raid5.c 219.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include <linux/nodemask.h>
57
#include <linux/flex_array.h>
N
NeilBrown 已提交
58 59
#include <trace/events/block.h>

60
#include "md.h"
61
#include "raid5.h"
62
#include "raid0.h"
63
#include "bitmap.h"
64

65 66 67
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE

68 69 70 71
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72
static struct workqueue_struct *raid5_wq;
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
82
#define BYPASS_THRESHOLD	1
83
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
84
#define HASH_MASK		(NR_HASH - 1)
85
#define MAX_STRIPE_BATCH	8
L
Linus Torvalds 已提交
86

87
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 89 90 91
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static inline int stripe_hash_locks_hash(sector_t sect)
{
	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}

static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_lock_irq(conf->hash_locks + hash);
	spin_lock(&conf->device_lock);
}

static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_unlock(&conf->device_lock);
	spin_unlock_irq(conf->hash_locks + hash);
}

static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	local_irq_disable();
	spin_lock(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
	spin_lock(&conf->device_lock);
}

static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	spin_unlock(&conf->device_lock);
	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
		spin_unlock(conf->hash_locks + i - 1);
	local_irq_enable();
}

L
Linus Torvalds 已提交
129 130 131 132 133 134
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
135
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
136 137
 * of the current stripe+device
 */
138 139
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
140
	int sectors = bio_sectors(bio);
141
	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 143 144 145
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
146

147
/*
148 149
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150
 */
151
static inline int raid5_bi_processed_stripes(struct bio *bio)
152
{
153 154
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
155 156
}

157
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158
{
159 160
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
161 162
}

163
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164
{
165 166
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
167 168
}

169 170
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
171
{
172 173
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
174

175 176 177 178
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
179 180
}

181
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182
{
183 184
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
185 186
}

187 188 189
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
190 191 192 193
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
194 195 196 197 198
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
199 200 201 202 203
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
204

205 206 207 208 209
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
210 211
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
212
{
213
	int slot = *count;
214

215
	if (sh->ddf_layout)
216
		(*count)++;
217
	if (idx == sh->pd_idx)
218
		return syndrome_disks;
219
	if (idx == sh->qd_idx)
220
		return syndrome_disks + 1;
221
	if (!sh->ddf_layout)
222
		(*count)++;
223 224 225
	return slot;
}

226 227 228 229 230 231 232
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
233
		bi->bi_iter.bi_size = 0;
234 235
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
236
		bio_endio(bi);
237 238 239 240
		bi = return_bi;
	}
}

241
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
242

243 244 245 246 247 248 249
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

250 251 252 253
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
	struct r5conf *conf = sh->raid_conf;
	struct r5worker_group *group;
254
	int thread_cnt;
255 256 257 258 259 260 261 262 263 264 265
	int i, cpu = sh->cpu;

	if (!cpu_online(cpu)) {
		cpu = cpumask_any(cpu_online_mask);
		sh->cpu = cpu;
	}

	if (list_empty(&sh->lru)) {
		struct r5worker_group *group;
		group = conf->worker_groups + cpu_to_group(cpu);
		list_add_tail(&sh->lru, &group->handle_list);
266 267
		group->stripes_cnt++;
		sh->group = group;
268 269 270 271 272 273 274 275 276
	}

	if (conf->worker_cnt_per_group == 0) {
		md_wakeup_thread(conf->mddev->thread);
		return;
	}

	group = conf->worker_groups + cpu_to_group(sh->cpu);

277 278 279 280 281 282 283 284 285 286 287 288 289 290
	group->workers[0].working = true;
	/* at least one worker should run to avoid race */
	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);

	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
	/* wakeup more workers */
	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
		if (group->workers[i].working == false) {
			group->workers[i].working = true;
			queue_work_on(sh->cpu, raid5_wq,
				      &group->workers[i].work);
			thread_cnt--;
		}
	}
291 292
}

293 294
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
			      struct list_head *temp_inactive_list)
L
Linus Torvalds 已提交
295
{
296 297 298 299
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301
			list_add_tail(&sh->lru, &conf->delayed_list);
302
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 304 305 306 307
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 309 310 311 312 313
			if (conf->worker_cnt_per_group == 0) {
				list_add_tail(&sh->lru, &conf->handle_list);
			} else {
				raid5_wakeup_stripe_thread(sh);
				return;
			}
314 315 316 317 318 319 320 321 322
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
323 324
		if (!test_bit(STRIPE_EXPANDING, &sh->state))
			list_add_tail(&sh->lru, temp_inactive_list);
L
Linus Torvalds 已提交
325 326
	}
}
327

328 329
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
			     struct list_head *temp_inactive_list)
330 331
{
	if (atomic_dec_and_test(&sh->count))
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		do_release_stripe(conf, sh, temp_inactive_list);
}

/*
 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 *
 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 * given time. Adding stripes only takes device lock, while deleting stripes
 * only takes hash lock.
 */
static void release_inactive_stripe_list(struct r5conf *conf,
					 struct list_head *temp_inactive_list,
					 int hash)
{
	int size;
347 348
	unsigned long do_wakeup = 0;
	int i = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	unsigned long flags;

	if (hash == NR_STRIPE_HASH_LOCKS) {
		size = NR_STRIPE_HASH_LOCKS;
		hash = NR_STRIPE_HASH_LOCKS - 1;
	} else
		size = 1;
	while (size) {
		struct list_head *list = &temp_inactive_list[size - 1];

		/*
		 * We don't hold any lock here yet, get_active_stripe() might
		 * remove stripes from the list
		 */
		if (!list_empty_careful(list)) {
			spin_lock_irqsave(conf->hash_locks + hash, flags);
365 366 367
			if (list_empty(conf->inactive_list + hash) &&
			    !list_empty(list))
				atomic_dec(&conf->empty_inactive_list_nr);
368
			list_splice_tail_init(list, conf->inactive_list + hash);
369
			do_wakeup |= 1 << hash;
370 371 372 373 374 375
			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
		}
		size--;
		hash--;
	}

376 377 378 379 380
	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
		if (do_wakeup & (1 << i))
			wake_up(&conf->wait_for_stripe[i]);
	}

381
	if (do_wakeup) {
382 383
		if (atomic_read(&conf->active_stripes) == 0)
			wake_up(&conf->wait_for_quiescent);
384 385 386
		if (conf->retry_read_aligned)
			md_wakeup_thread(conf->mddev->thread);
	}
387 388
}

S
Shaohua Li 已提交
389
/* should hold conf->device_lock already */
390 391
static int release_stripe_list(struct r5conf *conf,
			       struct list_head *temp_inactive_list)
S
Shaohua Li 已提交
392 393 394 395 396 397
{
	struct stripe_head *sh;
	int count = 0;
	struct llist_node *head;

	head = llist_del_all(&conf->released_stripes);
S
Shaohua Li 已提交
398
	head = llist_reverse_order(head);
S
Shaohua Li 已提交
399
	while (head) {
400 401
		int hash;

S
Shaohua Li 已提交
402 403 404 405 406 407 408 409 410 411
		sh = llist_entry(head, struct stripe_head, release_list);
		head = llist_next(head);
		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
		smp_mb();
		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
		/*
		 * Don't worry the bit is set here, because if the bit is set
		 * again, the count is always > 1. This is true for
		 * STRIPE_ON_UNPLUG_LIST bit too.
		 */
412 413
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
S
Shaohua Li 已提交
414 415 416 417 418 419
		count++;
	}

	return count;
}

L
Linus Torvalds 已提交
420 421
static void release_stripe(struct stripe_head *sh)
{
422
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
423
	unsigned long flags;
424 425
	struct list_head list;
	int hash;
S
Shaohua Li 已提交
426
	bool wakeup;
427

428 429 430 431 432
	/* Avoid release_list until the last reference.
	 */
	if (atomic_add_unless(&sh->count, -1, 1))
		return;

433 434
	if (unlikely(!conf->mddev->thread) ||
		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
S
Shaohua Li 已提交
435 436 437 438 439 440
		goto slow_path;
	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
	if (wakeup)
		md_wakeup_thread(conf->mddev->thread);
	return;
slow_path:
441
	local_irq_save(flags);
S
Shaohua Li 已提交
442
	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444 445 446
		INIT_LIST_HEAD(&list);
		hash = sh->hash_lock_index;
		do_release_stripe(conf, sh, &list);
447
		spin_unlock(&conf->device_lock);
448
		release_inactive_stripe_list(conf, &list, hash);
449 450
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
451 452
}

453
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
454
{
455 456
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
457

458
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
459 460
}

461
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
462
{
463
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
464

465 466
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
467

468
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
469 470 471
}

/* find an idle stripe, make sure it is unhashed, and return it. */
472
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
473 474 475 476
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

477
	if (list_empty(conf->inactive_list + hash))
L
Linus Torvalds 已提交
478
		goto out;
479
	first = (conf->inactive_list + hash)->next;
L
Linus Torvalds 已提交
480 481 482 483
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
484
	BUG_ON(hash != sh->hash_lock_index);
485 486
	if (list_empty(conf->inactive_list + hash))
		atomic_inc(&conf->empty_inactive_list_nr);
L
Linus Torvalds 已提交
487 488 489 490
out:
	return sh;
}

491
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
492 493 494
{
	struct page *p;
	int i;
495
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
496

497
	for (i = 0; i < num ; i++) {
498
		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
L
Linus Torvalds 已提交
499 500 501 502
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
503
		put_page(p);
L
Linus Torvalds 已提交
504 505 506
	}
}

507
static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
L
Linus Torvalds 已提交
508 509
{
	int i;
510
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
511

512
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
513 514
		struct page *page;

515
		if (!(page = alloc_page(gfp))) {
L
Linus Torvalds 已提交
516 517 518
			return 1;
		}
		sh->dev[i].page = page;
519
		sh->dev[i].orig_page = page;
L
Linus Torvalds 已提交
520 521 522 523
	}
	return 0;
}

524
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
527

528
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
529
{
530
	struct r5conf *conf = sh->raid_conf;
531
	int i, seq;
L
Linus Torvalds 已提交
532

533 534
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535
	BUG_ON(stripe_operations_active(sh));
536
	BUG_ON(sh->batch_head);
537

538
	pr_debug("init_stripe called, stripe %llu\n",
539
		(unsigned long long)sector);
540 541
retry:
	seq = read_seqcount_begin(&conf->gen_lock);
542
	sh->generation = conf->generation - previous;
543
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
544
	sh->sector = sector;
545
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
546 547
	sh->state = 0;

548
	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
549 550
		struct r5dev *dev = &sh->dev[i];

551
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
552
		    test_bit(R5_LOCKED, &dev->flags)) {
553
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
554
			       (unsigned long long)sh->sector, i, dev->toread,
555
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
556
			       test_bit(R5_LOCKED, &dev->flags));
557
			WARN_ON(1);
L
Linus Torvalds 已提交
558 559
		}
		dev->flags = 0;
560
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
561
	}
562 563
	if (read_seqcount_retry(&conf->gen_lock, seq))
		goto retry;
564
	sh->overwrite_disks = 0;
L
Linus Torvalds 已提交
565
	insert_hash(conf, sh);
566
	sh->cpu = smp_processor_id();
567
	set_bit(STRIPE_BATCH_READY, &sh->state);
L
Linus Torvalds 已提交
568 569
}

