rx.c 58.6 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5
 * Copyright(c) 2016 Intel Deutschland GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Portions of this file are derived from the ipw3945 project, as well
 * as portions of the ieee80211 subsystem header files.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
27
 *  Intel Linux Wireless <linuxwifi@intel.com>
28 29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
33
#include <linux/gfp.h>
34

35
#include "iwl-prph.h"
36
#include "iwl-io.h"
37
#include "internal.h"
38
#include "iwl-op-mode.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
98 99
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100
 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 102
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
103 104 105 106
 *
 *
 * Driver sequence:
 *
107 108
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109 110
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
111
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112
 *                            queue, updates firmware pointers, and updates
113 114
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
115 116
 *
 * -- enable interrupts --
117
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118 119
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
120
 *                            Posts and claims requests to the allocator.
121
 *                            Calls iwl_pcie_rxq_restock to refill any empty
122
 *                            slots.
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
135 136 137 138
 * ...
 *
 */

139 140
/*
 * iwl_rxq_space - Return number of free slots available in queue.
141
 */
142
static int iwl_rxq_space(const struct iwl_rxq *rxq)
143
{
144 145
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146

147 148 149 150 151 152
	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
153
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 155
}

156 157 158 159 160 161 162 163
/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

164 165 166
/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
167 168
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
169 170 171 172 173 174 175 176 177 178
	if (trans->cfg->mq_rx_supported) {
		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
	} else {
		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
					   1000);
	}
179 180
}

181 182
/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183
 */
184 185
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
186 187 188
{
	u32 reg;

189
	lockdep_assert_held(&rxq->lock);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 206
			rxq->need_update = true;
			return;
207 208
		}
	}
209 210

	rxq->write_actual = round_down(rxq->write, 8);
211
	if (trans->cfg->mq_rx_supported)
212 213
		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
			    rxq->write_actual);
214 215
	else
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 217 218 219 220
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221
	int i;
222

223 224
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225

226 227 228 229 230 231 232
		if (!rxq->need_update)
			continue;
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock(&rxq->lock);
	}
233 234
}

235
/*
236
 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
237
 */
238 239
static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock(&rxq->lock);
	while (rxq->free_count) {
		__le64 *bd = (__le64 *)rxq->bd;

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
S
Sara Sharon 已提交
262
		rxb->invalid = false;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		/* 12 first bits are expected to be empty */
		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
		rxq->free_count--;
	}
	spin_unlock(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock(&rxq->lock);
	}
}

283
/*
284
 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
285
 */
286 287
static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
288 289 290
{
	struct iwl_rx_mem_buffer *rxb;

291 292 293
	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
294 295 296
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
297 298
	 * So don't try to restock if the APM has been already stopped.
	 */
299
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300 301
		return;

302
	spin_lock(&rxq->lock);
303
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304
		__le32 *bd = (__le32 *)rxq->bd;
305 306 307 308 309
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
J
Johannes Berg 已提交
310 311 312
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
S
Sara Sharon 已提交
313
		rxb->invalid = false;
314 315

		/* Point to Rx buffer via next RBD in circular buffer */
316
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317 318 319 320
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
321
	spin_unlock(&rxq->lock);
322 323 324 325

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
326
		spin_lock(&rxq->lock);
327
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328
		spin_unlock(&rxq->lock);
329 330 331
	}
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	if (trans->cfg->mq_rx_supported)
347
		iwl_pcie_rxmq_restock(trans, rxq);
348
	else
349
		iwl_pcie_rxsq_restock(trans, rxq);
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
372 373 374
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
375
`		 */
376
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377
			IWL_CRIT(trans,
378
				 "Failed to alloc_pages\n");
379 380 381 382 383
		return NULL;
	}
	return page;
}

