rx.c 56.9 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5
 * Copyright(c) 2016 Intel Deutschland GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Portions of this file are derived from the ipw3945 project, as well
 * as portions of the ieee80211 subsystem header files.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
27
 *  Intel Linux Wireless <linuxwifi@intel.com>
28 29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
33
#include <linux/gfp.h>
34

35
#include "iwl-prph.h"
36
#include "iwl-io.h"
37
#include "internal.h"
38
#include "iwl-op-mode.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
98 99
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100
 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 102
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
103 104 105 106
 *
 *
 * Driver sequence:
 *
107 108
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109 110
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
111
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112
 *                            queue, updates firmware pointers, and updates
113 114
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
115 116
 *
 * -- enable interrupts --
117
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118 119
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
120
 *                            Posts and claims requests to the allocator.
121
 *                            Calls iwl_pcie_rxq_restock to refill any empty
122
 *                            slots.
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
135 136 137 138
 * ...
 *
 */

139 140
/*
 * iwl_rxq_space - Return number of free slots available in queue.
141
 */
142
static int iwl_rxq_space(const struct iwl_rxq *rxq)
143
{
144 145
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146

147 148 149 150 151 152
	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
153
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 155
}

156 157 158 159 160 161 162 163
/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

164 165 166 167 168 169
static void iwl_pcie_write_prph_64(struct iwl_trans *trans, u64 ofs, u64 val)
{
	iwl_write_prph(trans, ofs, val & 0xffffffff);
	iwl_write_prph(trans, ofs + 4, val >> 32);
}

170 171 172
/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
173 174 175 176 177 178 179
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
	return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
				   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
}

180 181
/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
182
 */
183 184
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
185 186 187
{
	u32 reg;

188
	lockdep_assert_held(&rxq->lock);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
204 205
			rxq->need_update = true;
			return;
206 207
		}
	}
208 209

	rxq->write_actual = round_down(rxq->write, 8);
210 211 212 213 214
	if (trans->cfg->mq_rx_supported)
		iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(rxq->id),
			       rxq->write_actual);
	else
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
215 216 217 218 219
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
220
	int i;
221

222 223
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
224

225 226 227 228 229 230 231
		if (!rxq->need_update)
			continue;
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock(&rxq->lock);
	}
232 233
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock(&rxq->lock);
	while (rxq->free_count) {
		__le64 *bd = (__le64 *)rxq->bd;

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);

		/* 12 first bits are expected to be empty */
		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
		rxq->free_count--;
	}
	spin_unlock(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock(&rxq->lock);
	}
}

279 280
/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
281 282 283 284 285 286 287 288 289
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
290
static void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
291 292 293
{
	struct iwl_rx_mem_buffer *rxb;

294 295 296
	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
297 298 299
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
300 301
	 * So don't try to restock if the APM has been already stopped.
	 */
302
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
303 304
		return;

305
	spin_lock(&rxq->lock);
306
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
307
		__le32 *bd = (__le32 *)rxq->bd;
308 309 310 311 312
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
J
Johannes Berg 已提交
313 314 315
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
316 317

		/* Point to Rx buffer via next RBD in circular buffer */
318
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319 320 321 322
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
323
	spin_unlock(&rxq->lock);
324 325 326 327

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
328
		spin_lock(&rxq->lock);
329
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330
		spin_unlock(&rxq->lock);
331 332 333
	}
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
354 355 356
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
357
`		 */
358
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
359
			IWL_CRIT(trans,
360
				 "Failed to alloc_pages\n");
361 362 363 364 365
		return NULL;
	}
	return page;
}

366
/*
367
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
368
 *
369 370 371
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
372
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
373
 * allocated buffers.
374
 */
375 376
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
				   struct iwl_rxq *rxq)
377
{
378
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
379 380 381 382
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
383
		spin_lock(&rxq->lock);
384
		if (list_empty(&rxq->rx_used)) {
385
			spin_unlock(&rxq->lock);
386 387
			return;
		}
388
		spin_unlock(&rxq->lock);
389 390

		/* Alloc a new receive buffer */
391 392
		page = iwl_pcie_rx_alloc_page(trans, priority);
		if (!page)
393 394
			return;