570
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571
					 short generation)
L
Linus Torvalds 已提交
572 573 574
{
	struct stripe_head *sh;

575
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
578
			return sh;
579
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
580 581 582
	return NULL;
}

583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
596
static int calc_degraded(struct r5conf *conf)
597
{
598
	int degraded, degraded2;
599 600 601 602 603
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
604
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605 606
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
625 626
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
627
	rcu_read_lock();
628
	degraded2 = 0;
629
	for (i = 0; i < conf->raid_disks; i++) {
630
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631 632
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
633
		if (!rdev || test_bit(Faulty, &rdev->flags))
634
			degraded2++;
635 636 637 638 639 640 641 642 643
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
644
				degraded2++;
645 646
	}
	rcu_read_unlock();
647 648 649 650 651 652 653 654 655 656 657 658 659
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
660 661 662 663 664
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

665
static struct stripe_head *
666
get_active_stripe(struct r5conf *conf, sector_t sector,
667
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
668 669
{
	struct stripe_head *sh;
670
	int hash = stripe_hash_locks_hash(sector);
L
Linus Torvalds 已提交
671

672
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
673

674
	spin_lock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
675 676

	do {
677
		wait_event_lock_irq(conf->wait_for_quiescent,
678
				    conf->quiesce == 0 || noquiesce,
679
				    *(conf->hash_locks + hash));
680
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
681
		if (!sh) {
682
			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683
				sh = get_free_stripe(conf, hash);
684 685
				if (!sh && !test_bit(R5_DID_ALLOC,
						     &conf->cache_state))
686 687 688
					set_bit(R5_ALLOC_MORE,
						&conf->cache_state);
			}
L
Linus Torvalds 已提交
689 690 691
			if (noblock && sh == NULL)
				break;
			if (!sh) {
692 693
				set_bit(R5_INACTIVE_BLOCKED,
					&conf->cache_state);
694 695
				wait_event_exclusive_cmd(
					conf->wait_for_stripe[hash],
696 697 698
					!list_empty(conf->inactive_list + hash) &&
					(atomic_read(&conf->active_stripes)
					 < (conf->max_nr_stripes * 3 / 4)
699 700
					 || !test_bit(R5_INACTIVE_BLOCKED,
						      &conf->cache_state)),
701 702
					spin_unlock_irq(conf->hash_locks + hash),
					spin_lock_irq(conf->hash_locks + hash));
703 704
				clear_bit(R5_INACTIVE_BLOCKED,
					  &conf->cache_state);
705
			} else {
706
				init_stripe(sh, sector, previous);
707 708
				atomic_inc(&sh->count);
			}
709
		} else if (!atomic_inc_not_zero(&sh->count)) {
710
			spin_lock(&conf->device_lock);
711
			if (!atomic_read(&sh->count)) {
L
Linus Torvalds 已提交
712 713
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
714 715
				BUG_ON(list_empty(&sh->lru) &&
				       !test_bit(STRIPE_EXPANDING, &sh->state));
716
				list_del_init(&sh->lru);
717 718 719 720
				if (sh->group) {
					sh->group->stripes_cnt--;
					sh->group = NULL;
				}
L
Linus Torvalds 已提交
721
			}
722
			atomic_inc(&sh->count);
723
			spin_unlock(&conf->device_lock);
L
Linus Torvalds 已提交
724 725 726
		}
	} while (sh == NULL);

727 728 729
	if (!list_empty(conf->inactive_list + hash))
		wake_up(&conf->wait_for_stripe[hash]);

730
	spin_unlock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
731 732 733
	return sh;
}

734 735 736 737 738 739
static bool is_full_stripe_write(struct stripe_head *sh)
{
	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	local_irq_disable();
	if (sh1 > sh2) {
		spin_lock(&sh2->stripe_lock);
		spin_lock_nested(&sh1->stripe_lock, 1);
	} else {
		spin_lock(&sh1->stripe_lock);
		spin_lock_nested(&sh2->stripe_lock, 1);
	}
}

static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	spin_unlock(&sh1->stripe_lock);
	spin_unlock(&sh2->stripe_lock);
	local_irq_enable();
}

/* Only freshly new full stripe normal write stripe can be added to a batch list */
static bool stripe_can_batch(struct stripe_head *sh)
{
	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763
		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		is_full_stripe_write(sh);
}

/* we only do back search */
static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
{
	struct stripe_head *head;
	sector_t head_sector, tmp_sec;
	int hash;
	int dd_idx;

	if (!stripe_can_batch(sh))
		return;
	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
	tmp_sec = sh->sector;
	if (!sector_div(tmp_sec, conf->chunk_sectors))
		return;
	head_sector = sh->sector - STRIPE_SECTORS;

	hash = stripe_hash_locks_hash(head_sector);
	spin_lock_irq(conf->hash_locks + hash);
	head = __find_stripe(conf, head_sector, conf->generation);
	if (head && !atomic_inc_not_zero(&head->count)) {
		spin_lock(&conf->device_lock);
		if (!atomic_read(&head->count)) {
			if (!test_bit(STRIPE_HANDLE, &head->state))
				atomic_inc(&conf->active_stripes);
			BUG_ON(list_empty(&head->lru) &&
			       !test_bit(STRIPE_EXPANDING, &head->state));
			list_del_init(&head->lru);
			if (head->group) {
				head->group->stripes_cnt--;
				head->group = NULL;
			}
		}
		atomic_inc(&head->count);
		spin_unlock(&conf->device_lock);
	}
	spin_unlock_irq(conf->hash_locks + hash);

	if (!head)
		return;
	if (!stripe_can_batch(head))
		goto out;

	lock_two_stripes(head, sh);
	/* clear_batch_ready clear the flag */
	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
		goto unlock_out;

	if (sh->batch_head)
		goto unlock_out;

	dd_idx = 0;
	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
		dd_idx++;
	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
		goto unlock_out;

	if (head->batch_head) {
		spin_lock(&head->batch_head->batch_lock);
		/* This batch list is already running */
		if (!stripe_can_batch(head)) {
			spin_unlock(&head->batch_head->batch_lock);
			goto unlock_out;
		}

		/*
		 * at this point, head's BATCH_READY could be cleared, but we
		 * can still add the stripe to batch list
		 */
		list_add(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_head->batch_lock);

		sh->batch_head = head->batch_head;
	} else {
		head->batch_head = head;
		sh->batch_head = head->batch_head;
		spin_lock(&head->batch_lock);
		list_add_tail(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_lock);
	}

	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		if (atomic_dec_return(&conf->preread_active_stripes)
		    < IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);

852 853 854 855 856 857 858 859 860
	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
		int seq = sh->bm_seq;
		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
		    sh->batch_head->bm_seq > seq)
			seq = sh->batch_head->bm_seq;
		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
		sh->batch_head->bm_seq = seq;
	}

861 862 863 864 865 866 867
	atomic_inc(&sh->count);
unlock_out:
	unlock_two_stripes(head, sh);
out:
	release_stripe(head);
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

889
static void
890
raid5_end_read_request(struct bio *bi);
891
static void
892
raid5_end_write_request(struct bio *bi);
893

894
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895
{
896
	struct r5conf *conf = sh->raid_conf;
897
	int i, disks = sh->disks;
898
	struct stripe_head *head_sh = sh;
899 900 901 902 903

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
904
		int replace_only = 0;
905 906
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
907 908

		sh = head_sh;
T
Tejun Heo 已提交
909 910 911 912 913
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
914
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
915
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
916
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917
			rw = READ;
918 919 920 921 922
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
923
			continue;
S
Shaohua Li 已提交
924 925
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
926

927
again:
928
		bi = &sh->dev[i].req;
929
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
930 931

		rcu_read_lock();
932
		rrdev = rcu_dereference(conf->disks[i].replacement);
933 934 935 936 937 938
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
939 940 941
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
942 943 944
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
945
		} else {
946
			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 948 949
				rdev = rrdev;
			rrdev = NULL;
		}
950

951 952 953 954
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
955 956 957 958
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
959 960
		rcu_read_unlock();

961
		/* We have already checked bad blocks for reads.  Now
962 963
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
984 985 986 987 988 989
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
990 991 992 993 994 995 996 997
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

998
		if (rdev) {
999 1000
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
1001 1002
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
1003 1004
			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1005
			bio_reset(bi);
1006
			bi->bi_bdev = rdev->bdev;
K
Kent Overstreet 已提交
1007 1008 1009 1010 1011 1012
			bi->bi_rw = rw;
			bi->bi_end_io = (rw & WRITE)
				? raid5_end_write_request
				: raid5_end_read_request;
			bi->bi_private = sh;

1013
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014
				__func__, (unsigned long long)sh->sector,
1015 1016
				bi->bi_rw, i);
			atomic_inc(&sh->count);
1017 1018
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1019
			if (use_new_offset(conf, sh))
1020
				bi->bi_iter.bi_sector = (sh->sector
1021 1022
						 + rdev->new_data_offset);
			else
1023
				bi->bi_iter.bi_sector = (sh->sector
1024
						 + rdev->data_offset);
1025
			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026
				bi->bi_rw |= REQ_NOMERGE;
1027

1028 1029 1030
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].vec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1031
			bi->bi_vcnt = 1;
1032 1033
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
1034
			bi->bi_iter.bi_size = STRIPE_SIZE;
1035 1036 1037 1038 1039 1040
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				bi->bi_vcnt = 0;
1041 1042
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043 1044 1045 1046 1047

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1048
			generic_make_request(bi);
1049 1050
		}
		if (rrdev) {
1051 1052
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
1053 1054 1055 1056
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1057
			bio_reset(rbi);
1058
			rbi->bi_bdev = rrdev->bdev;
K
Kent Overstreet 已提交
1059 1060 1061 1062 1063
			rbi->bi_rw = rw;
			BUG_ON(!(rw & WRITE));
			rbi->bi_end_io = raid5_end_write_request;
			rbi->bi_private = sh;