384
/*
385
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
386
 *
387 388 389
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
390
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391
 * allocated buffers.
392
 */
393 394
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
				   struct iwl_rxq *rxq)
395
{
396
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397 398 399 400
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
401
		spin_lock(&rxq->lock);
402
		if (list_empty(&rxq->rx_used)) {
403
			spin_unlock(&rxq->lock);
404 405
			return;
		}
406
		spin_unlock(&rxq->lock);
407 408

		/* Alloc a new receive buffer */
409 410
		page = iwl_pcie_rx_alloc_page(trans, priority);
		if (!page)
411 412
			return;

413
		spin_lock(&rxq->lock);
414 415

		if (list_empty(&rxq->rx_used)) {
416
			spin_unlock(&rxq->lock);
417
			__free_pages(page, trans_pcie->rx_page_order);
418 419
			return;
		}
J
Johannes Berg 已提交
420 421 422
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
423
		spin_unlock(&rxq->lock);
424 425 426 427

		BUG_ON(rxb->page);
		rxb->page = page;
		/* Get physical address of the RB */
428 429 430 431
		rxb->page_dma =
			dma_map_page(trans->dev, page, 0,
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
432 433
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
434
			spin_lock(&rxq->lock);
435
			list_add(&rxb->list, &rxq->rx_used);
436
			spin_unlock(&rxq->lock);
437 438 439
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
440

441
		spin_lock(&rxq->lock);
442 443 444 445

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

446
		spin_unlock(&rxq->lock);
447 448 449
	}
}

450
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
451 452 453 454
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

455
	for (i = 0; i < RX_POOL_SIZE; i++) {
456
		if (!trans_pcie->rx_pool[i].page)
457
			continue;
458
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459 460
			       PAGE_SIZE << trans_pcie->rx_page_order,
			       DMA_FROM_DEVICE);
461 462 463
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
464 465 466
	}
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_xchg(&rba->req_pending, 0);

	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock(&rba->lock);

	while (pending) {
		int i;
490
		LIST_HEAD(local_allocated);
491 492 493 494 495
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
513
			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page, 0,
					PAGE_SIZE << trans_pcie->rx_page_order,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		pending--;
		if (!pending) {
			pending = atomic_xchg(&rba->req_pending, 0);
			IWL_DEBUG_RX(trans,
				     "Pending allocation requests = %d\n",
				     pending);
		}

		spin_lock(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_ready);
	}

	spin_lock(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
558
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
559 560 561
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
562 563
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
564
 */
565 566
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
567 568 569 570 571
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

572 573
	lockdep_assert_held(&rxq->lock);

574 575 576
	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577
	 * function will return early, as there are no ready requests.
578 579 580 581 582
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
583
		return;
584 585 586 587

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
588 589 590 591 592
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
593 594 595
	}
	spin_unlock(&rba->lock);

596 597
	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
598 599 600
}

static void iwl_pcie_rx_allocator_work(struct work_struct *data)
601
{
602 603
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
604
	struct iwl_trans_pcie *trans_pcie =
605
		container_of(rba_p, struct iwl_trans_pcie, rba);
606

607
	iwl_pcie_rx_allocator(trans_pcie->trans);
608 609
}

610 611 612
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
614
	struct device *dev = trans->dev;
615
	int i;
616 617
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
						      sizeof(__le32);
618

619 620 621 622 623 624 625
	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	if (!trans_pcie->rxq)
		return -EINVAL;
626

627
	spin_lock_init(&rba->lock);
628

629 630
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
631

632
		spin_lock_init(&rxq->lock);
633 634 635 636 637
		if (trans->cfg->mq_rx_supported)
			rxq->queue_size = MQ_RX_TABLE_SIZE;
		else
			rxq->queue_size = RX_QUEUE_SIZE;

638 639 640 641 642
		/*
		 * Allocate the circular buffer of Read Buffer Descriptors
		 * (RBDs)
		 */
		rxq->bd = dma_zalloc_coherent(dev,
643 644
					     free_size * rxq->queue_size,
					     &rxq->bd_dma, GFP_KERNEL);
645 646
		if (!rxq->bd)
			goto err;
647

