rx.c 57.9 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5
 * Copyright(c) 2016 Intel Deutschland GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Portions of this file are derived from the ipw3945 project, as well
 * as portions of the ieee80211 subsystem header files.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
27
 *  Intel Linux Wireless <linuxwifi@intel.com>
28 29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
33
#include <linux/gfp.h>
34

35
#include "iwl-prph.h"
36
#include "iwl-io.h"
37
#include "internal.h"
38
#include "iwl-op-mode.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
98 99
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100
 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 102
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
103 104 105 106
 *
 *
 * Driver sequence:
 *
107 108
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109 110
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
111
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112
 *                            queue, updates firmware pointers, and updates
113 114
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
115 116
 *
 * -- enable interrupts --
117
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118 119
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
120
 *                            Posts and claims requests to the allocator.
121
 *                            Calls iwl_pcie_rxq_restock to refill any empty
122
 *                            slots.
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
135 136 137 138
 * ...
 *
 */

139 140
/*
 * iwl_rxq_space - Return number of free slots available in queue.
141
 */
142
static int iwl_rxq_space(const struct iwl_rxq *rxq)
143
{
144 145
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146

147 148 149 150 151 152
	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
153
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 155
}

156 157 158 159 160 161 162 163
/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

164 165
static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans *trans, u64 ofs,
					   u64 val)
166
{
167 168
	iwl_write_prph_no_grab(trans, ofs, val & 0xffffffff);
	iwl_write_prph_no_grab(trans, ofs + 4, val >> 32);
169 170
}

171 172 173
/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
174 175 176 177 178 179 180
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
	return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
				   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
}

181 182
/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183
 */
184 185
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
186 187 188
{
	u32 reg;

189
	lockdep_assert_held(&rxq->lock);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 206
			rxq->need_update = true;
			return;
207 208
		}
	}
209 210

	rxq->write_actual = round_down(rxq->write, 8);
211
	if (trans->cfg->mq_rx_supported)
212 213
		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
			    rxq->write_actual);
214 215
	else
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 217 218 219 220
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221
	int i;
222

223 224
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225

226 227 228 229 230 231 232
		if (!rxq->need_update)
			continue;
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock(&rxq->lock);
	}
233 234
}

235 236 237
/*
 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
 */
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock(&rxq->lock);
	while (rxq->free_count) {
		__le64 *bd = (__le64 *)rxq->bd;

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);

		/* 12 first bits are expected to be empty */
		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
		rxq->free_count--;
	}
	spin_unlock(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock(&rxq->lock);
	}
}

283
/*
284
 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
285
 */
286 287
static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
288 289 290
{
	struct iwl_rx_mem_buffer *rxb;

291 292 293
	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
294 295 296
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
297 298
	 * So don't try to restock if the APM has been already stopped.
	 */
299
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300 301
		return;

302
	spin_lock(&rxq->lock);
303
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304
		__le32 *bd = (__le32 *)rxq->bd;
305 306 307 308 309
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
J
Johannes Berg 已提交
310 311 312
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
313 314

		/* Point to Rx buffer via next RBD in circular buffer */
315
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
316 317 318 319
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
320
	spin_unlock(&rxq->lock);
321 322 323 324

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
325
		spin_lock(&rxq->lock);
326
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
327
		spin_unlock(&rxq->lock);
328 329 330
	}
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	if (trans->cfg->mq_rx_supported)
		iwl_pcie_rxq_mq_restock(trans, rxq);
	else
		iwl_pcie_rxq_sq_restock(trans, rxq);
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
371 372 373
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
374
`		 */
375
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
376
			IWL_CRIT(trans,
377
				 "Failed to alloc_pages\n");
378 379 380 381 382
		return NULL;
	}
	return page;
}

383
/*
384
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
385
 *
386 387 388
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
389
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
390
 * allocated buffers.
391
 */
392 393
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
				   struct iwl_rxq *rxq)
394
{
395
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
396 397 398 399
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
400
		spin_lock(&rxq->lock);
401
		if (list_empty(&rxq->rx_used)) {
402
			spin_unlock(&rxq->lock);
403 404
			return;
		}
405
		spin_unlock(&rxq->lock);
406 407

		/* Alloc a new receive buffer */
408 409
		page = iwl_pcie_rx_alloc_page(trans, priority);
		if (!page)
410 411
			return;