1064 1065 1066 1067 1068
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
1069 1070
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1071
			if (use_new_offset(conf, sh))
1072
				rbi->bi_iter.bi_sector = (sh->sector
1073 1074
						  + rrdev->new_data_offset);
			else
1075
				rbi->bi_iter.bi_sector = (sh->sector
1076
						  + rrdev->data_offset);
1077 1078 1079
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].rvec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1080
			rbi->bi_vcnt = 1;
1081 1082
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
1083
			rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 1085 1086 1087 1088 1089
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				rbi->bi_vcnt = 0;
1090 1091 1092 1093
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1094 1095 1096
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
1097
			if (rw & WRITE)
1098 1099 1100 1101 1102 1103
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
1104 1105 1106 1107 1108 1109 1110

		if (!head_sh->batch_head)
			continue;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		if (sh != head_sh)
			goto again;
1111 1112 1113 1114
	}
}

static struct dma_async_tx_descriptor *
1115 1116 1117
async_copy_data(int frombio, struct bio *bio, struct page **page,
	sector_t sector, struct dma_async_tx_descriptor *tx,
	struct stripe_head *sh)
1118
{
1119 1120
	struct bio_vec bvl;
	struct bvec_iter iter;
1121 1122
	struct page *bio_page;
	int page_offset;
1123
	struct async_submit_ctl submit;
D
Dan Williams 已提交
1124
	enum async_tx_flags flags = 0;
1125

1126 1127
	if (bio->bi_iter.bi_sector >= sector)
		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128
	else
1129
		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130

D
Dan Williams 已提交
1131 1132 1133 1134
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

1135 1136
	bio_for_each_segment(bvl, bio, iter) {
		int len = bvl.bv_len;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
1152 1153
			b_offset += bvl.bv_offset;
			bio_page = bvl.bv_page;
1154 1155 1156 1157 1158 1159 1160
			if (frombio) {
				if (sh->raid_conf->skip_copy &&
				    b_offset == 0 && page_offset == 0 &&
				    clen == STRIPE_SIZE)
					*page = bio_page;
				else
					tx = async_memcpy(*page, bio_page, page_offset,
1161
						  b_offset, clen, &submit);
1162 1163
			} else
				tx = async_memcpy(bio_page, *page, b_offset,
1164
						  page_offset, clen, &submit);
1165
		}
1166 1167 1168
		/* chain the operations */
		submit.depend_tx = tx;

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
1181
	int i;
1182

1183
	pr_debug("%s: stripe %llu\n", __func__,
1184 1185 1186 1187 1188 1189 1190
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
1191 1192
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
1193
		 * !STRIPE_BIOFILL_RUN
1194 1195
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 1197 1198 1199 1200
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
1201
			while (rbi && rbi->bi_iter.bi_sector <
1202 1203
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
1204
				if (!raid5_dec_bi_active_stripes(rbi)) {
1205 1206 1207 1208 1209 1210 1211
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
1212
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213 1214 1215

	return_io(return_bi);

1216
	set_bit(STRIPE_HANDLE, &sh->state);
1217 1218 1219 1220 1221 1222
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
1223
	struct async_submit_ctl submit;
1224 1225
	int i;

1226
	BUG_ON(sh->batch_head);
1227
	pr_debug("%s: stripe %llu\n", __func__,
1228 1229 1230 1231 1232 1233
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
1234
			spin_lock_irq(&sh->stripe_lock);
1235 1236
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
1237
			spin_unlock_irq(&sh->stripe_lock);
1238
			while (rbi && rbi->bi_iter.bi_sector <
1239
				dev->sector + STRIPE_SECTORS) {
1240 1241
				tx = async_copy_data(0, rbi, &dev->page,
					dev->sector, tx, sh);
1242 1243 1244 1245 1246 1247
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
1248 1249
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
1250 1251
}

1252
static void mark_target_uptodate(struct stripe_head *sh, int target)
1253
{
1254
	struct r5dev *tgt;
1255

1256 1257
	if (target < 0)
		return;
1258

1259
	tgt = &sh->dev[target];
1260 1261 1262
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
1263 1264
}

1265
static void ops_complete_compute(void *stripe_head_ref)
1266 1267 1268
{
	struct stripe_head *sh = stripe_head_ref;

1269
	pr_debug("%s: stripe %llu\n", __func__,
1270 1271
		(unsigned long long)sh->sector);

1272
	/* mark the computed target(s) as uptodate */
1273
	mark_target_uptodate(sh, sh->ops.target);
1274
	mark_target_uptodate(sh, sh->ops.target2);
1275

1276 1277 1278
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
1279 1280 1281 1282
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1283 1284
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285
				 struct raid5_percpu *percpu, int i)
1286
{
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr + sizeof(struct page *) * (sh->disks + 2);
}

/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr;
1300 1301 1302 1303
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 1305
{
	int disks = sh->disks;
1306
	struct page **xor_srcs = to_addr_page(percpu, 0);
1307 1308 1309 1310 1311
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
1312
	struct async_submit_ctl submit;
1313 1314
	int i;

1315 1316
	BUG_ON(sh->batch_head);

1317
	pr_debug("%s: stripe %llu block: %d\n",
1318
		__func__, (unsigned long long)sh->sector, target);
1319 1320 1321 1322 1323 1324 1325 1326
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
1327
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328
			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329
	if (unlikely(count == 1))
1330
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331
	else
1332
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333 1334 1335 1336

	return tx;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
1346 1347 1348
static int set_syndrome_sources(struct page **srcs,
				struct stripe_head *sh,
				int srctype)
1349 1350 1351 1352 1353 1354 1355 1356
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
1357
		srcs[i] = NULL;
1358 1359 1360 1361 1362

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363
		struct r5dev *dev = &sh->dev[i];
1364

1365 1366 1367 1368 1369 1370 1371
		if (i == sh->qd_idx || i == sh->pd_idx ||
		    (srctype == SYNDROME_SRC_ALL) ||
		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
		     test_bit(R5_Wantdrain, &dev->flags)) ||
		    (srctype == SYNDROME_SRC_WRITTEN &&
		     dev->written))
			srcs[slot] = sh->dev[i].page;
1372 1373 1374
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

1375
	return syndrome_disks;
1376 1377 1378 1379 1380 1381
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
1382
	struct page **blocks = to_addr_page(percpu, 0);
1383 1384 1385 1386 1387 1388 1389 1390 1391
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

1392
	BUG_ON(sh->batch_head);
1393 1394 1395 1396
	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
1397
	else
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
1411
		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 1413
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
1414 1415
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1416
				  to_addr_conv(sh, percpu, 0));
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1427 1428
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1429
				  to_addr_conv(sh, percpu, 0));
1430 1431
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1432 1433 1434 1435

	return tx;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
1448
	struct page **blocks = to_addr_page(percpu, 0);
1449 1450
	struct async_submit_ctl submit;

1451
	BUG_ON(sh->batch_head);
1452 1453 1454 1455 1456 1457
	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1458
	/* we need to open-code set_syndrome_sources to handle the
1459 1460 1461
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1462
		blocks[i] = NULL;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1489 1490
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
1491
					  to_addr_conv(sh, percpu, 0));
1492
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1512 1513 1514
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
1515
					  to_addr_conv(sh, percpu, 0));
1516 1517 1518
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

1519
			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
D
Dan Williams 已提交
1520 1521
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
1522
					  to_addr_conv(sh, percpu, 0));
1523 1524 1525 1526
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1527 1528
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1529
				  to_addr_conv(sh, percpu, 0));
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1541 1542 1543
	}
}

1544 1545 1546 1547
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1548
	pr_debug("%s: stripe %llu\n", __func__,
1549 1550 1551 1552
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1553 1554
ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
1555 1556
{
	int disks = sh->disks;
1557
	struct page **xor_srcs = to_addr_page(percpu, 0);
1558
	int count = 0, pd_idx = sh->pd_idx, i;
1559
	struct async_submit_ctl submit;
1560 1561 1562 1563

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1564
	BUG_ON(sh->batch_head);
1565
	pr_debug("%s: stripe %llu\n", __func__,
1566 1567 1568 1569 1570
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1571
		if (test_bit(R5_Wantdrain, &dev->flags))
1572 1573 1574
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1575
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578 1579 1580 1581

	return tx;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
{
	struct page **blocks = to_addr_page(percpu, 0);
	int count;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu\n", __func__,
		(unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);

	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);

	return tx;
}

1602
static struct dma_async_tx_descriptor *
1603
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 1605
{
	int disks = sh->disks;
1606
	int i;
1607
	struct stripe_head *head_sh = sh;
1608

1609
	pr_debug("%s: stripe %llu\n", __func__,
1610 1611 1612
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
1613
		struct r5dev *dev;
1614 1615
		struct bio *chosen;

1616 1617
		sh = head_sh;
		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 1619
			struct bio *wbi;

1620 1621
again:
			dev = &sh->dev[i];
S
Shaohua Li 已提交
1622
			spin_lock_irq(&sh->stripe_lock);
1623 1624
			chosen = dev->towrite;
			dev->towrite = NULL;
1625
			sh->overwrite_disks = 0;
1626 1627
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1628
			spin_unlock_irq(&sh->stripe_lock);
1629
			WARN_ON(dev->page != dev->orig_page);
1630

1631
			while (wbi && wbi->bi_iter.bi_sector <
1632
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1633 1634
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1635 1636
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1637
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1638
					set_bit(R5_Discard, &dev->flags);
1639 1640 1641 1642 1643 1644 1645 1646 1647
				else {
					tx = async_copy_data(1, wbi, &dev->page,
						dev->sector, tx, sh);
					if (dev->page != dev->orig_page) {
						set_bit(R5_SkipCopy, &dev->flags);
						clear_bit(R5_UPTODATE, &dev->flags);
						clear_bit(R5_OVERWRITE, &dev->flags);
					}
				}
1648 1649
				wbi = r5_next_bio(wbi, dev->sector);
			}
1650 1651 1652 1653 1654 1655 1656 1657 1658

			if (head_sh->batch_head) {
				sh = list_first_entry(&sh->batch_list,
						      struct stripe_head,
						      batch_list);
				if (sh == head_sh)
					continue;
				goto again;
			}
1659 1660 1661 1662 1663 1664
		}
	}

	return tx;
}

1665
static void ops_complete_reconstruct(void *stripe_head_ref)
1666 1667
{
	struct stripe_head *sh = stripe_head_ref;
1668 1669 1670 1671
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1672
	bool fua = false, sync = false, discard = false;
1673

1674
	pr_debug("%s: stripe %llu\n", __func__,
1675 1676
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1677
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1678
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1679
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1681
	}
T
Tejun Heo 已提交
1682

1683 1684
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1685

T
Tejun Heo 已提交
1686
		if (dev->written || i == pd_idx || i == qd_idx) {
1687
			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1689 1690
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1691 1692
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1693
		}
1694 1695
	}

1696 1697 1698 1699 1700 1701 1702 1703
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1704 1705 1706 1707 1708 1709

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1710 1711
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1712 1713
{
	int disks = sh->disks;
1714
	struct page **xor_srcs;
1715
	struct async_submit_ctl submit;
1716
	int count, pd_idx = sh->pd_idx, i;
1717
	struct page *xor_dest;
1718
	int prexor = 0;
1719
	unsigned long flags;
1720 1721 1722
	int j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1723

1724
	pr_debug("%s: stripe %llu\n", __func__,
1725 1726
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1739 1740 1741
again:
	count = 0;
	xor_srcs = to_addr_page(percpu, j);
1742 1743 1744
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1745
	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746
		prexor = 1;
1747 1748 1749
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
1750
			if (head_sh->dev[i].written)
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;
	if (last_stripe) {
		flags = ASYNC_TX_ACK |
			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

		atomic_inc(&head_sh->count);
		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
				  to_addr_conv(sh, percpu, j));
	} else {
		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
		init_async_submit(&submit, flags, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
	}
1782