648 649 650 651 652 653 654 655 656
		if (trans->cfg->mq_rx_supported) {
			rxq->used_bd = dma_zalloc_coherent(dev,
							   sizeof(__le32) *
							   rxq->queue_size,
							   &rxq->used_bd_dma,
							   GFP_KERNEL);
			if (!rxq->used_bd)
				goto err;
		}
657

658 659 660 661 662 663 664
		/*Allocate the driver's pointer to receive buffer status */
		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
						   &rxq->rb_stts_dma,
						   GFP_KERNEL);
		if (!rxq->rb_stts)
			goto err;
	}
665 666
	return 0;

667 668 669 670 671
err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
672
			dma_free_coherent(dev, free_size * rxq->queue_size,
673 674 675 676 677 678 679 680
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
681 682 683 684 685 686

		if (rxq->used_bd)
			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
687 688
	}
	kfree(trans_pcie->rxq);
689

690
	return -ENOMEM;
691 692
}

693 694 695 696
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
697
	unsigned long flags;
698 699
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

700 701 702 703 704
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
705
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
706 707 708 709 710 711
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
712
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
713
	}
714

715 716 717
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

718
	/* Stop Rx DMA */
719
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
720
	/* reset and flush pointers */
721 722 723
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
724 725

	/* Reset driver's Rx queue write index */
726
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
727 728

	/* Tell device where to find RBD circular buffer in DRAM */
729 730
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
		    (u32)(rxq->bd_dma >> 8));
731 732

	/* Tell device where in DRAM to update its Rx status */
733 734
	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
		    rxq->rb_stts_dma >> 4);
735 736 737 738 739

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
740
	 * Rx buffer size 4 or 8k or 12k
741 742 743
	 * RB timeout 0x10
	 * 256 RBDs
	 */
744 745 746 747 748 749 750 751 752
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
		    rb_size |
		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	iwl_trans_release_nic_access(trans, &flags);
753 754 755

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
756 757 758 759

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
{
	/*
	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
	 * values.
	 * This costs some power, but needed for W/A 9000 integrated A-step
	 * bug where shadow registers are not in the retention list and their
	 * value is lost when NIC powers down
	 */
	if (trans->cfg->integrated) {
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
			    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
			    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
	}
}

779
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
780
{
781 782
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
783
	unsigned long flags;
784
	int i;
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}
800

801 802 803
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

804
	/* Stop Rx DMA */
805
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
806
	/* disable free amd used rx queue operation */
807
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
808

809 810
	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
811 812 813
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_FRBDCB_BA_LSB(i),
					 trans_pcie->rxq[i].bd_dma);
814
		/* Tell device where to find RBD used table in DRAM */
815 816 817
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_URBDCB_BA_LSB(i),
					 trans_pcie->rxq[i].used_bd_dma);
818
		/* Tell device where in DRAM to update its Rx status */
819 820 821
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_URBD_STTS_WPTR_LSB(i),
					 trans_pcie->rxq[i].rb_stts_dma);
822
		/* Reset device indice tables */
823 824 825
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
826 827 828

		enabled |= BIT(i) | BIT(i + 16);
	}
829

830 831 832 833
	/*
	 * Enable Rx DMA
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
834
	 * Drop frames that exceed RB size
835 836
	 * 512 RBDs
	 */
837
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
838
			       RFH_DMA_EN_ENABLE_VAL | rb_size |
839 840 841
			       RFH_RXF_DMA_MIN_RB_4_8 |
			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
			       RFH_RXF_DMA_RBDCB_SIZE_512);
842

