCBR, scbr, csr);
	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);

	return 0;
}

725
/*
726
 * Submit next transfer for PDC.
727 728
 * lock is held, spi irq is blocked
 */
729
static void atmel_spi_pdc_next_xfer(struct spi_master *master,
730 731
					struct spi_message *msg,
					struct spi_transfer *xfer)
732 733
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
734
	u32			len;
735 736
	dma_addr_t		tx_dma, rx_dma;

737
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
738

739 740 741
	len = as->current_remaining_bytes;
	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
	as->current_remaining_bytes -= len;
742

743 744
	spi_writel(as, RPR, rx_dma);
	spi_writel(as, TPR, tx_dma);
745

746 747 748 749
	if (msg->spi->bits_per_word > 8)
		len >>= 1;
	spi_writel(as, RCR, len);
	spi_writel(as, TCR, len);
750

751 752 753 754 755
	dev_dbg(&msg->spi->dev,
		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf,
		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
		(unsigned long long)xfer->rx_dma);
756

757 758
	if (as->current_remaining_bytes) {
		len = as->current_remaining_bytes;
S
Silvester Erdeg 已提交
759
		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
760
		as->current_remaining_bytes -= len;
761

S
Silvester Erdeg 已提交
762 763
		spi_writel(as, RNPR, rx_dma);
		spi_writel(as, TNPR, tx_dma);
764

S
Silvester Erdeg 已提交
765 766 767 768
		if (msg->spi->bits_per_word > 8)
			len >>= 1;
		spi_writel(as, RNCR, len);
		spi_writel(as, TNCR, len);
769 770

		dev_dbg(&msg->spi->dev,
771 772 773 774
			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
			xfer, xfer->len, xfer->tx_buf,
			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
			(unsigned long long)xfer->rx_dma);
S
Silvester Erdeg 已提交
775 776
	}

777
	/* REVISIT: We're waiting for RXBUFF before we start the next
778
	 * transfer because we need to handle some difficult timing
779 780 781 782
	 * issues otherwise. If we wait for TXBUFE in one transfer and
	 * then starts waiting for RXBUFF in the next, it's difficult
	 * to tell the difference between the RXBUFF interrupt we're
	 * actually waiting for and the RXBUFF interrupt of the
783 784 785 786
	 * previous transfer.
	 *
	 * It should be doable, though. Just not now...
	 */
787
	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
788 789 790
	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
}

D
David Brownell 已提交
791 792 793
/*
 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 *  - The buffer is either valid for CPU access, else NULL
794
 *  - If the buffer is valid, so is its DMA address
D
David Brownell 已提交
795
 *
796
 * This driver manages the dma address unless message->is_dma_mapped.
D
David Brownell 已提交
797 798
 */
static int
799 800
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
{
D
David Brownell 已提交
801 802
	struct device	*dev = &as->pdev->dev;

803
	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
D
David Brownell 已提交
804
	if (xfer->tx_buf) {
805 806 807 808
		/* tx_buf is a const void* where we need a void * for the dma
		 * mapping */
		void *nonconst_tx = (void *)xfer->tx_buf;

D
David Brownell 已提交
809
		xfer->tx_dma = dma_map_single(dev,
810
				nonconst_tx, xfer->len,
811
				DMA_TO_DEVICE);
812
		if (dma_mapping_error(dev, xfer->tx_dma))
D
David Brownell 已提交
813 814 815 816
			return -ENOMEM;
	}
	if (xfer->rx_buf) {
		xfer->rx_dma = dma_map_single(dev,
817 818
				xfer->rx_buf, xfer->len,
				DMA_FROM_DEVICE);
819
		if (dma_mapping_error(dev, xfer->rx_dma)) {
D
David Brownell 已提交
820 821 822 823 824 825 826 827
			if (xfer->tx_buf)
				dma_unmap_single(dev,
						xfer->tx_dma, xfer->len,
						DMA_TO_DEVICE);
			return -ENOMEM;
		}
	}
	return 0;
828 829 830 831 832 833
}

static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
834
		dma_unmap_single(master->dev.parent, xfer->tx_dma,
835 836
				 xfer->len, DMA_TO_DEVICE);
	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
837
		dma_unmap_single(master->dev.parent, xfer->rx_dma,
838 839 840
				 xfer->len, DMA_FROM_DEVICE);
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
{
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
}