395
		spin_lock(&rxq->lock);
396 397

		if (list_empty(&rxq->rx_used)) {
398
			spin_unlock(&rxq->lock);
399
			__free_pages(page, trans_pcie->rx_page_order);
400 401
			return;
		}
J
Johannes Berg 已提交
402 403 404
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
405
		spin_unlock(&rxq->lock);
406 407 408 409

		BUG_ON(rxb->page);
		rxb->page = page;
		/* Get physical address of the RB */
410 411 412 413
		rxb->page_dma =
			dma_map_page(trans->dev, page, 0,
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
414 415
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
416
			spin_lock(&rxq->lock);
417
			list_add(&rxb->list, &rxq->rx_used);
418
			spin_unlock(&rxq->lock);
419 420 421
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
422

423
		spin_lock(&rxq->lock);
424 425 426 427

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

428
		spin_unlock(&rxq->lock);
429 430 431
	}
}

432
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
433 434 435 436
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

437
	for (i = 0; i < MQ_RX_POOL_SIZE; i++) {
438
		if (!trans_pcie->rx_pool[i].page)
439
			continue;
440
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
441 442
			       PAGE_SIZE << trans_pcie->rx_page_order,
			       DMA_FROM_DEVICE);
443 444 445
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
446 447 448
	}
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_xchg(&rba->req_pending, 0);

	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock(&rba->lock);

	while (pending) {
		int i;
		struct list_head local_allocated;
473 474 475 476 477
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

		INIT_LIST_HEAD(&local_allocated);

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
497
			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page, 0,
					PAGE_SIZE << trans_pcie->rx_page_order,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		pending--;
		if (!pending) {
			pending = atomic_xchg(&rba->req_pending, 0);
			IWL_DEBUG_RX(trans,
				     "Pending allocation requests = %d\n",
				     pending);
		}

		spin_lock(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_ready);
	}

	spin_lock(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
542
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
543 544 545
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
546 547
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
548
 */
549 550
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
551 552 553 554 555
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

556 557
	lockdep_assert_held(&rxq->lock);

558 559 560
	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
561
	 * function will return early, as there are no ready requests.
562 563 564 565 566
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
567
		return;
568 569 570 571

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
572 573 574 575 576
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
577 578 579
	}
	spin_unlock(&rba->lock);

580 581
	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
582 583 584
}

static void iwl_pcie_rx_allocator_work(struct work_struct *data)
585
{
586 587
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
588
	struct iwl_trans_pcie *trans_pcie =
589
		container_of(rba_p, struct iwl_trans_pcie, rba);
590

591
	iwl_pcie_rx_allocator(trans_pcie->trans);
592 593
}

594 595 596
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
597
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
598
	struct device *dev = trans->dev;
599
	int i;
600 601
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
						      sizeof(__le32);
602

603 604 605 606 607 608 609
	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	if (!trans_pcie->rxq)
		return -EINVAL;
610

611
	spin_lock_init(&rba->lock);
612

613 614
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
615

616
		spin_lock_init(&rxq->lock);
617 618 619 620 621
		if (trans->cfg->mq_rx_supported)
			rxq->queue_size = MQ_RX_TABLE_SIZE;
		else
			rxq->queue_size = RX_QUEUE_SIZE;

622 623 624 625 626
		/*
		 * Allocate the circular buffer of Read Buffer Descriptors
		 * (RBDs)
		 */
		rxq->bd = dma_zalloc_coherent(dev,
627 628
					     free_size * rxq->queue_size,
					     &rxq->bd_dma, GFP_KERNEL);
629 630
		if (!rxq->bd)
			goto err;
631

632 633 634 635 636 637 638 639 640
		if (trans->cfg->mq_rx_supported) {
			rxq->used_bd = dma_zalloc_coherent(dev,
							   sizeof(__le32) *
							   rxq->queue_size,
							   &rxq->used_bd_dma,
							   GFP_KERNEL);
			if (!rxq->used_bd)
				goto err;
		}
641

642 643 644 645 646 647 648
		/*Allocate the driver's pointer to receive buffer status */
		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
						   &rxq->rb_stts_dma,
						   GFP_KERNEL);
		if (!rxq->rb_stts)
			goto err;
	}
649 650
	return 0;

651 652 653 654 655
err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
656
			dma_free_coherent(dev, free_size * rxq->queue_size,
657 658 659 660 661 662 663 664
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
665 666 667 668 669 670

		if (rxq->used_bd)
			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
671 672
	}
	kfree(trans_pcie->rxq);
673