843 844
	/*
	 * Activate DMA snooping.
845
	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
846 847
	 * Default queue is 0
	 */
848 849 850
	iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
			       (DEFAULT_RXQ_NUM <<
				RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
851 852 853 854 855
			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
			       (trans->cfg->integrated ?
				RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
				RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
			       RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
856
	/* Enable the relevant rx queues */
857 858 859
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);

	iwl_trans_release_nic_access(trans, &flags);
860

861 862
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
863 864

	iwl_pcie_enable_rx_wake(trans, true);
865 866
}

867
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
868
{
869
	lockdep_assert_held(&rxq->lock);
870

871 872 873 874
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
875 876
}

877 878 879 880 881 882
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
{
	WARN_ON(1);
	return 0;
}

883 884 885
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
886
	struct iwl_rxq *def_rxq;
887
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
888
	int i, err, queue_size, allocator_pool_size, num_alloc;
889

890
	if (!trans_pcie->rxq) {
891 892 893 894
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
895
	def_rxq = trans_pcie->rxq;
896 897 898 899 900 901 902 903
	if (!rba->alloc_wq)
		rba->alloc_wq = alloc_workqueue("rb_allocator",
						WQ_HIGHPRI | WQ_UNBOUND, 1);
	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);

	spin_lock(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
904 905
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
906
	spin_unlock(&rba->lock);
907

908
	/* free all first - we might be reconfigured for a different size */
909
	iwl_pcie_free_rbs_pool(trans);
910 911

	for (i = 0; i < RX_QUEUE_SIZE; i++)
912
		def_rxq->queue[i] = NULL;
913

914 915 916
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

917 918
		rxq->id = i;

919 920 921 922 923 924 925 926 927 928
		spin_lock(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
929

930 931
		iwl_pcie_rx_init_rxb_lists(rxq);

932 933 934 935
		if (!rxq->napi.poll)
			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       iwl_pcie_dummy_napi_poll, 64);

936 937
		spin_unlock(&rxq->lock);
	}
938

939
	/* move the pool to the default queue and allocator ownerships */
940 941
	queue_size = trans->cfg->mq_rx_supported ?
		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
942 943
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
944
	num_alloc = queue_size + allocator_pool_size;
945 946
	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
		     ARRAY_SIZE(trans_pcie->rx_pool));
947
	for (i = 0; i < num_alloc; i++) {
948 949 950 951 952 953 954
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
S
Sara Sharon 已提交
955
		rxb->vid = (u16)(i + 1);
S
Sara Sharon 已提交
956
		rxb->invalid = true;
957
	}
958

959
	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
960 961

	if (trans->cfg->mq_rx_supported)
962
		iwl_pcie_rx_mq_hw_init(trans);
963
	else
964
		iwl_pcie_rx_hw_init(trans, def_rxq);
965 966

	iwl_pcie_rxq_restock(trans, def_rxq);
967 968 969 970

	spin_lock(&def_rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
	spin_unlock(&def_rxq->lock);
971 972 973 974 975 976 977

	return 0;
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
978
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
979 980
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
					      sizeof(__le32);
981
	int i;
982

983 984 985 986 987
	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
988 989 990 991
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

992 993 994 995 996 997
	cancel_work_sync(&rba->rx_alloc);
	if (rba->alloc_wq) {
		destroy_workqueue(rba->alloc_wq);
		rba->alloc_wq = NULL;
	}

998 999 1000 1001 1002 1003 1004
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
			dma_free_coherent(trans->dev,
1005
					  free_size * rxq->queue_size,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
		else
			IWL_DEBUG_INFO(trans,
				       "Free rxq->rb_stts which is NULL\n");
1017

1018 1019 1020 1021 1022 1023
		if (rxq->used_bd)
			dma_free_coherent(trans->dev,
					  sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
1024 1025 1026

		if (rxq->napi.poll)
			netif_napi_del(&rxq->napi);
1027
	}
1028
	kfree(trans_pcie->rxq);
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		spin_lock(&rba->lock);
		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