412
		spin_lock(&rxq->lock);
413 414

		if (list_empty(&rxq->rx_used)) {
415
			spin_unlock(&rxq->lock);
416
			__free_pages(page, trans_pcie->rx_page_order);
417 418
			return;
		}
J
Johannes Berg 已提交
419 420 421
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
422
		spin_unlock(&rxq->lock);
423 424 425 426

		BUG_ON(rxb->page);
		rxb->page = page;
		/* Get physical address of the RB */
427 428 429 430
		rxb->page_dma =
			dma_map_page(trans->dev, page, 0,
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
431 432
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
433
			spin_lock(&rxq->lock);
434
			list_add(&rxb->list, &rxq->rx_used);
435
			spin_unlock(&rxq->lock);
436 437 438
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
439

440
		spin_lock(&rxq->lock);
441 442 443 444

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

445
		spin_unlock(&rxq->lock);
446 447 448
	}
}

449
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
450 451 452 453
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

454
	for (i = 0; i < RX_POOL_SIZE; i++) {
455
		if (!trans_pcie->rx_pool[i].page)
456
			continue;
457
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
458 459
			       PAGE_SIZE << trans_pcie->rx_page_order,
			       DMA_FROM_DEVICE);
460 461 462
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
463 464 465
	}
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_xchg(&rba->req_pending, 0);

	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock(&rba->lock);

	while (pending) {
		int i;
		struct list_head local_allocated;
490 491 492 493 494
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

		INIT_LIST_HEAD(&local_allocated);

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
514
			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page, 0,
					PAGE_SIZE << trans_pcie->rx_page_order,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		pending--;
		if (!pending) {
			pending = atomic_xchg(&rba->req_pending, 0);
			IWL_DEBUG_RX(trans,
				     "Pending allocation requests = %d\n",
				     pending);
		}

		spin_lock(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_ready);
	}

	spin_lock(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
559
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
560 561 562
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
563 564
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
565
 */
566 567
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
568 569 570 571 572
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

573 574
	lockdep_assert_held(&rxq->lock);

575 576 577
	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
578
	 * function will return early, as there are no ready requests.
579 580 581 582 583
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
584
		return;
585 586 587 588

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
589 590 591 592 593
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
594 595 596
	}
	spin_unlock(&rba->lock);

597 598
	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
599 600 601
}

static void iwl_pcie_rx_allocator_work(struct work_struct *data)
602
{
603 604
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
605
	struct iwl_trans_pcie *trans_pcie =
606
		container_of(rba_p, struct iwl_trans_pcie, rba);
607

608
	iwl_pcie_rx_allocator(trans_pcie->trans);
609 610
}

611 612 613
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
614
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
615
	struct device *dev = trans->dev;
616
	int i;
617 618
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
						      sizeof(__le32);
619

620 621 622 623 624 625 626
	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	if (!trans_pcie->rxq)
		return -EINVAL;
627

628
	spin_lock_init(&rba->lock);
629

630 631
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
632

633
		spin_lock_init(&rxq->lock);
634 635 636 637 638
		if (trans->cfg->mq_rx_supported)
			rxq->queue_size = MQ_RX_TABLE_SIZE;
		else
			rxq->queue_size = RX_QUEUE_SIZE;

639 640 641 642 643
		/*
		 * Allocate the circular buffer of Read Buffer Descriptors
		 * (RBDs)
		 */
		rxq->bd = dma_zalloc_coherent(dev,
644 645
					     free_size * rxq->queue_size,
					     &rxq->bd_dma, GFP_KERNEL);
646 647
		if (!rxq->bd)
			goto err;
648

649 650 651 652 653 654 655 656 657
		if (trans->cfg->mq_rx_supported) {
			rxq->used_bd = dma_zalloc_coherent(dev,
							   sizeof(__le32) *
							   rxq->queue_size,
							   &rxq->used_bd_dma,
							   GFP_KERNEL);
			if (!rxq->used_bd)
				goto err;
		}
658

659 660 661 662 663 664 665
		/*Allocate the driver's pointer to receive buffer status */
		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
						   &rxq->rb_stts_dma,
						   GFP_KERNEL);
		if (!rxq->rb_stts)
			goto err;
	}
666 667
	return 0;