1783 1784 1785 1786
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 1788 1789 1790 1791 1792
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1793 1794
}

1795 1796 1797 1798 1799
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
1800 1801 1802 1803
	struct page **blocks;
	int count, i, j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1804 1805
	int synflags;
	unsigned long txflags;
1806 1807 1808

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1823 1824
again:
	blocks = to_addr_page(percpu, j);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		synflags = SYNDROME_SRC_WRITTEN;
		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
	} else {
		synflags = SYNDROME_SRC_ALL;
		txflags = ASYNC_TX_ACK;
	}

	count = set_syndrome_sources(blocks, sh, synflags);
1835 1836 1837 1838 1839 1840
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;

	if (last_stripe) {
		atomic_inc(&head_sh->count);
1841
		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 1843 1844 1845
				  head_sh, to_addr_conv(sh, percpu, j));
	} else
		init_async_submit(&submit, 0, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
1846
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847 1848 1849 1850 1851 1852
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1853 1854 1855 1856 1857 1858
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1859
	pr_debug("%s: stripe %llu\n", __func__,
1860 1861
		(unsigned long long)sh->sector);

1862
	sh->check_state = check_state_check_result;
1863 1864 1865 1866
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1867
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 1869
{
	int disks = sh->disks;
1870 1871 1872
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1873
	struct page **xor_srcs = to_addr_page(percpu, 0);
1874
	struct dma_async_tx_descriptor *tx;
1875
	struct async_submit_ctl submit;
1876 1877
	int count;
	int i;
1878

1879
	pr_debug("%s: stripe %llu\n", __func__,
1880 1881
		(unsigned long long)sh->sector);

1882
	BUG_ON(sh->batch_head);
1883 1884 1885
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1886
	for (i = disks; i--; ) {
1887 1888 1889
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1890 1891
	}

1892
	init_async_submit(&submit, 0, NULL, NULL, NULL,
1893
			  to_addr_conv(sh, percpu, 0));
D
Dan Williams 已提交
1894
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895
			   &sh->ops.zero_sum_result, &submit);
1896 1897

	atomic_inc(&sh->count);
1898 1899
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1900 1901
}

1902 1903
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
1904
	struct page **srcs = to_addr_page(percpu, 0);
1905 1906 1907 1908 1909 1910
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

1911
	BUG_ON(sh->batch_head);
1912
	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 1914
	if (!checkp)
		srcs[count] = NULL;
1915 1916

	atomic_inc(&sh->count);
1917
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918
			  sh, to_addr_conv(sh, percpu, 0));
1919 1920
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 1922
}

N
NeilBrown 已提交
1923
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 1925 1926
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1927
	struct r5conf *conf = sh->raid_conf;
1928
	int level = conf->level;
1929 1930
	struct raid5_percpu *percpu;
	unsigned long cpu;
1931

1932 1933
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1934
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 1936 1937 1938
		ops_run_biofill(sh);
		overlap_clear++;
	}

1939
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 1951
			async_tx_ack(tx);
	}
1952

1953 1954 1955 1956 1957 1958
	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
		if (level < 6)
			tx = ops_run_prexor5(sh, percpu, tx);
		else
			tx = ops_run_prexor6(sh, percpu, tx);
	}
1959

1960
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961
		tx = ops_run_biodrain(sh, tx);
1962 1963 1964
		overlap_clear++;
	}

1965 1966 1967 1968 1969 1970
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1982

1983
	if (overlap_clear && !sh->batch_head)
1984 1985 1986 1987 1988
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1989
	put_cpu();
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
{
	struct stripe_head *sh;

	sh = kmem_cache_zalloc(sc, gfp);
	if (sh) {
		spin_lock_init(&sh->stripe_lock);
		spin_lock_init(&sh->batch_lock);
		INIT_LIST_HEAD(&sh->batch_list);
		INIT_LIST_HEAD(&sh->lru);
		atomic_set(&sh->count, 1);
	}
	return sh;
}
2006
static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
L
Linus Torvalds 已提交
2007 2008
{
	struct stripe_head *sh;
2009 2010

	sh = alloc_stripe(conf->slab_cache, gfp);
2011 2012
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
2013

2014 2015
	sh->raid_conf = conf;

2016
	if (grow_buffers(sh, gfp)) {
2017
		shrink_buffers(sh);
2018 2019 2020
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
2021 2022
	sh->hash_lock_index =
		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 2024
	/* we just created an active stripe so... */
	atomic_inc(&conf->active_stripes);
2025

2026
	release_stripe(sh);
2027
	conf->max_nr_stripes++;
2028 2029 2030
	return 1;
}

2031
static int grow_stripes(struct r5conf *conf, int num)
2032
{
2033
	struct kmem_cache *sc;
2034
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
2035

2036 2037 2038 2039 2040 2041 2042 2043
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

2044 2045
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
2046
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047
			       0, 0, NULL);
L
Linus Torvalds 已提交
2048 2049 2050
	if (!sc)
		return 1;
	conf->slab_cache = sc;
2051
	conf->pool_size = devs;
2052 2053
	while (num--)
		if (!grow_one_stripe(conf, GFP_KERNEL))
L
Linus Torvalds 已提交
2054
			return 1;
2055

L
Linus Torvalds 已提交
2056 2057
	return 0;
}
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
2072
static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073
{
2074
	struct flex_array *ret;
2075 2076 2077
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 2079 2080 2081 2082 2083 2084 2085 2086
	ret = flex_array_alloc(len, cnt, flags);
	if (!ret)
		return NULL;
	/* always prealloc all elements, so no locking is required */
	if (flex_array_prealloc(ret, 0, cnt, flags)) {
		flex_array_free(ret);
		return NULL;
	}
	return ret;
2087 2088
}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
{
	unsigned long cpu;
	int err = 0;

	mddev_suspend(conf->mddev);
	get_online_cpus();
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		struct flex_array *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = scribble_alloc(new_disks,
					  new_sectors / STRIPE_SECTORS,
					  GFP_NOIO);

		if (scribble) {
			flex_array_free(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();
	mddev_resume(conf->mddev);
	return err;
}

2118
static int resize_stripes(struct r5conf *conf, int newsize)
2119 2120 2121 2122 2123 2124 2125
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
2126
	 * 2/ gather all the old stripe_heads and transfer the pages across
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
2146
	int err;
2147
	struct kmem_cache *sc;
2148
	int i;
2149
	int hash, cnt;
2150 2151 2152 2153

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

2154 2155 2156
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
2157

2158 2159 2160
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161
			       0, 0, NULL);
2162 2163 2164 2165
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
2166
		nsh = alloc_stripe(sc, GFP_KERNEL);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		if (!nsh)
			break;

		nsh->raid_conf = conf;
		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
2187 2188
	hash = 0;
	cnt = 0;
2189
	list_for_each_entry(nsh, &newstripes, lru) {
2190
		lock_device_hash_lock(conf, hash);
2191
		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2192 2193 2194 2195 2196
				    !list_empty(conf->inactive_list + hash),
				    unlock_device_hash_lock(conf, hash),
				    lock_device_hash_lock(conf, hash));
		osh = get_free_stripe(conf, hash);
		unlock_device_hash_lock(conf, hash);
2197

2198
		for(i=0; i<conf->pool_size; i++) {
2199
			nsh->dev[i].page = osh->dev[i].page;
2200 2201
			nsh->dev[i].orig_page = osh->dev[i].page;
		}
2202
		nsh->hash_lock_index = hash;
2203
		kmem_cache_free(conf->slab_cache, osh);
2204 2205 2206 2207 2208 2209
		cnt++;
		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
			hash++;
			cnt = 0;
		}
2210 2211 2212 2213 2214 2215
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
2216
	 * conf->disks and the scribble region
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
2231

2232 2233 2234 2235
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
2236
				nsh->dev[i].orig_page = p;
2237 2238 2239 2240 2241 2242 2243 2244 2245
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
2246 2247
	if (!err)
		conf->pool_size = newsize;
2248 2249
	return err;
}
L
Linus Torvalds 已提交
2250

2251
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
2252 2253
{
	struct stripe_head *sh;
2254
	int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
L
Linus Torvalds 已提交
2255

2256 2257 2258
	spin_lock_irq(conf->hash_locks + hash);
	sh = get_free_stripe(conf, hash);
	spin_unlock_irq(conf->hash_locks + hash);
2259 2260
	if (!sh)
		return 0;
2261
	BUG_ON(atomic_read(&sh->count));
2262
	shrink_buffers(sh);
2263 2264
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
2265
	conf->max_nr_stripes--;
2266 2267 2268
	return 1;
}

2269
static void shrink_stripes(struct r5conf *conf)
2270
{
2271 2272 2273
	while (conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;
2274

N
NeilBrown 已提交
2275 2276
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
2277 2278 2279
	conf->slab_cache = NULL;
}

2280
static void raid5_end_read_request(struct bio * bi)
L
Linus Torvalds 已提交
2281
{
2282
	struct stripe_head *sh = bi->bi_private;
2283
	struct r5conf *conf = sh->raid_conf;
2284
	int disks = sh->disks, i;
2285
	char b[BDEVNAME_SIZE];
2286
	struct md_rdev *rdev = NULL;
2287
	sector_t s;
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

2293
	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2294
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2295
		bi->bi_error);
L
Linus Torvalds 已提交
2296 2297
	if (i == disks) {
		BUG();
2298
		return;
L
Linus Torvalds 已提交
2299
	}
2300
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2301 2302 2303 2304 2305
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
2306
		rdev = conf->disks[i].replacement;
2307
	if (!rdev)
2308
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2309

2310 2311 2312 2313
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
2314
	if (!bi->bi_error) {
L
Linus Torvalds 已提交
2315
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2316
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2317 2318 2319 2320
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
2321 2322 2323 2324 2325
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
2326
				(unsigned long long)s,
2327
				bdevname(rdev->bdev, b));
2328
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2329 2330
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2331 2332 2333
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

2334 2335
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
2336
	} else {
2337
		const char *bdn = bdevname(rdev->bdev, b);
2338
		int retry = 0;
2339
		int set_bad = 0;
2340

L
Linus Torvalds 已提交
2341
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2342
		atomic_inc(&rdev->read_errors);
2343 2344 2345 2346 2347 2348
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2349
				(unsigned long long)s,
2350
				bdn);
2351 2352
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
2353 2354 2355 2356 2357
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2358
				(unsigned long long)s,
2359
				bdn);
2360
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2361
			/* Oh, no!!! */
2362
			set_bad = 1;
2363 2364 2365 2366 2367
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2368
				(unsigned long long)s,
2369
				bdn);
2370
		} else if (atomic_read(&rdev->read_errors)
2371
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
2372
			printk(KERN_WARNING
2373
			       "md/raid:%s: Too many read errors, failing device %s.\n",
2374
			       mdname(conf->mddev), bdn);
2375 2376
		else
			retry = 1;
2377 2378 2379
		if (set_bad && test_bit(In_sync, &rdev->flags)
		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			retry = 1;
2380
		if (retry)
2381 2382 2383 2384 2385
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386
		else {
2387 2388
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2389 2390 2391 2392 2393
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
2394
		}
L
Linus Torvalds 已提交
2395
	}
2396
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