/* Called from IRQ
 *
 * Must update "current_remaining_bytes" to keep track of data
 * to transfer.
 */
static void
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	u8		*rxp;
855
	u16		*rxp16;
856 857 858
	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;

	if (xfer->rx_buf) {
859 860 861 862 863 864 865
		if (xfer->bits_per_word > 8) {
			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
			*rxp16 = spi_readl(as, RDR);
		} else {
			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
			*rxp = spi_readl(as, RDR);
		}
866 867 868
	} else {
		spi_readl(as, RDR);
	}
869
	if (xfer->bits_per_word > 8) {
870 871 872
		if (as->current_remaining_bytes > 2)
			as->current_remaining_bytes -= 2;
		else
873 874 875 876
			as->current_remaining_bytes = 0;
	} else {
		as->current_remaining_bytes--;
	}
877 878 879 880 881
}

/* Interrupt
 *
 * No need for locking in this Interrupt handler: done_status is the
882
 * only information modified.
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 */
static irqreturn_t
atmel_spi_pio_interrupt(int irq, void *dev_id)
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	struct spi_transfer	*xfer;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, SPI_BIT(OVRES));
		dev_warn(master->dev.parent, "overrun\n");

		/*
		 * When we get an overrun, we disregard the current
		 * transfer. Data will not be copied back from any
		 * bounce buffer and msg->actual_len will not be
		 * updated with the last xfer.
		 *
		 * We will also not process any remaning transfers in
		 * the message.
		 */
		as->done_status = -EIO;
		smp_wmb();

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

917
		complete(&as->xfer_completion);
918 919 920 921 922 923 924 925

	} else if (pending & SPI_BIT(RDRF)) {
		atmel_spi_lock(as);

		if (as->current_remaining_bytes) {
			ret = IRQ_HANDLED;
			xfer = as->current_transfer;
			atmel_spi_pump_pio_data(as, xfer);
926
			if (!as->current_remaining_bytes)
927
				spi_writel(as, IDR, pending);
928 929

			complete(&as->xfer_completion);
930 931 932 933 934 935 936 937 938 939
		}

		atmel_spi_unlock(as);
	} else {
		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, pending);
	}

	return ret;
940 941 942
}

static irqreturn_t
943
atmel_spi_pdc_interrupt(int irq, void *dev_id)
944 945 946 947 948 949 950 951 952 953 954 955 956 957
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {

		ret = IRQ_HANDLED;

958
		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
959 960 961 962 963
				     | SPI_BIT(OVRES)));

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

964
		as->done_status = -EIO;
965 966 967

		complete(&as->xfer_completion);

968
	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
969 970 971 972
		ret = IRQ_HANDLED;

		spi_writel(as, IDR, pending);

973
		complete(&as->xfer_completion);
974 975 976 977 978 979 980 981
	}

	return ret;
}

static int atmel_spi_setup(struct spi_device *spi)
{
	struct atmel_spi	*as;
982
	struct atmel_spi_device	*asd;
983
	u32			csr;
984 985 986 987 988 989
	unsigned int		bits = spi->bits_per_word;
	unsigned int		npcs_pin;
	int			ret;

	as = spi_master_get_devdata(spi->master);

990
	/* see notes above re chipselect */
991
	if (!atmel_spi_is_v2(as)
992 993 994 995 996 997
			&& spi->chip_select == 0
			&& (spi->mode & SPI_CS_HIGH)) {
		dev_dbg(&spi->dev, "setup: can't be active-high\n");
		return -EINVAL;
	}