674
	return -ENOMEM;
675 676
}

677 678 679 680 681 682
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

683 684 685 686 687
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
688
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
689 690 691 692 693 694
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
695
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
696
	}
697 698 699

	/* Stop Rx DMA */
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
700 701 702 703
	/* reset and flush pointers */
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

	/* Reset driver's Rx queue write index */
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);

	/* Tell device where to find RBD circular buffer in DRAM */
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
			   (u32)(rxq->bd_dma >> 8));

	/* Tell device where in DRAM to update its Rx status */
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
			   rxq->rb_stts_dma >> 4);

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
720
	 * Rx buffer size 4 or 8k or 12k
721 722 723 724 725 726 727 728
	 * RB timeout 0x10
	 * 256 RBDs
	 */
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
			   FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
			   FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
			   FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
			   rb_size|
729
			   (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
730 731 732 733
			   (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
734 735 736 737

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
738 739
}

740
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
741
{
742 743 744
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
	int i;
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}
760

761 762 763 764
	/* Stop Rx DMA */
	iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
	/* disable free amd used rx queue operation */
	iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, 0);
765

766 767 768
	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
		iwl_pcie_write_prph_64(trans, RFH_Q_FRBDCB_BA_LSB(i),
769
				       (u64)(trans_pcie->rxq[i].bd_dma));
770 771
		/* Tell device where to find RBD used table in DRAM */
		iwl_pcie_write_prph_64(trans, RFH_Q_URBDCB_BA_LSB(i),
772
				       (u64)(trans_pcie->rxq[i].used_bd_dma));
773 774
		/* Tell device where in DRAM to update its Rx status */
		iwl_pcie_write_prph_64(trans, RFH_Q_URBD_STTS_WPTR_LSB(i),
775
				       trans_pcie->rxq[i].rb_stts_dma);
776 777 778 779 780 781 782
		/* Reset device indice tables */
		iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph(trans, RFH_Q_URBDCB_WIDX(i), 0);

		enabled |= BIT(i) | BIT(i + 16);
	}
783

784 785 786 787 788 789 790 791
	/* restock default queue */
	iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);

	/*
	 * Enable Rx DMA
	 * Single frame mode
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
792
	 * Drop frames that exceed RB size
793 794 795 796 797 798
	 * 512 RBDs
	 */
	iwl_write_prph(trans, RFH_RXF_DMA_CFG,
		       RFH_DMA_EN_ENABLE_VAL |
		       rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
		       RFH_RXF_DMA_MIN_RB_4_8 |
799
		       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
800 801
		       RFH_RXF_DMA_RBDCB_SIZE_512);

802 803
	/*
	 * Activate DMA snooping.
804
	 * Set RX DMA chunk size to 64B
805 806
	 * Default queue is 0
	 */
807
	iwl_write_prph(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
808 809 810
		       (DEFAULT_RXQ_NUM << RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
		       RFH_GEN_CFG_SERVICE_DMA_SNOOP);
	/* Enable the relevant rx queues */
811
	iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, enabled);
812

813 814
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
815 816
}

817
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
818
{
819
	lockdep_assert_held(&rxq->lock);
820

821 822 823 824
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
825 826
}

827 828 829 830 831 832
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
{
	WARN_ON(1);
	return 0;
}

833 834 835
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
836
	struct iwl_rxq *def_rxq;
837
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
838
	int i, err, num_rbds, allocator_pool_size;
839

840
	if (!trans_pcie->rxq) {
841 842 843 844
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
845
	def_rxq = trans_pcie->rxq;
846 847 848 849 850 851 852 853
	if (!rba->alloc_wq)
		rba->alloc_wq = alloc_workqueue("rb_allocator",
						WQ_HIGHPRI | WQ_UNBOUND, 1);
	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);

	spin_lock(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
854 855
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
856
	spin_unlock(&rba->lock);
857

858
	/* free all first - we might be reconfigured for a different size */
859
	iwl_pcie_free_rbs_pool(trans);
860 861

	for (i = 0; i < RX_QUEUE_SIZE; i++)
862
		def_rxq->queue[i] = NULL;
863

864 865 866
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

867 868
		rxq->id = i;