1071
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1072
				struct iwl_rxq *rxq,
1073 1074
				struct iwl_rx_mem_buffer *rxb,
				bool emergency)
J
Johannes Berg 已提交
1075 1076
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1077
	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1078
	bool page_stolen = false;
1079
	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1080
	u32 offset = 0;
J
Johannes Berg 已提交
1081 1082 1083 1084

	if (WARN_ON(!rxb))
		return;

1085 1086 1087 1088 1089 1090
	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		u16 sequence;
		bool reclaim;
1091
		int index, cmd_index, len;
1092 1093
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = offset,
1094
			._rx_page_order = trans_pcie->rx_page_order,
1095 1096
			._page = rxb->page,
			._page_stolen = false,
1097
			.truesize = max_len,
1098 1099 1100 1101 1102 1103 1104
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
			break;

1105 1106 1107
		WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
			FH_RSCSR_RXQ_POS != rxq->id);

1108
		IWL_DEBUG_RX(trans,
1109
			     "cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1110
			     rxcb._offset,
1111 1112 1113 1114
			     iwl_get_cmd_string(trans,
						iwl_cmd_id(pkt->hdr.cmd,
							   pkt->hdr.group_id,
							   0)),
1115 1116
			     pkt->hdr.group_id, pkt->hdr.cmd,
			     le16_to_cpu(pkt->hdr.sequence));
1117

1118
		len = iwl_rx_packet_len(pkt);
1119
		len += sizeof(u32); /* account for status word */
1120 1121
		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
1139 1140
			}
		}
J
Johannes Berg 已提交
1141

1142 1143
		sequence = le16_to_cpu(pkt->hdr.sequence);
		index = SEQ_TO_INDEX(sequence);
1144
		cmd_index = get_cmd_index(txq, index);
1145

1146 1147 1148 1149 1150 1151
		if (rxq->id == 0)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);
1152

1153
		if (reclaim) {
1154
			kzfree(txq->entries[cmd_index].free_buf);
1155
			txq->entries[cmd_index].free_buf = NULL;
1156 1157
		}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim) {
			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
1169
				iwl_pcie_hcmd_complete(trans, &rxcb);
1170 1171 1172 1173 1174 1175
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
J
Johannes Berg 已提交
1176 1177
	}

1178 1179
	/* page was stolen from us -- free our reference */
	if (page_stolen) {
1180
		__free_pages(rxb->page, trans_pcie->rx_page_order);
J
Johannes Berg 已提交
1181
		rxb->page = NULL;
1182
	}
J
Johannes Berg 已提交
1183 1184 1185 1186 1187 1188 1189

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, 0,
1190 1191
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
1192 1193 1194 1195 1196 1197 1198 1199
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
1200
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1201 1202 1203 1204
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
J
Johannes Berg 已提交
1205
	} else
1206
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
J
Johannes Berg 已提交
1207 1208
}

1209 1210
/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1211
 */
1212
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1213
{
J
Johannes Berg 已提交
1214
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1215
	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1216
	u32 r, i, count = 0;
1217
	bool emergency = false;
1218

1219 1220
restart:
	spin_lock(&rxq->lock);
1221 1222
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
1223
	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1224 1225
	i = rxq->read;

1226 1227 1228
	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

1229 1230
	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
1231
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1232 1233

	while (i != r) {
1234
		struct iwl_rx_mem_buffer *rxb;
1235

1236
		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1237 1238
			emergency = true;

1239 1240 1241 1242 1243
		if (trans->cfg->mq_rx_supported) {
			/*
			 * used_bd is a 32 bit but only 12 are used to retrieve
			 * the vid
			 */
1244
			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1245