998
	csr = SPI_BF(BITS, bits - 8);
999 1000 1001 1002
	if (spi->mode & SPI_CPOL)
		csr |= SPI_BIT(CPOL);
	if (!(spi->mode & SPI_CPHA))
		csr |= SPI_BIT(NCPHA);
1003 1004
	if (!as->use_cs_gpios)
		csr |= SPI_BIT(CSAAT);
1005

1006 1007 1008 1009 1010 1011 1012 1013
	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
	 *
	 * DLYBCT would add delays between words, slowing down transfers.
	 * It could potentially be useful to cope with DMA bottlenecks, but
	 * in those cases it's probably best to just use a lower bitrate.
	 */
	csr |= SPI_BF(DLYBS, 0);
	csr |= SPI_BF(DLYBCT, 0);
1014 1015

	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1016
	npcs_pin = (unsigned long)spi->controller_data;
1017

1018 1019 1020
	if (!as->use_cs_gpios)
		npcs_pin = spi->chip_select;
	else if (gpio_is_valid(spi->cs_gpio))
1021 1022
		npcs_pin = spi->cs_gpio;

1023 1024 1025 1026 1027 1028
	asd = spi->controller_state;
	if (!asd) {
		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
		if (!asd)
			return -ENOMEM;

1029 1030 1031 1032 1033 1034 1035 1036 1037
		if (as->use_cs_gpios) {
			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
			if (ret) {
				kfree(asd);
				return ret;
			}

			gpio_direction_output(npcs_pin,
					      !(spi->mode & SPI_CS_HIGH));
1038 1039 1040 1041
		}

		asd->npcs_pin = npcs_pin;
		spi->controller_state = asd;
1042 1043
	}

1044 1045
	asd->csr = csr;

1046
	dev_dbg(&spi->dev,
1047 1048
		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
		bits, spi->mode, spi->chip_select, csr);
1049

1050
	if (!atmel_spi_is_v2(as))
1051
		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1052 1053 1054 1055

	return 0;
}

1056 1057 1058
static int atmel_spi_one_transfer(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer *xfer)
1059 1060
{
	struct atmel_spi	*as;
1061
	struct spi_device	*spi = msg->spi;
1062
	u8			bits;
1063
	u32			len;
1064
	struct atmel_spi_device	*asd;
1065 1066
	int			timeout;
	int			ret;
1067
	unsigned long		dma_timeout;
1068

1069
	as = spi_master_get_devdata(master);
1070

1071 1072
	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1073
		return -EINVAL;
1074
	}
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084
	if (xfer->bits_per_word) {
		asd = spi->controller_state;
		bits = (asd->csr >> 4) & 0xf;
		if (bits != xfer->bits_per_word - 8) {
			dev_dbg(&spi->dev,
			"you can't yet change bits_per_word in transfers\n");
			return -ENOPROTOOPT;
		}
	}
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	/*
	 * DMA map early, for performance (empties dcache ASAP) and
	 * better fault reporting.
	 */
	if ((!msg->is_dma_mapped)
		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
			return -ENOMEM;
	}

	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	as->done_status = 0;
	as->current_transfer = xfer;
	as->current_remaining_bytes = xfer->len;
	while (as->current_remaining_bytes) {
		reinit_completion(&as->xfer_completion);

		if (as->use_pdc) {
			atmel_spi_pdc_next_xfer(master, msg, xfer);
		} else if (atmel_spi_use_dma(as, xfer)) {
			len = as->current_remaining_bytes;
			ret = atmel_spi_next_xfer_dma_submit(master,
								xfer, &len);
			if (ret) {
				dev_err(&spi->dev,
					"unable to use DMA, fallback to PIO\n");
				atmel_spi_next_xfer_pio(master, xfer);
			} else {
				as->current_remaining_bytes -= len;
1116 1117
				if (as->current_remaining_bytes < 0)
					as->current_remaining_bytes = 0;
1118
			}
1119 1120
		} else {
			atmel_spi_next_xfer_pio(master, xfer);
1121 1122
		}