2402
static void raid5_end_write_request(struct bio *bi)
L
Linus Torvalds 已提交
2403
{
2404
	struct stripe_head *sh = bi->bi_private;
2405
	struct r5conf *conf = sh->raid_conf;
2406
	int disks = sh->disks, i;
2407
	struct md_rdev *uninitialized_var(rdev);
2408 2409
	sector_t first_bad;
	int bad_sectors;
2410
	int replacement = 0;
L
Linus Torvalds 已提交
2411

2412 2413 2414
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2415
			break;
2416 2417 2418
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
2419 2420 2421 2422 2423 2424 2425 2426
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
2427 2428 2429
			break;
		}
	}
2430
	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
L
Linus Torvalds 已提交
2431
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2432
		bi->bi_error);
L
Linus Torvalds 已提交
2433 2434
	if (i == disks) {
		BUG();
2435
		return;
L
Linus Torvalds 已提交
2436 2437
	}

2438
	if (replacement) {
2439
		if (bi->bi_error)
2440 2441 2442 2443 2444 2445
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
2446
		if (bi->bi_error) {
2447
			set_bit(STRIPE_DEGRADED, &sh->state);
2448 2449
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
2450 2451 2452
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
2453 2454
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
2455
				       &first_bad, &bad_sectors)) {
2456
			set_bit(R5_MadeGood, &sh->dev[i].flags);
2457 2458 2459 2460 2461 2462 2463
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
2464 2465
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2466

2467
	if (sh->batch_head && bi->bi_error && !replacement)
2468 2469
		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);

2470 2471
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
2472
	set_bit(STRIPE_HANDLE, &sh->state);
2473
	release_stripe(sh);
2474 2475 2476

	if (sh->batch_head && sh != sh->batch_head)
		release_stripe(sh->batch_head);
L
Linus Torvalds 已提交
2477 2478
}

2479
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2480

2481
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
2487
	dev->req.bi_max_vecs = 1;
L
Linus Torvalds 已提交
2488 2489
	dev->req.bi_private = sh;

2490 2491
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
2492
	dev->rreq.bi_max_vecs = 1;
2493 2494
	dev->rreq.bi_private = sh;

L
Linus Torvalds 已提交
2495
	dev->flags = 0;
2496
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
2497 2498
}

2499
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
2500 2501
{
	char b[BDEVNAME_SIZE];
2502
	struct r5conf *conf = mddev->private;
2503
	unsigned long flags;
2504
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
2505

2506 2507 2508 2509 2510 2511
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

2512
	set_bit(Blocked, &rdev->flags);
2513 2514 2515 2516 2517 2518 2519 2520 2521
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
2522
}
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
2528
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2529 2530
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
2531
{
N
NeilBrown 已提交
2532
	sector_t stripe, stripe2;
2533
	sector_t chunk_number;
L
Linus Torvalds 已提交
2534
	unsigned int chunk_offset;
2535
	int pd_idx, qd_idx;
2536
	int ddf_layout = 0;
L
Linus Torvalds 已提交
2537
	sector_t new_sector;
2538 2539
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
2540 2541
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2542 2543 2544
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2557 2558
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2559
	stripe2 = stripe;
L
Linus Torvalds 已提交
2560 2561 2562
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2563
	pd_idx = qd_idx = -1;
2564 2565
	switch(conf->level) {
	case 4:
2566
		pd_idx = data_disks;
2567 2568
		break;
	case 5:
2569
		switch (algorithm) {
L
Linus Torvalds 已提交
2570
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2571
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2572
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2573 2574 2575
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2576
			pd_idx = sector_div(stripe2, raid_disks);
2577
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2578 2579 2580
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2581
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2582
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2583 2584
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2585
			pd_idx = sector_div(stripe2, raid_disks);
2586
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2587
			break;
2588 2589 2590 2591 2592 2593 2594
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2595
		default:
2596
			BUG();
2597 2598 2599 2600
		}
		break;
	case 6:

2601
		switch (algorithm) {
2602
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2603
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2604 2605
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2606
				(*dd_idx)++;	/* Q D D D P */
2607 2608
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2609 2610 2611
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2612
			pd_idx = sector_div(stripe2, raid_disks);
2613 2614
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2615
				(*dd_idx)++;	/* Q D D D P */
2616 2617
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2618 2619 2620
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2621
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2622 2623
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2624 2625
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2626
			pd_idx = sector_div(stripe2, raid_disks);
2627 2628
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2629
			break;
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2645
			pd_idx = sector_div(stripe2, raid_disks);
2646 2647 2648 2649 2650 2651
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2652
			ddf_layout = 1;
2653 2654 2655 2656 2657 2658 2659
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2660 2661
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2662 2663 2664 2665 2666 2667
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2668
			ddf_layout = 1;
2669 2670 2671 2672
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2673
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2674 2675
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676
			ddf_layout = 1;
2677 2678 2679 2680
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2681
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2682 2683 2684 2685 2686 2687
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2688
			pd_idx = sector_div(stripe2, raid_disks-1);
2689 2690 2691 2692 2693 2694
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2695
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2696 2697 2698 2699 2700
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2701
			pd_idx = sector_div(stripe2, raid_disks-1);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2712
		default:
2713
			BUG();
2714 2715
		}
		break;
L
Linus Torvalds 已提交
2716 2717
	}

2718 2719 2720
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2721
		sh->ddf_layout = ddf_layout;
2722
	}
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728 2729
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}

2730
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2731
{
2732
	struct r5conf *conf = sh->raid_conf;
2733 2734
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2735
	sector_t new_sector = sh->sector, check;
2736 2737
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2738 2739
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2740 2741
	sector_t stripe;
	int chunk_offset;
2742 2743
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2744
	sector_t r_sector;
2745
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2746 2747 2748 2749

	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2750 2751 2752 2753 2754
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2755
		switch (algorithm) {
L
Linus Torvalds 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2767 2768 2769 2770 2771
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2772
		default:
2773
			BUG();
2774 2775 2776
		}
		break;
	case 6:
2777
		if (i == sh->qd_idx)
2778
			return 0; /* It is the Q disk */
2779
		switch (algorithm) {
2780 2781
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2782 2783 2784 2785
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2800 2801 2802 2803 2804 2805
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2806
			/* Like left_symmetric, but P is before Q */
2807 2808
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2809 2810 2811 2812 2813 2814
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2830
		default:
2831
			BUG();
2832 2833
		}
		break;
L
Linus Torvalds 已提交
2834 2835 2836
	}

	chunk_number = stripe * data_disks + i;
2837
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2838

2839
	check = raid5_compute_sector(conf, r_sector,
2840
				     previous, &dummy1, &sh2);
2841 2842
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2843 2844
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849
		return 0;
	}
	return r_sector;
}

2850
static void
2851
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2852
			 int rcw, int expand)
2853
{
2854
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2855
	struct r5conf *conf = sh->raid_conf;
2856
	int level = conf->level;
2857 2858 2859 2860 2861 2862 2863 2864

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2865
				set_bit(R5_Wantdrain, &dev->flags);
2866 2867
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2868
				s->locked++;
2869 2870
			}
		}
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2886
		if (s->locked + conf->max_degraded == disks)
2887
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2888
				atomic_inc(&conf->pending_full_writes);
2889 2890 2891
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2892 2893 2894
		BUG_ON(level == 6 &&
			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2895 2896 2897

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
2898
			if (i == pd_idx || i == qd_idx)
2899 2900 2901 2902
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2903 2904
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2905 2906
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2907
				s->locked++;
2908 2909
			}
		}
2910 2911 2912 2913 2914 2915 2916
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2917 2918
	}

2919
	/* keep the parity disk(s) locked while asynchronous operations
2920 2921 2922 2923
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2924
	s->locked++;
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2935
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2936
		__func__, (unsigned long long)sh->sector,
2937
		s->locked, s->ops_request);
2938
}
2939

L
Linus Torvalds 已提交
2940 2941
/*
 * Each stripe/dev can have one or more bion attached.
2942
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2943 2944
 * The bi_next chain must be in order.
 */
2945 2946
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
			  int forwrite, int previous)
L
Linus Torvalds 已提交
2947 2948
{
	struct bio **bip;
2949
	struct r5conf *conf = sh->raid_conf;
2950
	int firstwrite=0;
L
Linus Torvalds 已提交
2951

2952
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2953
		(unsigned long long)bi->bi_iter.bi_sector,
L
Linus Torvalds 已提交
2954 2955
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2965 2966 2967
	/* Don't allow new IO added to stripes in batch list */
	if (sh->batch_head)
		goto overlap;
2968
	if (forwrite) {
L
Linus Torvalds 已提交
2969
		bip = &sh->dev[dd_idx].towrite;
2970
		if (*bip == NULL)
2971 2972
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2973
		bip = &sh->dev[dd_idx].toread;
2974 2975
	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
L
Linus Torvalds 已提交
2976 2977 2978
			goto overlap;
		bip = & (*bip)->bi_next;
	}
2979
	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
L
Linus Torvalds 已提交
2980 2981
		goto overlap;

2982 2983 2984
	if (!forwrite || previous)
		clear_bit(STRIPE_BATCH_READY, &sh->state);

2985
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2986 2987 2988
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2989
	raid5_inc_bi_active_stripes(bi);
2990

L
Linus Torvalds 已提交
2991 2992 2993 2994 2995
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2996
			     bi && bi->bi_iter.bi_sector <= sector;
L
Linus Torvalds 已提交
2997
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
K
Kent Overstreet 已提交
2998 2999
			if (bio_end_sector(bi) >= sector)
				sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
3000 3001
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3002 3003
			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
				sh->overwrite_disks++;
L
Linus Torvalds 已提交
3004
	}
3005 3006

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3007
		(unsigned long long)(*bip)->bi_iter.bi_sector,
3008 3009 3010
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		/* Cannot hold spinlock over bitmap_startwrite,
		 * but must ensure this isn't added to a batch until
		 * we have added to the bitmap and set bm_seq.
		 * So set STRIPE_BITMAP_PENDING to prevent
		 * batching.
		 * If multiple add_stripe_bio() calls race here they
		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
		 * to complete "bitmap_startwrite" gets to set
		 * STRIPE_BIT_DELAY.  This is important as once a stripe
		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
		 * any more.
		 */
		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
		spin_unlock_irq(&sh->stripe_lock);
3025 3026
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
3027 3028 3029 3030 3031 3032
		spin_lock_irq(&sh->stripe_lock);
		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
		if (!sh->batch_head) {
			sh->bm_seq = conf->seq_flush+1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}
3033
	}
3034
	spin_unlock_irq(&sh->stripe_lock);
3035 3036 3037

	if (stripe_can_batch(sh))
		stripe_add_to_batch_list(conf, sh);
L
Linus Torvalds 已提交
3038 3039 3040 3041
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
3042
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
3043 3044 3045
	return 0;
}