869 870 871 872 873 874 875 876 877 878
		spin_lock(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
879

880 881
		iwl_pcie_rx_init_rxb_lists(rxq);

882 883 884 885
		if (!rxq->napi.poll)
			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       iwl_pcie_dummy_napi_poll, 64);

886 887
		spin_unlock(&rxq->lock);
	}
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	/* move the pool to the default queue and allocator ownerships */
	num_rbds = trans->cfg->mq_rx_supported ?
		     MQ_RX_POOL_SIZE : RX_QUEUE_SIZE;
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
	for (i = 0; i < num_rbds; i++) {
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
		rxb->vid = (u16)i;
	}
904

905
	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
906
	if (trans->cfg->mq_rx_supported) {
907
		iwl_pcie_rx_mq_hw_init(trans);
908 909 910 911
	} else {
		iwl_pcie_rxq_restock(trans, def_rxq);
		iwl_pcie_rx_hw_init(trans, def_rxq);
	}
912 913 914 915

	spin_lock(&def_rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
	spin_unlock(&def_rxq->lock);
916 917 918 919 920 921 922

	return 0;
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
923
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
924 925
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
					      sizeof(__le32);
926
	int i;
927

928 929 930 931 932
	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
933 934 935 936
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

937 938 939 940 941 942
	cancel_work_sync(&rba->rx_alloc);
	if (rba->alloc_wq) {
		destroy_workqueue(rba->alloc_wq);
		rba->alloc_wq = NULL;
	}

943 944 945 946 947 948 949
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
			dma_free_coherent(trans->dev,
950
					  free_size * rxq->queue_size,
951 952 953 954 955 956 957 958 959 960 961
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
		else
			IWL_DEBUG_INFO(trans,
				       "Free rxq->rb_stts which is NULL\n");
962

963 964 965 966 967 968
		if (rxq->used_bd)
			dma_free_coherent(trans->dev,
					  sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
969 970 971

		if (rxq->napi.poll)
			netif_napi_del(&rxq->napi);
972
	}
973
	kfree(trans_pcie->rxq);
974 975
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		spin_lock(&rba->lock);
		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

1016
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1017
				struct iwl_rxq *rxq,
1018 1019
				struct iwl_rx_mem_buffer *rxb,
				bool emergency)
J
Johannes Berg 已提交
1020 1021
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1022
	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1023
	bool page_stolen = false;
1024
	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1025
	u32 offset = 0;
J
Johannes Berg 已提交
1026 1027 1028 1029

	if (WARN_ON(!rxb))
		return;

1030 1031 1032 1033 1034 1035
	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		u16 sequence;
		bool reclaim;
1036
		int index, cmd_index, len;
1037 1038
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = offset,
1039
			._rx_page_order = trans_pcie->rx_page_order,
1040 1041
			._page = rxb->page,
			._page_stolen = false,
1042
			.truesize = max_len,
1043 1044 1045 1046 1047 1048 1049
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
			break;

1050 1051 1052
		IWL_DEBUG_RX(trans,
			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
			     rxcb._offset,
1053 1054 1055 1056
			     iwl_get_cmd_string(trans,
						iwl_cmd_id(pkt->hdr.cmd,
							   pkt->hdr.group_id,
							   0)),
1057
			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1058

1059
		len = iwl_rx_packet_len(pkt);
1060
		len += sizeof(u32); /* account for status word */
1061 1062
		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
1080 1081
			}
		}
J
Johannes Berg 已提交
1082

1083 1084 1085 1086
		sequence = le16_to_cpu(pkt->hdr.sequence);
		index = SEQ_TO_INDEX(sequence);
		cmd_index = get_cmd_index(&txq->q, index);

1087 1088 1089 1090 1091 1092
		if (rxq->id == 0)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);
1093

1094
		if (reclaim) {
1095
			kzfree(txq->entries[cmd_index].free_buf);
1096
			txq->entries[cmd_index].free_buf = NULL;
1097 1098
		}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim) {
			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
1110
				iwl_pcie_hcmd_complete(trans, &rxcb);
1111 1112 1113 1114 1115 1116
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
J
Johannes Berg 已提交
1117 1118
	}

1119 1120
	/* page was stolen from us -- free our reference */
	if (page_stolen) {
1121
		__free_pages(rxb->page, trans_pcie->rx_page_order);
J
Johannes Berg 已提交
1122
		rxb->page = NULL;
1123
	}
J
Johannes Berg 已提交
1124 1125 1126 1127 1128 1129 1130