1123 1124
		/* interrupts are disabled, so free the lock for schedule */
		atmel_spi_unlock(as);
1125 1126
		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
							  SPI_DMA_TIMEOUT);
1127
		atmel_spi_lock(as);
1128 1129
		if (WARN_ON(dma_timeout == 0)) {
			dev_err(&spi->dev, "spi transfer timeout\n");
1130
			as->done_status = -EIO;
1131 1132
		}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		if (as->done_status)
			break;
	}

	if (as->done_status) {
		if (as->use_pdc) {
			dev_warn(master->dev.parent,
				"overrun (%u/%u remaining)\n",
				spi_readl(as, TCR), spi_readl(as, RCR));

			/*
			 * Clean up DMA registers and make sure the data
			 * registers are empty.
			 */
			spi_writel(as, RNCR, 0);
			spi_writel(as, TNCR, 0);
			spi_writel(as, RCR, 0);
			spi_writel(as, TCR, 0);
			for (timeout = 1000; timeout; timeout--)
				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
					break;
			if (!timeout)
				dev_warn(master->dev.parent,
					 "timeout waiting for TXEMPTY");
			while (spi_readl(as, SR) & SPI_BIT(RDRF))
				spi_readl(as, RDR);

			/* Clear any overrun happening while cleaning up */
			spi_readl(as, SR);

		} else if (atmel_spi_use_dma(as, xfer)) {
			atmel_spi_stop_dma(as);
		}

		if (!msg->is_dma_mapped
			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
			atmel_spi_dma_unmap_xfer(master, xfer);

		return 0;

	} else {
		/* only update length if no error */
		msg->actual_length += xfer->len;
	}

	if (!msg->is_dma_mapped
		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
		atmel_spi_dma_unmap_xfer(master, xfer);

	if (xfer->delay_usecs)
		udelay(xfer->delay_usecs);

	if (xfer->cs_change) {
		if (list_is_last(&xfer->transfer_list,
				 &msg->transfers)) {
			as->keep_cs = true;
		} else {
			as->cs_active = !as->cs_active;
			if (as->cs_active)
				cs_activate(as, msg->spi);
			else
				cs_deactivate(as, msg->spi);
D
David Brownell 已提交
1195
		}
1196 1197
	}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	return 0;
}

static int atmel_spi_transfer_one_message(struct spi_master *master,
						struct spi_message *msg)
{
	struct atmel_spi *as;
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret = 0;

	as = spi_master_get_devdata(master);

	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
					msg, dev_name(&spi->dev));

	atmel_spi_lock(as);
	cs_activate(as, spi);

	as->cs_active = true;
	as->keep_cs = false;

	msg->status = 0;
	msg->actual_length = 0;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		ret = atmel_spi_one_transfer(master, msg, xfer);
		if (ret)
			goto msg_done;
	}

	if (as->use_pdc)
		atmel_spi_disable_pdc_transfer(as);

1232
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1233
		dev_dbg(&spi->dev,
1234
			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1235
			xfer, xfer->len,
1236 1237
			xfer->tx_buf, &xfer->tx_dma,
			xfer->rx_buf, &xfer->rx_dma);
1238 1239
	}

1240 1241 1242
msg_done:
	if (!as->keep_cs)
		cs_deactivate(as, msg->spi);
1243

1244
	atmel_spi_unlock(as);
1245

1246 1247 1248 1249
	msg->status = as->done_status;
	spi_finalize_current_message(spi->master);

	return ret;
1250 1251
}

1252
static void atmel_spi_cleanup(struct spi_device *spi)
1253
{
1254
	struct atmel_spi_device	*asd = spi->controller_state;
1255
	unsigned		gpio = (unsigned long) spi->controller_data;
1256

1257
	if (!asd)
1258 1259
		return;

1260
	spi->controller_state = NULL;
1261
	gpio_free(gpio);
1262
	kfree(asd);
1263 1264
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static inline unsigned int atmel_get_version(struct atmel_spi *as)
{
	return spi_readl(as, VERSION) & 0x00000fff;
}

static void atmel_get_caps(struct atmel_spi *as)
{
	unsigned int version;

	version = atmel_get_version(as);
	dev_info(&as->pdev->dev, "version: 0x%x\n", version);

	as->caps.is_spi2 = version > 0x121;
	as->caps.has_wdrbt = version >= 0x210;
	as->caps.has_dma_support = version >= 0x212;
}