3046
static void end_reshape(struct r5conf *conf);
3047

3048
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3049
			    struct stripe_head *sh)
3050
{
3051
	int sectors_per_chunk =
3052
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3053
	int dd_idx;
3054
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3055
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3056

3057 3058
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
3059
			     *sectors_per_chunk + chunk_offset,
3060
			     previous,
3061
			     &dd_idx, sh);
3062 3063
}

3064
static void
3065
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3066 3067 3068 3069
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
3070
	BUG_ON(sh->batch_head);
3071 3072 3073 3074 3075
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3076
			struct md_rdev *rdev;
3077 3078 3079
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
3080 3081 3082
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
3083
			rcu_read_unlock();
3084 3085 3086 3087 3088 3089 3090 3091
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3092
		}
S
Shaohua Li 已提交
3093
		spin_lock_irq(&sh->stripe_lock);
3094 3095 3096
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
3097
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
3098
		spin_unlock_irq(&sh->stripe_lock);
3099
		if (bi)
3100 3101 3102 3103 3104
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

3105
		while (bi && bi->bi_iter.bi_sector <
3106 3107
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3108 3109

			bi->bi_error = -EIO;
3110
			if (!raid5_dec_bi_active_stripes(bi)) {
3111 3112 3113 3114 3115 3116
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
3117 3118 3119 3120
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
3121 3122 3123
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
3124 3125 3126 3127 3128
		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].page = sh->dev[i].orig_page;
		}

3129
		if (bi) bitmap_end = 1;
3130
		while (bi && bi->bi_iter.bi_sector <
3131 3132
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3133 3134

			bi->bi_error = -EIO;
3135
			if (!raid5_dec_bi_active_stripes(bi)) {
3136 3137 3138 3139 3140 3141 3142
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

3143 3144 3145 3146 3147 3148
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3149
			spin_lock_irq(&sh->stripe_lock);
3150 3151
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
3152
			spin_unlock_irq(&sh->stripe_lock);
3153 3154
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
3155
			while (bi && bi->bi_iter.bi_sector <
3156 3157 3158
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
3159 3160

				bi->bi_error = -EIO;
3161
				if (!raid5_dec_bi_active_stripes(bi)) {
3162 3163 3164 3165 3166 3167 3168 3169 3170
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
3171 3172 3173 3174
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3175 3176
	}

3177 3178 3179
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3180 3181
}

3182
static void
3183
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3184 3185 3186 3187 3188
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

3189
	BUG_ON(sh->batch_head);
3190
	clear_bit(STRIPE_SYNCING, &sh->state);
3191 3192
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
3193
	s->syncing = 0;
3194
	s->replacing = 0;
3195
	/* There is nothing more to do for sync/check/repair.
3196 3197 3198
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
3199
	 * For recover/replace we need to record a bad block on all
3200 3201
	 * non-sync devices, or abort the recovery
	 */
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
3225
	}
3226
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3227 3228
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

3245
/* fetch_block - checks the given member device to see if its data needs
3246 3247 3248
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
3249
 * 0 to tell the loop in handle_stripe_fill to continue
3250
 */
3251 3252 3253

static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
			   int disk_idx, int disks)
3254
{
3255
	struct r5dev *dev = &sh->dev[disk_idx];
3256 3257
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
3258
	int i;
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	if (test_bit(R5_LOCKED, &dev->flags) ||
	    test_bit(R5_UPTODATE, &dev->flags))
		/* No point reading this as we already have it or have
		 * decided to get it.
		 */
		return 0;

	if (dev->toread ||
	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
		/* We need this block to directly satisfy a request */
		return 1;

	if (s->syncing || s->expanding ||
	    (s->replacing && want_replace(sh, disk_idx)))
		/* When syncing, or expanding we read everything.
		 * When replacing, we need the replaced block.
		 */
		return 1;

	if ((s->failed >= 1 && fdev[0]->toread) ||
	    (s->failed >= 2 && fdev[1]->toread))
		/* If we want to read from a failed device, then
		 * we need to actually read every other device.
		 */
		return 1;

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	/* Sometimes neither read-modify-write nor reconstruct-write
	 * cycles can work.  In those cases we read every block we
	 * can.  Then the parity-update is certain to have enough to
	 * work with.
	 * This can only be a problem when we need to write something,
	 * and some device has failed.  If either of those tests
	 * fail we need look no further.
	 */
	if (!s->failed || !s->to_write)
		return 0;

	if (test_bit(R5_Insync, &dev->flags) &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		/* Pre-reads at not permitted until after short delay
		 * to gather multiple requests.  However if this
		 * device is no Insync, the block could only be be computed
		 * and there is no need to delay that.
		 */
		return 0;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

	for (i = 0; i < s->failed; i++) {
		if (fdev[i]->towrite &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			/* If we have a partial write to a failed
			 * device, then we will need to reconstruct
			 * the content of that device, so all other
			 * devices must be read.
			 */
			return 1;
	}

	/* If we are forced to do a reconstruct-write, either because
	 * the current RAID6 implementation only supports that, or
	 * or because parity cannot be trusted and we are currently
	 * recovering it, there is extra need to be careful.
	 * If one of the devices that we would need to read, because
	 * it is not being overwritten (and maybe not written at all)
	 * is missing/faulty, then we need to read everything we can.
	 */
	if (sh->raid_conf->level != 6 &&
	    sh->sector < sh->raid_conf->mddev->recovery_cp)
		/* reconstruct-write isn't being forced */
		return 0;
	for (i = 0; i < s->failed; i++) {
3332 3333 3334
		if (s->failed_num[i] != sh->pd_idx &&
		    s->failed_num[i] != sh->qd_idx &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3335 3336 3337 3338
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			return 1;
	}

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	return 0;
}

static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
{
	struct r5dev *dev = &sh->dev[disk_idx];

	/* is the data in this block needed, and can we get it? */
	if (need_this_block(sh, s, disk_idx, disks)) {
3349 3350 3351 3352 3353
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3354
		BUG_ON(sh->batch_head);
3355
		if ((s->uptodate == disks - 1) &&
3356 3357
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
3358 3359
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
3360
			 */
3361 3362 3363 3364 3365 3366 3367 3368
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
3369 3370 3371 3372 3373 3374
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
3388
			}
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
3408 3409
		}
	}
3410 3411 3412 3413 3414

	return 0;
}

/**
3415
 * handle_stripe_fill - read or compute data to satisfy pending requests.
3416
 */
3417 3418 3419
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
3430
			if (fetch_block(sh, s, i, disks))
3431
				break;
3432 3433 3434
	set_bit(STRIPE_HANDLE, &sh->state);
}

3435 3436
static void break_stripe_batch_list(struct stripe_head *head_sh,
				    unsigned long handle_flags);
3437
/* handle_stripe_clean_event
3438 3439 3440 3441
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
3442
static void handle_stripe_clean_event(struct r5conf *conf,
3443 3444 3445 3446
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;
3447
	int discard_pending = 0;
3448 3449
	struct stripe_head *head_sh = sh;
	bool do_endio = false;
3450 3451 3452 3453 3454

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
3455
			    (test_bit(R5_UPTODATE, &dev->flags) ||
3456 3457
			     test_bit(R5_Discard, &dev->flags) ||
			     test_bit(R5_SkipCopy, &dev->flags))) {
3458 3459
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
3460
				pr_debug("Return write for disc %d\n", i);
3461 3462
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
3463 3464 3465
				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
				}
3466 3467 3468 3469
				do_endio = true;

returnbi:
				dev->page = dev->orig_page;
3470 3471
				wbi = dev->written;
				dev->written = NULL;
3472
				while (wbi && wbi->bi_iter.bi_sector <
3473 3474
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
3475
					if (!raid5_dec_bi_active_stripes(wbi)) {
3476 3477 3478 3479 3480 3481
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
3482 3483
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
3484
					 !test_bit(STRIPE_DEGRADED, &sh->state),
3485
						0);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
				if (head_sh->batch_head) {
					sh = list_first_entry(&sh->batch_list,
							      struct stripe_head,
							      batch_list);
					if (sh != head_sh) {
						dev = &sh->dev[i];
						goto returnbi;
					}
				}
				sh = head_sh;
				dev = &sh->dev[i];
3497 3498
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
3499 3500
			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
			WARN_ON(dev->page != dev->orig_page);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
3512 3513 3514 3515 3516 3517
		/*
		 * SCSI discard will change some bio fields and the stripe has
		 * no updated data, so remove it from hash list and the stripe
		 * will be reinitialized
		 */
		spin_lock_irq(&conf->device_lock);
3518
unhash:
S
Shaohua Li 已提交
3519
		remove_hash(sh);
3520 3521 3522 3523 3524 3525
		if (head_sh->batch_head) {
			sh = list_first_entry(&sh->batch_list,
					      struct stripe_head, batch_list);
			if (sh != head_sh)
					goto unhash;
		}
S
Shaohua Li 已提交
3526
		spin_unlock_irq(&conf->device_lock);
3527 3528
		sh = head_sh;

3529 3530 3531 3532
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
3533 3534 3535 3536

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3537

3538 3539
	if (head_sh->batch_head && do_endio)
		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3540 3541
}

3542
static void handle_stripe_dirtying(struct r5conf *conf,
3543 3544 3545
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
3546 3547
{
	int rmw = 0, rcw = 0, i;
3548 3549
	sector_t recovery_cp = conf->mddev->recovery_cp;

3550
	/* Check whether resync is now happening or should start.
3551 3552 3553 3554 3555 3556
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
3557
	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3558 3559
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
	     s->failed == 0)) {
3560
		/* Calculate the real rcw later - for now make it
3561 3562 3563
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
3564 3565
		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->rmw_level, (unsigned long long)recovery_cp,
3566
			 (unsigned long long)sh->sector);
3567
	} else for (i = disks; i--; ) {
3568 3569
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
3570
		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3571
		    !test_bit(R5_LOCKED, &dev->flags) &&
3572 3573
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
3574 3575 3576 3577 3578 3579
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
3580 3581
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != sh->pd_idx && i != sh->qd_idx &&
3582
		    !test_bit(R5_LOCKED, &dev->flags) &&
3583 3584
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
3585 3586
			if (test_bit(R5_Insync, &dev->flags))
				rcw++;
3587 3588 3589 3590
			else
				rcw += 2*disks;
		}
	}
3591
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3592 3593
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
3594
	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3595
		/* prefer read-modify-write, but need to get some data */
3596 3597 3598 3599
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
3600 3601
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
3602
			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3603
			    !test_bit(R5_LOCKED, &dev->flags) &&
3604 3605
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
3606
			    test_bit(R5_Insync, &dev->flags)) {
3607 3608 3609 3610
				if (test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
					pr_debug("Read_old block %d for r-m-w\n",
						 i);
3611 3612 3613 3614 3615 3616 3617 3618 3619
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
3620
	}
3621
	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3622
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
3623
		int qread =0;
3624
		rcw = 0;
3625 3626 3627
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3628
			    i != sh->pd_idx && i != sh->qd_idx &&
3629
			    !test_bit(R5_LOCKED, &dev->flags) &&
3630
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3631 3632
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
3633 3634 3635
				if (test_bit(R5_Insync, &dev->flags) &&
				    test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
3636
					pr_debug("Read_old block "
3637 3638 3639 3640
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
3641
					qread++;
3642 3643 3644 3645 3646 3647
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
3648
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
3649 3650 3651
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3652
	}
3653 3654 3655 3656 3657

	if (rcw > disks && rmw > disks &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		set_bit(STRIPE_DELAYED, &sh->state);