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, 0,
1131 1132
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
1133 1134 1135 1136 1137 1138 1139 1140
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
1141
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1142 1143 1144 1145
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
J
Johannes Berg 已提交
1146
	} else
1147
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
J
Johannes Berg 已提交
1148 1149
}

1150 1151
/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1152
 */
1153
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1154
{
J
Johannes Berg 已提交
1155
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1156
	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1157
	u32 r, i, count = 0;
1158
	bool emergency = false;
1159

1160 1161
restart:
	spin_lock(&rxq->lock);
1162 1163
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
1164
	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1165 1166
	i = rxq->read;

1167 1168 1169
	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

1170 1171
	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
1172
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1173 1174

	while (i != r) {
1175
		struct iwl_rx_mem_buffer *rxb;
1176

1177
		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1178 1179
			emergency = true;

1180 1181 1182 1183 1184
		if (trans->cfg->mq_rx_supported) {
			/*
			 * used_bd is a 32 bit but only 12 are used to retrieve
			 * the vid
			 */
1185
			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1186

1187 1188 1189
			if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
				 "Invalid rxb index from HW %u\n", (u32)vid))
				goto out;
1190 1191 1192 1193 1194
			rxb = trans_pcie->global_table[vid];
		} else {
			rxb = rxq->queue[i];
			rxq->queue[i] = NULL;
		}
1195

1196
		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1197
		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1198

1199
		i = (i + 1) & (rxq->queue_size - 1);
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1212 1213
			struct iwl_rb_allocator *rba = &trans_pcie->rba;

1214 1215 1216 1217 1218
			/* Add the remaining empty RBDs for allocator use */
			spin_lock(&rba->lock);
			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
			spin_unlock(&rba->lock);
		} else if (emergency) {
1219
			count++;
1220
			if (count == 8) {
1221
				count = 0;
1222
				if (rxq->used_count < rxq->queue_size / 3)
1223 1224
					emergency = false;
				spin_unlock(&rxq->lock);
1225
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1226
				spin_lock(&rxq->lock);
1227 1228
			}
		}
1229 1230 1231 1232 1233 1234 1235 1236
		/* handle restock for three cases, can be all of them at once:
		* - we just pulled buffers from the allocator
		* - we have 8+ unstolen pages accumulated
		* - we are in emergency and allocated buffers
		 */
		if (rxq->free_count >=  RX_CLAIM_REQ_ALLOC) {
			rxq->read = i;
			spin_unlock(&rxq->lock);
1237 1238 1239 1240
			if (trans->cfg->mq_rx_supported)
				iwl_pcie_rxq_mq_restock(trans, rxq);
			else
				iwl_pcie_rxq_restock(trans, rxq);
1241 1242
			goto restart;
		}
1243
	}
1244
out:
1245 1246
	/* Backtrack one entry */
	rxq->read = i;
1247 1248
	spin_unlock(&rxq->lock);

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
1262
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1263

1264 1265
	if (rxq->napi.poll)
		napi_gro_flush(&rxq->napi, false);
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
				      struct msix_entry *entry)
{
	/*
	 * Before sending the interrupt the HW disables it to prevent
	 * a nested interrupt. This is done by writing 1 to the corresponding
	 * bit in the mask register. After handling the interrupt, it should be
	 * re-enabled by clearing this bit. This register is defined as
	 * write 1 clear (W1C) register, meaning that it's being clear
	 * by writing 1 to the bit.
	 */
	iwl_write_direct32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;

1300 1301 1302
	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	local_bh_disable();
	iwl_pcie_rx_handle(trans, entry->entry);
	local_bh_enable();

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

1316 1317
/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1318
 */
1319
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1320
{
1321
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1322
	int i;
1323

1324
	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1325
	if (trans->cfg->internal_wimax_coex &&
1326
	    !trans->cfg->apmg_not_supported &&
1327
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1328
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1329
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1330
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1331
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1332
		iwl_op_mode_wimax_active(trans->op_mode);
1333
		wake_up(&trans_pcie->wait_command_queue);
1334 1335 1336
		return;
	}