1282 1283
/*-------------------------------------------------------------------------*/

1284
static int atmel_spi_probe(struct platform_device *pdev)
1285 1286 1287 1288 1289 1290 1291 1292
{
	struct resource		*regs;
	int			irq;
	struct clk		*clk;
	int			ret;
	struct spi_master	*master;
	struct atmel_spi	*as;

W
Wenyou Yang 已提交
1293 1294 1295
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

1296 1297 1298 1299 1300 1301 1302 1303
	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!regs)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

J
Jingoo Han 已提交
1304
	clk = devm_clk_get(&pdev->dev, "spi_clk");
1305 1306 1307 1308 1309
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	/* setup spi core then atmel-specific driver state */
	ret = -ENOMEM;
1310
	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1311 1312 1313
	if (!master)
		goto out_free;

1314 1315
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1316
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1317
	master->dev.of_node = pdev->dev.of_node;
1318
	master->bus_num = pdev->id;
1319
	master->num_chipselect = master->dev.of_node ? 0 : 4;
1320
	master->setup = atmel_spi_setup;
1321
	master->transfer_one_message = atmel_spi_transfer_one_message;
1322
	master->cleanup = atmel_spi_cleanup;
1323
	master->auto_runtime_pm = true;
1324 1325 1326 1327
	platform_set_drvdata(pdev, master);

	as = spi_master_get_devdata(master);

D
David Brownell 已提交
1328 1329 1330 1331
	/*
	 * Scratch buffer is used for throwaway rx and tx data.
	 * It's coherent to minimize dcache pollution.
	 */
1332 1333 1334 1335 1336 1337
	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
					&as->buffer_dma, GFP_KERNEL);
	if (!as->buffer)
		goto out_free;

	spin_lock_init(&as->lock);
1338

1339
	as->pdev = pdev;
1340
	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1341 1342
	if (IS_ERR(as->regs)) {
		ret = PTR_ERR(as->regs);
1343
		goto out_free_buffer;
1344
	}
1345
	as->phybase = regs->start;
1346 1347 1348
	as->irq = irq;
	as->clk = clk;

1349 1350
	init_completion(&as->xfer_completion);

1351 1352
	atmel_get_caps(as);

1353 1354 1355 1356 1357 1358 1359
	as->use_cs_gpios = true;
	if (atmel_spi_is_v2(as) &&
	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
		as->use_cs_gpios = false;
		master->num_chipselect = 4;
	}

1360 1361 1362
	as->use_dma = false;
	as->use_pdc = false;
	if (as->caps.has_dma_support) {
1363 1364
		ret = atmel_spi_configure_dma(as);
		if (ret == 0)
1365
			as->use_dma = true;
1366 1367
		else if (ret == -EPROBE_DEFER)
			return ret;
1368 1369 1370 1371 1372 1373 1374 1375
	} else {
		as->use_pdc = true;
	}

	if (as->caps.has_dma_support && !as->use_dma)
		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");

	if (as->use_pdc) {
J
Jingoo Han 已提交
1376 1377
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
					0, dev_name(&pdev->dev), master);
1378
	} else {
J
Jingoo Han 已提交
1379 1380
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
					0, dev_name(&pdev->dev), master);
1381
	}
1382 1383 1384 1385
	if (ret)
		goto out_unmap_regs;

	/* Initialize the hardware */
1386 1387
	ret = clk_prepare_enable(clk);
	if (ret)
1388
		goto out_free_irq;
1389
	spi_writel(as, CR, SPI_BIT(SWRST));
1390
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1391 1392 1393 1394 1395 1396
	if (as->caps.has_wdrbt) {
		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
				| SPI_BIT(MSTR));
	} else {
		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
	}
1397 1398 1399

	if (as->use_pdc)
		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1400 1401 1402 1403 1404 1405
	spi_writel(as, CR, SPI_BIT(SPIEN));