668 669 670 671 672
err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
673
			dma_free_coherent(dev, free_size * rxq->queue_size,
674 675 676 677 678 679 680 681
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
682 683 684 685 686 687

		if (rxq->used_bd)
			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
688 689
	}
	kfree(trans_pcie->rxq);
690

691
	return -ENOMEM;
692 693
}

694 695 696 697
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
698
	unsigned long flags;
699 700
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

701 702 703 704 705
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
706
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
707 708 709 710 711 712
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
713
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
714
	}
715

716 717 718
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

719
	/* Stop Rx DMA */
720
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
721
	/* reset and flush pointers */
722 723 724
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
725 726

	/* Reset driver's Rx queue write index */
727
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
728 729

	/* Tell device where to find RBD circular buffer in DRAM */
730 731
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
		    (u32)(rxq->bd_dma >> 8));
732 733

	/* Tell device where in DRAM to update its Rx status */
734 735
	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
		    rxq->rb_stts_dma >> 4);
736 737 738 739 740

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
741
	 * Rx buffer size 4 or 8k or 12k
742 743 744
	 * RB timeout 0x10
	 * 256 RBDs
	 */
745 746 747 748 749 750 751 752 753
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
		    rb_size |
		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	iwl_trans_release_nic_access(trans, &flags);
754 755 756

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
757 758 759 760

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
761 762
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
{
	/*
	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
	 * values.
	 * This costs some power, but needed for W/A 9000 integrated A-step
	 * bug where shadow registers are not in the retention list and their
	 * value is lost when NIC powers down
	 */
	if (trans->cfg->integrated) {
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
			    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
			    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
	}
}

780
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
781
{
782 783
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
784
	unsigned long flags;
785
	int i;
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}
801

802 803 804
	if (!iwl_trans_grab_nic_access(trans, &flags))
		return;

805
	/* Stop Rx DMA */
806
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
807
	/* disable free amd used rx queue operation */
808
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
809

810 811
	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
812 813 814
		iwl_pcie_write_prph_64_no_grab(trans,
					       RFH_Q_FRBDCB_BA_LSB(i),
					       trans_pcie->rxq[i].bd_dma);
815
		/* Tell device where to find RBD used table in DRAM */
816 817 818
		iwl_pcie_write_prph_64_no_grab(trans,
					       RFH_Q_URBDCB_BA_LSB(i),
					       trans_pcie->rxq[i].used_bd_dma);
819
		/* Tell device where in DRAM to update its Rx status */
820 821 822
		iwl_pcie_write_prph_64_no_grab(trans,
					       RFH_Q_URBD_STTS_WPTR_LSB(i),
					       trans_pcie->rxq[i].rb_stts_dma);
823
		/* Reset device indice tables */
824 825 826
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
827 828 829

		enabled |= BIT(i) | BIT(i + 16);
	}
830

831 832 833 834 835 836 837 838
	/* restock default queue */
	iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);

	/*
	 * Enable Rx DMA
	 * Single frame mode
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
839
	 * Drop frames that exceed RB size
840 841
	 * 512 RBDs
	 */
842 843 844 845 846 847
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
			       RFH_DMA_EN_ENABLE_VAL |
			       rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
			       RFH_RXF_DMA_MIN_RB_4_8 |
			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
			       RFH_RXF_DMA_RBDCB_SIZE_512);
848

849 850
	/*
	 * Activate DMA snooping.
851
	 * Set RX DMA chunk size to 64B
852 853
	 * Default queue is 0
	 */
854 855 856 857
	iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
			       (DEFAULT_RXQ_NUM <<
				RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
			       RFH_GEN_CFG_SERVICE_DMA_SNOOP);
858
	/* Enable the relevant rx queues */
859 860 861
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);

	iwl_trans_release_nic_access(trans, &flags);
862

863 864
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
865 866

	iwl_pcie_enable_rx_wake(trans, true);
867 868
}

869
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
870
{
871
	lockdep_assert_held(&rxq->lock);
872

873 874 875 876
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
877 878
}

879 880 881 882 883 884
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
{
	WARN_ON(1);
	return 0;
}

885 886 887
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
888
	struct iwl_rxq *def_rxq;
889
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
890
	int i, err, queue_size, allocator_pool_size, num_alloc;
891