1337
	iwl_pcie_dump_csr(trans);
1338
	iwl_dump_fh(trans, NULL);
1339

1340
	local_bh_disable();
1341 1342 1343
	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans);
1344
	local_bh_enable();
1345

1346 1347 1348
	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
		del_timer(&trans_pcie->txq[i].stuck_timer);

1349 1350
	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans_pcie->wait_command_queue);
1351 1352
}

1353
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1354 1355 1356
{
	u32 inta;

1357
	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1358 1359 1360 1361 1362 1363 1364

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
1365
	return inta;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
1381
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1395 1396
	if (!read)
		return 0;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
1408
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
1430
	return inta;
1431 1432
}

1433
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1434
{
1435
	struct iwl_trans *trans = dev_id;
1436 1437
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1438 1439 1440
	u32 inta = 0;
	u32 handled = 0;

1441 1442
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

1443
	spin_lock(&trans_pcie->irq_lock);
1444

1445 1446 1447 1448
	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
1449
		inta = iwl_pcie_int_cause_ict(trans);
1450
	else
1451
		inta = iwl_pcie_int_cause_non_ict(trans);
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
1472
	if (unlikely(!inta)) {
1473 1474 1475 1476 1477 1478 1479
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			iwl_enable_interrupts(trans);
1480
		spin_unlock(&trans_pcie->irq_lock);
1481 1482 1483 1484
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

1485 1486 1487 1488 1489 1490
	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1491
		spin_unlock(&trans_pcie->irq_lock);
1492
		goto out;
1493 1494
	}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
1506
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1507

1508
	if (iwl_have_debug_level(IWL_DL_ISR))
1509
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1510
			      inta, iwl_read32(trans, CSR_INT_MASK));
1511

1512
	spin_unlock(&trans_pcie->irq_lock);
1513

1514 1515
	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
1516
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1517 1518

		/* Tell the device to stop sending interrupts */
1519
		iwl_disable_interrupts(trans);
1520

1521
		isr_stats->hw++;
1522
		iwl_pcie_irq_handle_error(trans);
1523 1524 1525

		handled |= CSR_INT_BIT_HW_ERR;

1526
		goto out;
1527 1528
	}

1529
	if (iwl_have_debug_level(IWL_DL_ISR)) {
1530 1531
		/* NIC fires this, but we don't use it, redundant with WAKEUP */
		if (inta & CSR_INT_BIT_SCD) {
1532 1533
			IWL_DEBUG_ISR(trans,
				      "Scheduler finished to transmit the frame/frames.\n");
1534
			isr_stats->sch++;
1535 1536 1537 1538
		}

		/* Alive notification via Rx interrupt will do the real work */
		if (inta & CSR_INT_BIT_ALIVE) {
1539
			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1540
			isr_stats->alive++;
1541 1542
		}
	}
1543

1544 1545 1546 1547 1548
	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
1549
		bool hw_rfkill;
1550

1551
		hw_rfkill = iwl_is_rfkill_set(trans);
1552
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1553
			 hw_rfkill ? "disable radio" : "enable radio");
1554

1555
		isr_stats->rfkill++;
1556

1557
		mutex_lock(&trans_pcie->mutex);
1558
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1559
		mutex_unlock(&trans_pcie->mutex);
1560
		if (hw_rfkill) {
1561 1562 1563
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
1564 1565 1566 1567
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
1568
			clear_bit(STATUS_RFKILL, &trans->status);
1569
		}
1570 1571 1572 1573 1574 1575

		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
1576
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1577
		isr_stats->ctkill++;
1578 1579 1580 1581 1582
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
1583
		IWL_ERR(trans, "Microcode SW error detected. "
1584
			" Restarting 0x%X.\n", inta);
1585
		isr_stats->sw++;
1586
		iwl_pcie_irq_handle_error(trans);
1587 1588 1589 1590 1591
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
1592
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1593
		iwl_pcie_rxq_check_wrptr(trans);
1594
		iwl_pcie_txq_check_wrptrs(trans);
1595

1596
		isr_stats->wakeup++;
1597 1598 1599 1600 1601 1602 1603 1604

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1605
		    CSR_INT_BIT_RX_PERIODIC)) {
1606
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1607 1608
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1609
			iwl_write32(trans, CSR_FH_INT_STATUS,
1610 1611 1612 1613
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
1614
			iwl_write32(trans,
1615
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		}
		/* Sending RX interrupt require many steps to be done in the
		 * the device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
1629
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1630
			    CSR_INT_PERIODIC_DIS);
1631