S
Sara Sharon 已提交
1246 1247 1248 1249
			if (WARN(!vid ||
				 vid > ARRAY_SIZE(trans_pcie->global_table),
				 "Invalid rxb index from HW %u\n", (u32)vid)) {
				iwl_force_nmi(trans);
1250
				goto out;
S
Sara Sharon 已提交
1251 1252
			}
			rxb = trans_pcie->global_table[vid - 1];
S
Sara Sharon 已提交
1253 1254 1255 1256 1257 1258
			if (WARN(rxb->invalid,
				 "Invalid rxb from HW %u\n", (u32)vid)) {
				iwl_force_nmi(trans);
				goto out;
			}
			rxb->invalid = true;
1259 1260 1261 1262
		} else {
			rxb = rxq->queue[i];
			rxq->queue[i] = NULL;
		}
1263

1264
		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1265
		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1266

1267
		i = (i + 1) & (rxq->queue_size - 1);
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1280 1281
			struct iwl_rb_allocator *rba = &trans_pcie->rba;

1282 1283 1284 1285 1286
			/* Add the remaining empty RBDs for allocator use */
			spin_lock(&rba->lock);
			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
			spin_unlock(&rba->lock);
		} else if (emergency) {
1287
			count++;
1288
			if (count == 8) {
1289
				count = 0;
1290
				if (rxq->used_count < rxq->queue_size / 3)
1291
					emergency = false;
1292 1293

				rxq->read = i;
1294
				spin_unlock(&rxq->lock);
1295
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1296
				iwl_pcie_rxq_restock(trans, rxq);
1297 1298
				goto restart;
			}
1299
		}
1300
	}
1301
out:
1302 1303
	/* Backtrack one entry */
	rxq->read = i;
1304 1305
	spin_unlock(&rxq->lock);

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
1319
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1320

1321 1322
	if (rxq->napi.poll)
		napi_gro_flush(&rxq->napi, false);
1323 1324

	iwl_pcie_rxq_restock(trans, rxq);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
				      struct msix_entry *entry)
{
	/*
	 * Before sending the interrupt the HW disables it to prevent
	 * a nested interrupt. This is done by writing 1 to the corresponding
	 * bit in the mask register. After handling the interrupt, it should be
	 * re-enabled by clearing this bit. This register is defined as
	 * write 1 clear (W1C) register, meaning that it's being clear
	 * by writing 1 to the bit.
	 */
1346
	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;

1359 1360 1361
	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	local_bh_disable();
	iwl_pcie_rx_handle(trans, entry->entry);
	local_bh_enable();

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

1375 1376
/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1377
 */
1378
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1379
{
1380
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1381
	int i;
1382

1383
	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1384
	if (trans->cfg->internal_wimax_coex &&
1385
	    !trans->cfg->apmg_not_supported &&
1386
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1387
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1388
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1389
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1390
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1391
		iwl_op_mode_wimax_active(trans->op_mode);
1392
		wake_up(&trans_pcie->wait_command_queue);
1393 1394 1395
		return;
	}

1396
	iwl_pcie_dump_csr(trans);
1397
	iwl_dump_fh(trans, NULL);
1398

1399
	local_bh_disable();
1400 1401 1402
	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans);
1403
	local_bh_enable();
1404

1405 1406 1407
	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
		del_timer(&trans_pcie->txq[i].stuck_timer);

1408 1409
	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans_pcie->wait_command_queue);
1410 1411
}

1412
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1413 1414 1415
{
	u32 inta;

1416
	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1417 1418 1419 1420 1421 1422 1423

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
1424
	return inta;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
1440
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1454 1455
	if (!read)
		return 0;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
1467
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
1489
	return inta;
1490 1491
}

1492
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1493
{
1494
	struct iwl_trans *trans = dev_id;
1495 1496
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1497 1498 1499
	u32 inta = 0;
	u32 handled = 0;

1500 1501
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

1502
	spin_lock(&trans_pcie->irq_lock);
1503

1504 1505 1506 1507
	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
1508
		inta = iwl_pcie_int_cause_ict(trans);
1509
	else
1510
		inta = iwl_pcie_int_cause_non_ict(trans);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
1531
	if (unlikely(!inta)) {
1532 1533 1534 1535 1536 1537
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1538
			_iwl_enable_interrupts(trans);
1539
		spin_unlock(&trans_pcie->irq_lock);
1540 1541 1542 1543
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