892
	if (!trans_pcie->rxq) {
893 894 895 896
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
897
	def_rxq = trans_pcie->rxq;
898 899 900 901 902 903 904 905
	if (!rba->alloc_wq)
		rba->alloc_wq = alloc_workqueue("rb_allocator",
						WQ_HIGHPRI | WQ_UNBOUND, 1);
	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);

	spin_lock(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
906 907
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
908
	spin_unlock(&rba->lock);
909

910
	/* free all first - we might be reconfigured for a different size */
911
	iwl_pcie_free_rbs_pool(trans);
912 913

	for (i = 0; i < RX_QUEUE_SIZE; i++)
914
		def_rxq->queue[i] = NULL;
915

916 917 918
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

919 920
		rxq->id = i;

921 922 923 924 925 926 927 928 929 930
		spin_lock(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
931

932 933
		iwl_pcie_rx_init_rxb_lists(rxq);

934 935 936 937
		if (!rxq->napi.poll)
			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       iwl_pcie_dummy_napi_poll, 64);

938 939
		spin_unlock(&rxq->lock);
	}
940

941
	/* move the pool to the default queue and allocator ownerships */
942 943
	queue_size = trans->cfg->mq_rx_supported ?
		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
944 945
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
946
	num_alloc = queue_size + allocator_pool_size;
947 948
	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
		     ARRAY_SIZE(trans_pcie->rx_pool));
949
	for (i = 0; i < num_alloc; i++) {
950 951 952 953 954 955 956 957 958
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
		rxb->vid = (u16)i;
	}
959

960
	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
961
	if (trans->cfg->mq_rx_supported) {
962
		iwl_pcie_rx_mq_hw_init(trans);
963
	} else {
964
		iwl_pcie_rxq_sq_restock(trans, def_rxq);
965 966
		iwl_pcie_rx_hw_init(trans, def_rxq);
	}
967 968 969 970

	spin_lock(&def_rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
	spin_unlock(&def_rxq->lock);
971 972 973 974 975 976 977

	return 0;
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
978
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
979 980
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
					      sizeof(__le32);
981
	int i;
982

983 984 985 986 987
	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
988 989 990 991
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

992 993 994 995 996 997
	cancel_work_sync(&rba->rx_alloc);
	if (rba->alloc_wq) {
		destroy_workqueue(rba->alloc_wq);
		rba->alloc_wq = NULL;
	}

998 999 1000 1001 1002 1003 1004
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
			dma_free_coherent(trans->dev,
1005
					  free_size * rxq->queue_size,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
		else
			IWL_DEBUG_INFO(trans,
				       "Free rxq->rb_stts which is NULL\n");
1017

1018 1019 1020 1021 1022 1023
		if (rxq->used_bd)
			dma_free_coherent(trans->dev,
					  sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
1024 1025 1026

		if (rxq->napi.poll)
			netif_napi_del(&rxq->napi);
1027
	}
1028
	kfree(trans_pcie->rxq);
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		spin_lock(&rba->lock);
		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

1071
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1072
				struct iwl_rxq *rxq,
1073 1074
				struct iwl_rx_mem_buffer *rxb,
				bool emergency)
J
Johannes Berg 已提交
1075 1076
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1077
	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1078
	bool page_stolen = false;
1079
	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1080
	u32 offset = 0;
J
Johannes Berg 已提交
1081 1082 1083 1084

	if (WARN_ON(!rxb))
		return;

1085 1086 1087 1088 1089 1090
	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		u16 sequence;
		bool reclaim;
1091
		int index, cmd_index, len;
1092 1093
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = offset,
1094
			._rx_page_order = trans_pcie->rx_page_order,
1095 1096
			._page = rxb->page,
			._page_stolen = false,
1097
			.truesize = max_len,
1098 1099 1100 1101 1102 1103 1104
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
			break;

1105 1106 1107
		IWL_DEBUG_RX(trans,
			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
			     rxcb._offset,
1108 1109 1110 1111
			     iwl_get_cmd_string(trans,
						iwl_cmd_id(pkt->hdr.cmd,
							   pkt->hdr.group_id,
							   0)),
1112
			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1113

1114
		len = iwl_rx_packet_len(pkt);
1115
		len += sizeof(u32); /* account for status word */
1116 1117
		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
1135 1136
			}
		}
J
Johannes Berg 已提交
1137

1138 1139 1140 1141
		sequence = le16_to_cpu(pkt->hdr.sequence);
		index = SEQ_TO_INDEX(sequence);
		cmd_index = get_cmd_index(&txq->q, index);