3658 3659 3660
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
3661 3662
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
3663 3664
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
3665 3666 3667
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
3668 3669 3670
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3671
		schedule_reconstruction(sh, s, rcw == 0, 0);
3672 3673
}

3674
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3675 3676
				struct stripe_head_state *s, int disks)
{
3677
	struct r5dev *dev = NULL;
3678

3679
	BUG_ON(sh->batch_head);
3680
	set_bit(STRIPE_HANDLE, &sh->state);
3681

3682 3683 3684
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
3685 3686
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
3687 3688
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3689 3690
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
3691
			break;
3692
		}
3693
		dev = &sh->dev[s->failed_num[0]];
3694 3695 3696 3697 3698 3699 3700 3701 3702
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
3703

3704 3705 3706 3707 3708
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
3709
		s->locked++;
3710
		set_bit(R5_Wantwrite, &dev->flags);
3711

3712 3713
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
3730
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3731 3732 3733 3734 3735
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
3736
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3737 3738 3739 3740 3741
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3742
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3743 3744 3745 3746
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3747
				sh->ops.target2 = -1;
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3759 3760 3761
	}
}

3762
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3763
				  struct stripe_head_state *s,
3764
				  int disks)
3765 3766
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3767
	int qd_idx = sh->qd_idx;
3768
	struct r5dev *dev;
3769

3770
	BUG_ON(sh->batch_head);
3771 3772 3773
	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3774

3775 3776 3777 3778 3779 3780
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3781 3782 3783
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3784
		if (s->failed == s->q_failed) {
3785
			/* The only possible failed device holds Q, so it
3786 3787 3788
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3789
			sh->check_state = check_state_run;
3790
		}
3791
		if (!s->q_failed && s->failed < 2) {
3792
			/* Q is not failed, and we didn't use it to generate
3793 3794
			 * anything, so it makes sense to check it
			 */
3795 3796 3797 3798
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3799 3800
		}

3801 3802
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3803

3804 3805 3806 3807
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3808
		}
3809 3810 3811 3812 3813 3814 3815
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3816 3817
		}

3818 3819 3820 3821 3822
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3823

3824 3825 3826
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3827 3828

		/* now write out any block on a failed drive,
3829
		 * or P or Q if they were recomputed
3830
		 */
3831
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3832
		if (s->failed == 2) {
3833
			dev = &sh->dev[s->failed_num[1]];
3834 3835 3836 3837 3838
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3839
			dev = &sh->dev[s->failed_num[0]];
3840 3841 3842 3843
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3844
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3845 3846 3847 3848 3849
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3850
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3851 3852 3853 3854 3855 3856 3857 3858
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3888
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3923 3924 3925
	}
}

3926
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3927 3928 3929 3930 3931 3932
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3933
	struct dma_async_tx_descriptor *tx = NULL;
3934
	BUG_ON(sh->batch_head);
3935 3936
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3937
		if (i != sh->pd_idx && i != sh->qd_idx) {
3938
			int dd_idx, j;
3939
			struct stripe_head *sh2;
3940
			struct async_submit_ctl submit;
3941

3942
			sector_t bn = compute_blocknr(sh, i, 1);
3943 3944
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3945
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3958 3959

			/* place all the copies on one channel */
3960
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3961
			tx = async_memcpy(sh2->dev[dd_idx].page,
3962
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3963
					  &submit);
3964

3965 3966 3967 3968
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3969
				    j != sh2->qd_idx &&
3970 3971 3972 3973 3974 3975 3976
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3977

3978
		}
3979
	/* done submitting copies, wait for them to complete */
3980
	async_tx_quiesce(&tx);
3981
}
L
Linus Torvalds 已提交
3982 3983 3984 3985

/*
 * handle_stripe - do things to a stripe.
 *
3986 3987
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3988
 * Possible results:
3989 3990
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3996

3997
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3998
{
3999
	struct r5conf *conf = sh->raid_conf;
4000
	int disks = sh->disks;
4001 4002
	struct r5dev *dev;
	int i;
4003
	int do_recovery = 0;
L
Linus Torvalds 已提交
4004

4005 4006
	memset(s, 0, sizeof(*s));

4007 4008
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4009 4010
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
4011

4012
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
4013
	rcu_read_lock();
4014
	for (i=disks; i--; ) {
4015
		struct md_rdev *rdev;
4016 4017 4018
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
4019

4020
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
4021

4022
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4023 4024
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
4025 4026 4027 4028 4029 4030 4031 4032
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
4033

4034
		/* now count some things */
4035 4036 4037 4038
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
4039
		if (test_bit(R5_Wantcompute, &dev->flags)) {
4040 4041
			s->compute++;
			BUG_ON(s->compute > 2);
4042
		}
L
Linus Torvalds 已提交
4043

4044
		if (test_bit(R5_Wantfill, &dev->flags))
4045
			s->to_fill++;
4046
		else if (dev->toread)
4047
			s->to_read++;
4048
		if (dev->towrite) {
4049
			s->to_write++;
4050
			if (!test_bit(R5_OVERWRITE, &dev->flags))
4051
				s->non_overwrite++;
4052
		}
4053
		if (dev->written)
4054
			s->written++;
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
4065 4066
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
4067 4068 4069
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
4070 4071
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
4084
		}
4085 4086 4087
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
4088 4089
		else if (is_bad) {
			/* also not in-sync */
4090 4091
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
4092 4093 4094 4095 4096 4097 4098
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
4099
			set_bit(R5_Insync, &dev->flags);
4100
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4101
			/* in sync if before recovery_offset */
4102 4103 4104 4105 4106 4107 4108 4109 4110
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

4111
		if (test_bit(R5_WriteError, &dev->flags)) {
4112 4113 4114 4115 4116 4117 4118
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4119
				s->handle_bad_blocks = 1;
4120
				atomic_inc(&rdev2->nr_pending);
4121 4122 4123
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
4124
		if (test_bit(R5_MadeGood, &dev->flags)) {
4125 4126 4127 4128 4129
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130
				s->handle_bad_blocks = 1;
4131
				atomic_inc(&rdev2->nr_pending);
4132 4133 4134
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
4135 4136 4137 4138 4139 4140 4141 4142 4143
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
4144
		if (!test_bit(R5_Insync, &dev->flags)) {
4145 4146 4147
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
4148
		}
4149 4150 4151
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
4152 4153 4154
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
4155 4156
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
4157
		}
L
Linus Torvalds 已提交
4158
	}
4159 4160 4161 4162
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
4163
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4164 4165 4166 4167 4168
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
4169 4170
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4171 4172 4173 4174
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
4175
	rcu_read_unlock();
4176 4177
}

4178 4179
static int clear_batch_ready(struct stripe_head *sh)
{
4180 4181 4182 4183
	/* Return '1' if this is a member of batch, or
	 * '0' if it is a lone stripe or a head which can now be
	 * handled.
	 */
4184 4185
	struct stripe_head *tmp;
	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4186
		return (sh->batch_head && sh->batch_head != sh);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	spin_lock(&sh->stripe_lock);
	if (!sh->batch_head) {
		spin_unlock(&sh->stripe_lock);
		return 0;
	}

	/*
	 * this stripe could be added to a batch list before we check
	 * BATCH_READY, skips it
	 */
	if (sh->batch_head != sh) {
		spin_unlock(&sh->stripe_lock);
		return 1;
	}
	spin_lock(&sh->batch_lock);
	list_for_each_entry(tmp, &sh->batch_list, batch_list)
		clear_bit(STRIPE_BATCH_READY, &tmp->state);
	spin_unlock(&sh->batch_lock);
	spin_unlock(&sh->stripe_lock);

	/*
	 * BATCH_READY is cleared, no new stripes can be added.
	 * batch_list can be accessed without lock
	 */
	return 0;
}

4214 4215
static void break_stripe_batch_list(struct stripe_head *head_sh,
				    unsigned long handle_flags)
4216
{
4217
	struct stripe_head *sh, *next;
4218
	int i;
4219
	int do_wakeup = 0;
4220

4221 4222
	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {

4223 4224
		list_del_init(&sh->batch_list);

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
					  (1 << STRIPE_SYNCING) |
					  (1 << STRIPE_REPLACED) |
					  (1 << STRIPE_PREREAD_ACTIVE) |
					  (1 << STRIPE_DELAYED) |
					  (1 << STRIPE_BIT_DELAY) |
					  (1 << STRIPE_FULL_WRITE) |
					  (1 << STRIPE_BIOFILL_RUN) |
					  (1 << STRIPE_COMPUTE_RUN)  |
					  (1 << STRIPE_OPS_REQ_PENDING) |
					  (1 << STRIPE_DISCARD) |
					  (1 << STRIPE_BATCH_READY) |
					  (1 << STRIPE_BATCH_ERR) |
					  (1 << STRIPE_BITMAP_PENDING)));
		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
					      (1 << STRIPE_REPLACED)));

		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
					    (1 << STRIPE_DEGRADED)),
			      head_sh->state & (1 << STRIPE_INSYNC));

4246 4247
		sh->check_state = head_sh->check_state;
		sh->reconstruct_state = head_sh->reconstruct_state;
4248 4249 4250
		for (i = 0; i < sh->disks; i++) {
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				do_wakeup = 1;
4251 4252
			sh->dev[i].flags = head_sh->dev[i].flags &
				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4253
		}
4254 4255 4256
		spin_lock_irq(&sh->stripe_lock);
		sh->batch_head = NULL;
		spin_unlock_irq(&sh->stripe_lock);
4257 4258 4259
		if (handle_flags == 0 ||
		    sh->state & handle_flags)
			set_bit(STRIPE_HANDLE, &sh->state);
4260 4261
		release_stripe(sh);
	}
4262 4263 4264 4265 4266 4267
	spin_lock_irq(&head_sh->stripe_lock);
	head_sh->batch_head = NULL;
	spin_unlock_irq(&head_sh->stripe_lock);
	for (i = 0; i < head_sh->disks; i++)
		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
			do_wakeup = 1;
4268 4269
	if (head_sh->state & handle_flags)
		set_bit(STRIPE_HANDLE, &head_sh->state);
4270 4271 4272

	if (do_wakeup)
		wake_up(&head_sh->raid_conf->wait_for_overlap);
4273 4274
}

4275 4276 4277
static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
4278
	struct r5conf *conf = sh->raid_conf;
4279
	int i;
4280 4281
	int prexor;
	int disks = sh->disks;
4282
	struct r5dev *pdev, *qdev;
4283 4284

	clear_bit(STRIPE_HANDLE, &sh->state);
4285
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4286 4287 4288 4289 4290 4291
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