	/* go! */
	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
			(unsigned long)regs->start, irq);

1406 1407 1408 1409 1410
	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

J
Jingoo Han 已提交
1411
	ret = devm_spi_register_master(&pdev->dev, master);
1412
	if (ret)
1413
		goto out_free_dma;
1414 1415 1416

	return 0;

1417
out_free_dma:
1418 1419 1420
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);

1421 1422 1423
	if (as->use_dma)
		atmel_spi_release_dma(as);

1424
	spi_writel(as, CR, SPI_BIT(SWRST));
1425
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
	clk_disable_unprepare(clk);
1427
out_free_irq:
1428 1429 1430 1431 1432 1433 1434 1435 1436
out_unmap_regs:
out_free_buffer:
	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);
out_free:
	spi_master_put(master);
	return ret;
}

1437
static int atmel_spi_remove(struct platform_device *pdev)
1438 1439 1440 1441
{
	struct spi_master	*master = platform_get_drvdata(pdev);
	struct atmel_spi	*as = spi_master_get_devdata(master);

1442 1443
	pm_runtime_get_sync(&pdev->dev);

1444 1445
	/* reset the hardware and block queue progress */
	spin_lock_irq(&as->lock);
1446 1447 1448 1449 1450
	if (as->use_dma) {
		atmel_spi_stop_dma(as);
		atmel_spi_release_dma(as);
	}

1451
	spi_writel(as, CR, SPI_BIT(SWRST));
1452
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1453 1454 1455 1456 1457 1458
	spi_readl(as, SR);
	spin_unlock_irq(&as->lock);

	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);

1459
	clk_disable_unprepare(as->clk);
1460

1461 1462 1463
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1464 1465 1466
	return 0;
}

1467
#ifdef CONFIG_PM
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static int atmel_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	clk_disable_unprepare(as->clk);
	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int atmel_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(as->clk);
}

1489
static int atmel_spi_suspend(struct device *dev)
1490
{
1491
	struct spi_master *master = dev_get_drvdata(dev);
1492 1493 1494 1495 1496 1497 1498 1499
	int ret;

	/* Stop the queue running */
	ret = spi_master_suspend(master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
	}
1500

1501 1502
	if (!pm_runtime_suspended(dev))
		atmel_spi_runtime_suspend(dev);
W
Wenyou Yang 已提交
1503

1504 1505 1506
	return 0;
}

1507
static int atmel_spi_resume(struct device *dev)
1508
{
1509
	struct spi_master *master = dev_get_drvdata(dev);
1510
	int ret;
1511

1512
	if (!pm_runtime_suspended(dev)) {
1513
		ret = atmel_spi_runtime_resume(dev);
1514 1515 1516
		if (ret)
			return ret;
	}
1517 1518 1519 1520 1521 1522 1523

	/* Start the queue running */
	ret = spi_master_resume(master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);

	return ret;
1524
}
1525 1526 1527 1528 1529 1530

static const struct dev_pm_ops atmel_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
			   atmel_spi_runtime_resume, NULL)
};
1531
#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1532
#else
1533
#define ATMEL_SPI_PM_OPS	NULL
1534 1535
#endif

1536 1537 1538 1539 1540 1541 1542 1543
#if defined(CONFIG_OF)
static const struct of_device_id atmel_spi_dt_ids[] = {
	{ .compatible = "atmel,at91rm9200-spi" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
#endif
1544 1545 1546 1547

static struct platform_driver atmel_spi_driver = {
	.driver		= {
		.name	= "atmel_spi",
1548
		.pm	= ATMEL_SPI_PM_OPS,
1549
		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1550
	},
1551
	.probe		= atmel_spi_probe,
1552
	.remove		= atmel_spi_remove,
1553
};
1554
module_platform_driver(atmel_spi_driver);
1555 1556

MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
J
Jean Delvare 已提交
1557
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1558
MODULE_LICENSE("GPL");
1559
MODULE_ALIAS("platform:atmel_spi");