1142 1143 1144 1145 1146 1147
		if (rxq->id == 0)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);
1148

1149
		if (reclaim) {
1150
			kzfree(txq->entries[cmd_index].free_buf);
1151
			txq->entries[cmd_index].free_buf = NULL;
1152 1153
		}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim) {
			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
1165
				iwl_pcie_hcmd_complete(trans, &rxcb);
1166 1167 1168 1169 1170 1171
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
J
Johannes Berg 已提交
1172 1173
	}

1174 1175
	/* page was stolen from us -- free our reference */
	if (page_stolen) {
1176
		__free_pages(rxb->page, trans_pcie->rx_page_order);
J
Johannes Berg 已提交
1177
		rxb->page = NULL;
1178
	}
J
Johannes Berg 已提交
1179 1180 1181 1182 1183 1184 1185

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, 0,
1186 1187
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
1188 1189 1190 1191 1192 1193 1194 1195
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
1196
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1197 1198 1199 1200
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
J
Johannes Berg 已提交
1201
	} else
1202
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
J
Johannes Berg 已提交
1203 1204
}

1205 1206
/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1207
 */
1208
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1209
{
J
Johannes Berg 已提交
1210
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1211
	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1212
	u32 r, i, count = 0;
1213
	bool emergency = false;
1214

1215 1216
restart:
	spin_lock(&rxq->lock);
1217 1218
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
1219
	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1220 1221
	i = rxq->read;

1222 1223 1224
	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

1225 1226
	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
1227
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1228 1229

	while (i != r) {
1230
		struct iwl_rx_mem_buffer *rxb;
1231

1232
		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1233 1234
			emergency = true;

1235 1236 1237 1238 1239
		if (trans->cfg->mq_rx_supported) {
			/*
			 * used_bd is a 32 bit but only 12 are used to retrieve
			 * the vid
			 */
1240
			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1241

1242 1243 1244
			if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
				 "Invalid rxb index from HW %u\n", (u32)vid))
				goto out;
1245 1246 1247 1248 1249
			rxb = trans_pcie->global_table[vid];
		} else {
			rxb = rxq->queue[i];
			rxq->queue[i] = NULL;
		}
1250

1251
		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1252
		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1253

1254
		i = (i + 1) & (rxq->queue_size - 1);
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1267 1268
			struct iwl_rb_allocator *rba = &trans_pcie->rba;

1269 1270 1271 1272 1273
			/* Add the remaining empty RBDs for allocator use */
			spin_lock(&rba->lock);
			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
			spin_unlock(&rba->lock);
		} else if (emergency) {
1274
			count++;
1275
			if (count == 8) {
1276
				count = 0;
1277
				if (rxq->used_count < rxq->queue_size / 3)
1278
					emergency = false;
1279 1280

				rxq->read = i;
1281
				spin_unlock(&rxq->lock);
1282
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1283
				iwl_pcie_rxq_restock(trans, rxq);
1284 1285
				goto restart;
			}
1286
		}
1287
	}
1288
out:
1289 1290
	/* Backtrack one entry */
	rxq->read = i;
1291 1292
	spin_unlock(&rxq->lock);

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
1306
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1307

1308 1309
	if (rxq->napi.poll)
		napi_gro_flush(&rxq->napi, false);
1310 1311

	iwl_pcie_rxq_restock(trans, rxq);
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
				      struct msix_entry *entry)
{
	/*
	 * Before sending the interrupt the HW disables it to prevent
	 * a nested interrupt. This is done by writing 1 to the corresponding
	 * bit in the mask register. After handling the interrupt, it should be
	 * re-enabled by clearing this bit. This register is defined as
	 * write 1 clear (W1C) register, meaning that it's being clear
	 * by writing 1 to the bit.
	 */
1333
	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;

1346 1347 1348
	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	local_bh_disable();
	iwl_pcie_rx_handle(trans, entry->entry);
	local_bh_enable();

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

1362 1363
/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1364
 */
1365
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1366
{
1367
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1368
	int i;
1369

1370
	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1371
	if (trans->cfg->internal_wimax_coex &&
1372
	    !trans->cfg->apmg_not_supported &&
1373
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1374
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1375
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1376
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1377
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1378
		iwl_op_mode_wimax_active(trans->op_mode);
1379
		wake_up(&trans_pcie->wait_command_queue);
1380 1381 1382
		return;
	}