1632 1633 1634 1635 1636 1637 1638 1639
		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1640
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1641
				   CSR_INT_PERIODIC_ENA);
1642

1643
		isr_stats->rx++;
1644 1645

		local_bh_disable();
1646
		iwl_pcie_rx_handle(trans, 0);
1647
		local_bh_enable();
1648 1649 1650 1651
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
1652
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1653
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1654
		isr_stats->tx++;
1655 1656
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
1657 1658
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
1659 1660 1661
	}

	if (inta & ~handled) {
1662
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1663
		isr_stats->unhandled++;
1664 1665
	}

1666 1667 1668
	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
1669 1670
	}

1671 1672 1673 1674 1675
	/* we are loading the firmware, enable FH_TX interrupt only */
	if (handled & CSR_INT_BIT_FH_TX)
		iwl_enable_fw_load_int(trans);
	/* only Re-enable all interrupt if disabled by irq */
	else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1676
		iwl_enable_interrupts(trans);
1677
	/* Re-enable RF_KILL if it occurred */
1678 1679
	else if (handled & CSR_INT_BIT_RF_KILL)
		iwl_enable_rfkill_int(trans);
1680 1681 1682 1683

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
1684 1685
}

1686 1687 1688 1689 1690
/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/
1691

1692
/* Free dram table */
1693
void iwl_pcie_free_ict(struct iwl_trans *trans)
1694
{
1695
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1696

1697
	if (trans_pcie->ict_tbl) {
1698
		dma_free_coherent(trans->dev, ICT_SIZE,
1699
				  trans_pcie->ict_tbl,
1700
				  trans_pcie->ict_tbl_dma);
1701 1702
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
1703 1704 1705
	}
}

1706 1707 1708
/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
1709 1710
 * also reset all data related to ICT table interrupt.
 */
1711
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1712
{
1713
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1714

1715
	trans_pcie->ict_tbl =
1716
		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1717 1718 1719
				   &trans_pcie->ict_tbl_dma,
				   GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
1720 1721
		return -ENOMEM;

1722 1723
	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1724
		iwl_pcie_free_ict(trans);
1725 1726
		return -EINVAL;
	}
1727 1728 1729 1730 1731 1732 1733

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
1734
void iwl_pcie_reset_ict(struct iwl_trans *trans)
1735
{
1736
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1737 1738
	u32 val;

1739
	if (!trans_pcie->ict_tbl)
1740
		return;
1741

1742
	spin_lock(&trans_pcie->irq_lock);
1743
	iwl_disable_interrupts(trans);
1744

1745
	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1746

1747
	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1748

1749 1750 1751
	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1752

1753
	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1754

1755
	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1756 1757
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
1758
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1759
	iwl_enable_interrupts(trans);
1760
	spin_unlock(&trans_pcie->irq_lock);
1761 1762 1763
}

/* Device is going down disable ict interrupt usage */
1764
void iwl_pcie_disable_ict(struct iwl_trans *trans)
1765
{
1766
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1767

1768
	spin_lock(&trans_pcie->irq_lock);
1769
	trans_pcie->use_ict = false;
1770
	spin_unlock(&trans_pcie->irq_lock);
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

1787
	return IRQ_WAKE_THREAD;
1788
}
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
	struct isr_statistics *isr_stats = isr_stats = &trans_pcie->isr_stats;
	u32 inta_fh, inta_hw;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock(&trans_pcie->irq_lock);
	inta_fh = iwl_read_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
	iwl_write_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
	iwl_write_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
	spin_unlock(&trans_pcie->irq_lock);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
			      inta_fh,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
	}

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans,
			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
			      inta_hw,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
	}

	/* uCode wakes up after power-down sleep */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
		bool hw_rfkill;

		hw_rfkill = iwl_is_rfkill_set(trans);
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
			 hw_rfkill ? "disable radio" : "enable radio");

		isr_stats->rfkill++;

		mutex_lock(&trans_pcie->mutex);
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
		mutex_unlock(&trans_pcie->mutex);
		if (hw_rfkill) {
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
			clear_bit(STATUS_RFKILL, &trans->status);
		}
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);
	}

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}