1544 1545 1546 1547 1548 1549
	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1550
		spin_unlock(&trans_pcie->irq_lock);
1551
		goto out;
1552 1553
	}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
1565
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1566

1567
	if (iwl_have_debug_level(IWL_DL_ISR))
1568
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1569
			      inta, iwl_read32(trans, CSR_INT_MASK));
1570

1571
	spin_unlock(&trans_pcie->irq_lock);
1572

1573 1574
	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
1575
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1576 1577

		/* Tell the device to stop sending interrupts */
1578
		iwl_disable_interrupts(trans);
1579

1580
		isr_stats->hw++;
1581
		iwl_pcie_irq_handle_error(trans);
1582 1583 1584

		handled |= CSR_INT_BIT_HW_ERR;

1585
		goto out;
1586 1587
	}

1588
	if (iwl_have_debug_level(IWL_DL_ISR)) {
1589 1590
		/* NIC fires this, but we don't use it, redundant with WAKEUP */
		if (inta & CSR_INT_BIT_SCD) {
1591 1592
			IWL_DEBUG_ISR(trans,
				      "Scheduler finished to transmit the frame/frames.\n");
1593
			isr_stats->sch++;
1594 1595 1596 1597
		}

		/* Alive notification via Rx interrupt will do the real work */
		if (inta & CSR_INT_BIT_ALIVE) {
1598
			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1599
			isr_stats->alive++;
1600 1601
		}
	}
1602

1603 1604 1605 1606 1607
	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
1608
		bool hw_rfkill;
1609

1610
		mutex_lock(&trans_pcie->mutex);
1611
		hw_rfkill = iwl_is_rfkill_set(trans);
1612
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1613
			 hw_rfkill ? "disable radio" : "enable radio");
1614

1615
		isr_stats->rfkill++;
1616

1617
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1618
		mutex_unlock(&trans_pcie->mutex);
1619
		if (hw_rfkill) {
1620 1621 1622
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
1623 1624 1625 1626
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
1627
			clear_bit(STATUS_RFKILL, &trans->status);
1628
		}
1629 1630 1631 1632 1633 1634

		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
1635
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1636
		isr_stats->ctkill++;
1637 1638 1639 1640 1641
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
1642
		IWL_ERR(trans, "Microcode SW error detected. "
1643
			" Restarting 0x%X.\n", inta);
1644
		isr_stats->sw++;
1645
		iwl_pcie_irq_handle_error(trans);
1646 1647 1648 1649 1650
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
1651
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1652
		iwl_pcie_rxq_check_wrptr(trans);
1653
		iwl_pcie_txq_check_wrptrs(trans);
1654

1655
		isr_stats->wakeup++;
1656 1657 1658 1659 1660 1661 1662 1663

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1664
		    CSR_INT_BIT_RX_PERIODIC)) {
1665
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1666 1667
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1668
			iwl_write32(trans, CSR_FH_INT_STATUS,
1669 1670 1671 1672
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
1673
			iwl_write32(trans,
1674
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		}
		/* Sending RX interrupt require many steps to be done in the
		 * the device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
1688
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1689
			    CSR_INT_PERIODIC_DIS);
1690

1691 1692 1693 1694 1695 1696 1697 1698
		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1699
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1700
				   CSR_INT_PERIODIC_ENA);
1701

1702
		isr_stats->rx++;
1703 1704

		local_bh_disable();
1705
		iwl_pcie_rx_handle(trans, 0);
1706
		local_bh_enable();
1707 1708 1709 1710
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
1711
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1712
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1713
		isr_stats->tx++;
1714 1715
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
1716 1717
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
1718 1719 1720
	}

	if (inta & ~handled) {
1721
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1722
		isr_stats->unhandled++;
1723 1724
	}

1725 1726 1727
	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
1728 1729
	}