1383
	iwl_pcie_dump_csr(trans);
1384
	iwl_dump_fh(trans, NULL);
1385

1386
	local_bh_disable();
1387 1388 1389
	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans);
1390
	local_bh_enable();
1391

1392 1393 1394
	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
		del_timer(&trans_pcie->txq[i].stuck_timer);

1395 1396
	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans_pcie->wait_command_queue);
1397 1398
}

1399
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1400 1401 1402
{
	u32 inta;

1403
	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1404 1405 1406 1407 1408 1409 1410

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
1411
	return inta;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
1427
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1441 1442
	if (!read)
		return 0;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
1454
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
1476
	return inta;
1477 1478
}

1479
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1480
{
1481
	struct iwl_trans *trans = dev_id;
1482 1483
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1484 1485 1486
	u32 inta = 0;
	u32 handled = 0;

1487 1488
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

1489
	spin_lock(&trans_pcie->irq_lock);
1490

1491 1492 1493 1494
	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
1495
		inta = iwl_pcie_int_cause_ict(trans);
1496
	else
1497
		inta = iwl_pcie_int_cause_non_ict(trans);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
1518
	if (unlikely(!inta)) {
1519 1520 1521 1522 1523 1524 1525
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			iwl_enable_interrupts(trans);
1526
		spin_unlock(&trans_pcie->irq_lock);
1527 1528 1529 1530
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

1531 1532 1533 1534 1535 1536
	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1537
		spin_unlock(&trans_pcie->irq_lock);
1538
		goto out;
1539 1540
	}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
1552
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1553

1554
	if (iwl_have_debug_level(IWL_DL_ISR))
1555
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1556
			      inta, iwl_read32(trans, CSR_INT_MASK));
1557

1558
	spin_unlock(&trans_pcie->irq_lock);
1559

1560 1561
	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
1562
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1563 1564

		/* Tell the device to stop sending interrupts */
1565
		iwl_disable_interrupts(trans);
1566

1567
		isr_stats->hw++;
1568
		iwl_pcie_irq_handle_error(trans);
1569 1570 1571

		handled |= CSR_INT_BIT_HW_ERR;

1572
		goto out;
1573 1574
	}

1575
	if (iwl_have_debug_level(IWL_DL_ISR)) {
1576 1577
		/* NIC fires this, but we don't use it, redundant with WAKEUP */
		if (inta & CSR_INT_BIT_SCD) {
1578 1579
			IWL_DEBUG_ISR(trans,
				      "Scheduler finished to transmit the frame/frames.\n");
1580
			isr_stats->sch++;
1581 1582 1583 1584
		}

		/* Alive notification via Rx interrupt will do the real work */
		if (inta & CSR_INT_BIT_ALIVE) {
1585
			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1586
			isr_stats->alive++;
1587 1588
		}
	}
1589

1590 1591 1592 1593 1594
	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
1595
		bool hw_rfkill;
1596

1597
		hw_rfkill = iwl_is_rfkill_set(trans);
1598
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1599
			 hw_rfkill ? "disable radio" : "enable radio");
1600

1601
		isr_stats->rfkill++;
1602

1603
		mutex_lock(&trans_pcie->mutex);
1604
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1605
		mutex_unlock(&trans_pcie->mutex);
1606
		if (hw_rfkill) {
1607 1608 1609
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
1610 1611 1612 1613
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
1614
			clear_bit(STATUS_RFKILL, &trans->status);
1615
		}
1616 1617 1618 1619 1620 1621

		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
1622
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1623
		isr_stats->ctkill++;
1624 1625 1626 1627 1628
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
1629
		IWL_ERR(trans, "Microcode SW error detected. "
1630
			" Restarting 0x%X.\n", inta);
1631
		isr_stats->sw++;
1632
		iwl_pcie_irq_handle_error(trans);
1633 1634 1635 1636 1637
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
1638
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1639
		iwl_pcie_rxq_check_wrptr(trans);
1640
		iwl_pcie_txq_check_wrptrs(trans);
1641

1642
		isr_stats->wakeup++;
1643 1644 1645 1646 1647 1648 1649 1650

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1651
		    CSR_INT_BIT_RX_PERIODIC)) {
1652
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1653 1654
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1655
			iwl_write32(trans, CSR_FH_INT_STATUS,
1656 1657 1658 1659
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
1660
			iwl_write32(trans,
1661
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		}
		/* Sending RX interrupt require many steps to be done in the
		 * the device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
1675
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1676
			    CSR_INT_PERIODIC_DIS);
1677

1678 1679 1680 1681 1682 1683 1684 1685
		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1686
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1687
				   CSR_INT_PERIODIC_ENA);
1688

1689
		isr_stats->rx++;
1690 1691

		local_bh_disable();
1692
		iwl_pcie_rx_handle(trans, 0);
1693
		local_bh_enable();
1694 1695 1696 1697
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
1698
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1699
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1700
		isr_stats->tx++;
1701 1702
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
1703 1704
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
1705 1706 1707
	}

	if (inta & ~handled) {
1708
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1709
		isr_stats->unhandled++;
1710 1711
	}

1712 1713 1714
	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
1715 1716
	}

1717 1718 1719 1720 1721
	/* we are loading the firmware, enable FH_TX interrupt only */
	if (handled & CSR_INT_BIT_FH_TX)
		iwl_enable_fw_load_int(trans);
	/* only Re-enable all interrupt if disabled by irq */
	else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1722
		iwl_enable_interrupts(trans);
1723
	/* Re-enable RF_KILL if it occurred */
1724 1725
	else if (handled & CSR_INT_BIT_RF_KILL)
		iwl_enable_rfkill_int(trans);
1726 1727 1728 1729

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
1730 1731
}

1732 1733 1734 1735 1736
/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/
1737

1738
/* Free dram table */
1739
void iwl_pcie_free_ict(struct iwl_trans *trans)
1740
{
1741
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1742

1743
	if (trans_pcie->ict_tbl) {
1744
		dma_free_coherent(trans->dev, ICT_SIZE,
1745
				  trans_pcie->ict_tbl,
1746
				  trans_pcie->ict_tbl_dma);
1747 1748
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
1749 1750 1751
	}
}

1752 1753 1754
/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
1755 1756
 * also reset all data related to ICT table interrupt.
 */
1757
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1758
{
1759
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1760

1761
	trans_pcie->ict_tbl =
1762
		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1763 1764 1765
				   &trans_pcie->ict_tbl_dma,
				   GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
1766 1767
		return -ENOMEM;

1768 1769
	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1770
		iwl_pcie_free_ict(trans);
1771 1772
		return -EINVAL;
	}
1773 1774 1775 1776 1777 1778 1779

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
1780
void iwl_pcie_reset_ict(struct iwl_trans *trans)
1781
{
1782
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1783 1784
	u32 val;

1785
	if (!trans_pcie->ict_tbl)
1786
		return;
1787

1788
	spin_lock(&trans_pcie->irq_lock);
1789
	iwl_disable_interrupts(trans);
1790

1791
	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1792

1793
	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1794

1795 1796 1797
	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1798

1799
	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1800

1801
	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1802 1803
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
1804
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1805
	iwl_enable_interrupts(trans);
1806
	spin_unlock(&trans_pcie->irq_lock);
1807 1808 1809
}

/* Device is going down disable ict interrupt usage */
1810
void iwl_pcie_disable_ict(struct iwl_trans *trans)
1811
{
1812
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1813

1814
	spin_lock(&trans_pcie->irq_lock);
1815
	trans_pcie->use_ict = false;
1816
	spin_unlock(&trans_pcie->irq_lock);
1817 1818
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

1833
	return IRQ_WAKE_THREAD;
1834
}
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
1846
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1847 1848 1849 1850 1851
	u32 inta_fh, inta_hw;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock(&trans_pcie->irq_lock);
1852 1853
	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1854 1855 1856
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
1857 1858
	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	spin_unlock(&trans_pcie->irq_lock);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
			      inta_fh,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
	}

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans,
			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
			      inta_hw,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
	}

	/* uCode wakes up after power-down sleep */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
		bool hw_rfkill;

		hw_rfkill = iwl_is_rfkill_set(trans);
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
			 hw_rfkill ? "disable radio" : "enable radio");

		isr_stats->rfkill++;

		mutex_lock(&trans_pcie->mutex);
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
		mutex_unlock(&trans_pcie->mutex);
		if (hw_rfkill) {
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
			clear_bit(STATUS_RFKILL, &trans->status);
		}
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);
	}

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}