1730 1731 1732 1733
	spin_lock(&trans_pcie->irq_lock);
	/* only Re-enable all interrupt if disabled by irq */
	if (test_bit(STATUS_INT_ENABLED, &trans->status))
		_iwl_enable_interrupts(trans);
1734
	/* we are loading the firmware, enable FH_TX interrupt only */
1735
	else if (handled & CSR_INT_BIT_FH_TX)
1736
		iwl_enable_fw_load_int(trans);
1737
	/* Re-enable RF_KILL if it occurred */
1738 1739
	else if (handled & CSR_INT_BIT_RF_KILL)
		iwl_enable_rfkill_int(trans);
1740
	spin_unlock(&trans_pcie->irq_lock);
1741 1742 1743 1744

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
1745 1746
}

1747 1748 1749 1750 1751
/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/
1752

1753
/* Free dram table */
1754
void iwl_pcie_free_ict(struct iwl_trans *trans)
1755
{
1756
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1757

1758
	if (trans_pcie->ict_tbl) {
1759
		dma_free_coherent(trans->dev, ICT_SIZE,
1760
				  trans_pcie->ict_tbl,
1761
				  trans_pcie->ict_tbl_dma);
1762 1763
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
1764 1765 1766
	}
}

1767 1768 1769
/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
1770 1771
 * also reset all data related to ICT table interrupt.
 */
1772
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1773
{
1774
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1775

1776
	trans_pcie->ict_tbl =
1777
		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1778 1779 1780
				   &trans_pcie->ict_tbl_dma,
				   GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
1781 1782
		return -ENOMEM;

1783 1784
	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1785
		iwl_pcie_free_ict(trans);
1786 1787
		return -EINVAL;
	}
1788 1789 1790 1791 1792 1793 1794

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
1795
void iwl_pcie_reset_ict(struct iwl_trans *trans)
1796
{
1797
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1798 1799
	u32 val;

1800
	if (!trans_pcie->ict_tbl)
1801
		return;
1802

1803
	spin_lock(&trans_pcie->irq_lock);
1804
	_iwl_disable_interrupts(trans);
1805

1806
	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1807

1808
	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1809

1810 1811 1812
	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1813

1814
	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1815

1816
	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1817 1818
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
1819
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1820
	_iwl_enable_interrupts(trans);
1821
	spin_unlock(&trans_pcie->irq_lock);
1822 1823 1824
}

/* Device is going down disable ict interrupt usage */
1825
void iwl_pcie_disable_ict(struct iwl_trans *trans)
1826
{
1827
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1828

1829
	spin_lock(&trans_pcie->irq_lock);
1830
	trans_pcie->use_ict = false;
1831
	spin_unlock(&trans_pcie->irq_lock);
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

1848
	return IRQ_WAKE_THREAD;
1849
}
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
1861
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1862 1863 1864 1865 1866
	u32 inta_fh, inta_hw;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock(&trans_pcie->irq_lock);
1867 1868
	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1869 1870 1871
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
1872 1873
	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	spin_unlock(&trans_pcie->irq_lock);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
			      inta_fh,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
		local_bh_disable();
		iwl_pcie_rx_handle(trans, 0);
		local_bh_enable();
	}

	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
		local_bh_disable();
		iwl_pcie_rx_handle(trans, 1);
		local_bh_enable();
	}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
	}

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans,
			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
			      inta_hw,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
	}

	/* uCode wakes up after power-down sleep */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
		bool hw_rfkill;

1955
		mutex_lock(&trans_pcie->mutex);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		hw_rfkill = iwl_is_rfkill_set(trans);
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
			 hw_rfkill ? "disable radio" : "enable radio");

		isr_stats->rfkill++;

		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
		mutex_unlock(&trans_pcie->mutex);
		if (hw_rfkill) {
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
			clear_bit(STATUS_RFKILL, &trans->status);
		}
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);
	}

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}