4292 4293 4294 4295 4296
	if (clear_batch_ready(sh) ) {
		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
		return;
	}

4297
	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4298
		break_stripe_batch_list(sh, 0);
4299

4300
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4301 4302 4303 4304 4305 4306
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
4307
			clear_bit(STRIPE_REPLACED, &sh->state);
4308 4309
		}
		spin_unlock(&sh->stripe_lock);
4310 4311 4312 4313 4314 4315 4316 4317
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
4318

4319
	analyse_stripe(sh, &s);
4320

4321 4322 4323 4324 4325
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

4326 4327
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
4328
		    s.replacing || s.to_write || s.written) {
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
4349 4350 4351
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
4352
		break_stripe_batch_list(sh, 0);
4353 4354
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4355
		if (s.syncing + s.replacing)
4356 4357
			handle_failed_sync(conf, sh, &s);
	}
4358

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
4372 4373
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4374
		BUG_ON(sh->qd_idx >= 0 &&
4375 4376
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4377 4378 4379 4380 4381 4382 4383 4384 4385
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
4386 4387
				if (s.failed > 1)
					continue;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
4455

4456 4457 4458
	if ((s.replacing || s.syncing) && s.locked == 0
	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4459 4460
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
4461 4462
			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4463 4464 4465 4466
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
4467 4468 4469
		if (s.replacing)
			set_bit(STRIPE_INSYNC, &sh->state);
		set_bit(STRIPE_REPLACED, &sh->state);
4470 4471
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
4472
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4473
	    test_bit(STRIPE_INSYNC, &sh->state)) {
4474 4475
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
4476 4477
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
4531

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
4548

4549
finish:
4550
	/* wait for this device to become unblocked */
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
4563

4564 4565
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
4566
			struct md_rdev *rdev;
4567 4568 4569 4570 4571 4572 4573 4574 4575
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
4576 4577 4578
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
4579
						     STRIPE_SECTORS, 0);
4580 4581
				rdev_dec_pending(rdev, conf->mddev);
			}
4582 4583
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
4584 4585 4586
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
4587
				rdev_clear_badblocks(rdev, sh->sector,
4588
						     STRIPE_SECTORS, 0);
4589 4590
				rdev_dec_pending(rdev, conf->mddev);
			}
4591 4592
		}

4593 4594 4595
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
4596
	ops_run_io(sh, &s);
4597

4598
	if (s.dec_preread_active) {
4599
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
4600
		 * is waiting on a flush, it won't continue until the writes
4601 4602 4603 4604 4605 4606 4607 4608
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

4609
	return_io(s.return_bi);
4610

4611
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4612 4613
}

4614
static void raid5_activate_delayed(struct r5conf *conf)
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4625
			list_add_tail(&sh->lru, &conf->hold_list);
4626
			raid5_wakeup_stripe_thread(sh);
4627
		}
N
NeilBrown 已提交
4628
	}
4629 4630
}

4631 4632
static void activate_bit_delay(struct r5conf *conf,
	struct list_head *temp_inactive_list)
4633 4634 4635 4636 4637 4638 4639
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4640
		int hash;
4641 4642
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
4643 4644
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4645 4646 4647
	}
}

4648
static int raid5_congested(struct mddev *mddev, int bits)
4649
{
4650
	struct r5conf *conf = mddev->private;
4651 4652 4653 4654

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
4655

4656
	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4657 4658 4659
		return 1;
	if (conf->quiesce)
		return 1;
4660
	if (atomic_read(&conf->empty_inactive_list_nr))
4661 4662 4663 4664 4665
		return 1;

	return 0;
}

4666 4667 4668
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
4669
static int raid5_mergeable_bvec(struct mddev *mddev,
4670 4671
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
4672
{
4673
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4674
	int max;
4675
	unsigned int chunk_sectors = mddev->chunk_sectors;
4676
	unsigned int bio_sectors = bvm->bi_size >> 9;
4677

4678 4679 4680 4681 4682 4683
	/*
	 * always allow writes to be mergeable, read as well if array
	 * is degraded as we'll go through stripe cache anyway.
	 */
	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
		return biovec->bv_len;
4684

4685 4686
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
4687 4688 4689 4690 4691 4692 4693 4694
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

4695
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4696
{
4697
	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4698
	unsigned int chunk_sectors = mddev->chunk_sectors;
4699
	unsigned int bio_sectors = bio_sectors(bio);
4700

4701 4702
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
4703 4704 4705 4706
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

4707 4708 4709 4710
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
4711
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}

4724
static struct bio *remove_bio_from_retry(struct r5conf *conf)
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
4735
		conf->retry_read_aligned_list = bi->bi_next;
4736
		bi->bi_next = NULL;
4737 4738 4739 4740
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
4741
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4742 4743 4744 4745 4746
	}

	return bi;
}

4747 4748 4749 4750 4751 4752
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
4753
static void raid5_align_endio(struct bio *bi)
4754 4755
{
	struct bio* raid_bi  = bi->bi_private;
4756
	struct mddev *mddev;
4757
	struct r5conf *conf;
4758
	struct md_rdev *rdev;
4759

4760
	bio_put(bi);
4761 4762 4763

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
4764 4765
	mddev = rdev->mddev;
	conf = mddev->private;
4766 4767 4768

	rdev_dec_pending(rdev, conf->mddev);

4769
	if (!bi->bi_error) {
4770 4771
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
4772
		bio_endio(raid_bi);
4773
		if (atomic_dec_and_test(&conf->active_aligned_reads))
4774
			wake_up(&conf->wait_for_quiescent);
4775
		return;
4776 4777
	}

4778
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4779 4780

	add_bio_to_retry(raid_bi, conf);
4781 4782
}

4783 4784
static int bio_fits_rdev(struct bio *bi)
{
4785
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4786

4787
	if (bio_sectors(bi) > queue_max_sectors(q))
4788 4789
		return 0;
	blk_recount_segments(q, bi);
4790
	if (bi->bi_phys_segments > queue_max_segments(q))
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}

4802
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4803
{
4804
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4805
	int dd_idx;
4806
	struct bio* align_bi;
4807
	struct md_rdev *rdev;
4808
	sector_t end_sector;
4809 4810

	if (!in_chunk_boundary(mddev, raid_bio)) {
4811
		pr_debug("chunk_aligned_read : non aligned\n");
4812 4813 4814
		return 0;
	}
	/*
4815
	 * use bio_clone_mddev to make a copy of the bio
4816
	 */
4817
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
4829 4830 4831
	align_bi->bi_iter.bi_sector =
		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
				     0, &dd_idx, NULL);
4832

K
Kent Overstreet 已提交
4833
	end_sector = bio_end_sector(align_bi);
4834
	rcu_read_lock();
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4846 4847 4848
		sector_t first_bad;
		int bad_sectors;

4849 4850
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4851 4852
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
4853
		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4854

4855
		if (!bio_fits_rdev(align_bi) ||
4856 4857
		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
				bio_sectors(align_bi),
4858 4859
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4860 4861 4862 4863 4864
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4865
		/* No reshape active, so we can trust rdev->data_offset */
4866
		align_bi->bi_iter.bi_sector += rdev->data_offset;
4867

4868
		spin_lock_irq(&conf->device_lock);
4869
		wait_event_lock_irq(conf->wait_for_quiescent,
4870
				    conf->quiesce == 0,
4871
				    conf->device_lock);
4872 4873 4874
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4875 4876 4877
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
4878
					      raid_bio->bi_iter.bi_sector);
4879 4880 4881 4882
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4883
		bio_put(align_bi);
4884 4885 4886 4887
		return 0;
	}
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4898
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4899
{
4900 4901
	struct stripe_head *sh = NULL, *tmp;
	struct list_head *handle_list = NULL;
4902
	struct r5worker_group *wg = NULL;
4903 4904 4905 4906 4907

	if (conf->worker_cnt_per_group == 0) {
		handle_list = &conf->handle_list;
	} else if (group != ANY_GROUP) {
		handle_list = &conf->worker_groups[group].handle_list;
4908
		wg = &conf->worker_groups[group];
4909 4910 4911 4912
	} else {
		int i;
		for (i = 0; i < conf->group_cnt; i++) {
			handle_list = &conf->worker_groups[i].handle_list;
4913
			wg = &conf->worker_groups[i];
4914 4915 4916 4917
			if (!list_empty(handle_list))
				break;
		}
	}
4918 4919 4920

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
4921
		  list_empty(handle_list) ? "empty" : "busy",
4922 4923 4924
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

4925 4926
	if (!list_empty(handle_list)) {
		sh = list_entry(handle_list->next, typeof(*sh), lru);
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959

		list_for_each_entry(tmp, &conf->hold_list,  lru) {
			if (conf->worker_cnt_per_group == 0 ||
			    group == ANY_GROUP ||
			    !cpu_online(tmp->cpu) ||
			    cpu_to_group(tmp->cpu) == group) {
				sh = tmp;
				break;
			}
		}

		if (sh) {
			conf->bypass_count -= conf->bypass_threshold;
			if (conf->bypass_count < 0)
				conf->bypass_count = 0;
		}
4960
		wg = NULL;
4961 4962 4963
	}

	if (!sh)
4964 4965
		return NULL;

4966 4967 4968 4969
	if (wg) {
		wg->stripes_cnt--;
		sh->group = NULL;
	}
4970
	list_del_init(&sh->lru);
4971
	BUG_ON(atomic_inc_return(&sh->count) != 1);
4972 4973
	return sh;
}
4974

4975 4976 4977
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
4978
	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4979 4980 4981 4982 4983 4984 4985 4986 4987
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4988
	int cnt = 0;
4989
	int hash;
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
5001
			smp_mb__before_atomic();
5002
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
S
Shaohua Li 已提交
5003 5004 5005 5006
			/*
			 * STRIPE_ON_RELEASE_LIST could be set here. In that
			 * case, the count is always > 1 here
			 */
5007 5008
			hash = sh->hash_lock_index;
			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
N
NeilBrown 已提交
5009
			cnt++;
5010 5011 5012
		}
		spin_unlock_irq(&conf->device_lock);
	}
5013 5014
	release_inactive_stripe_list(conf, cb->temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);
5015 5016
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

5035 5036
	if (cb->list.next == NULL) {
		int i;
5037
		INIT_LIST_HEAD(&cb->list);
5038 5039 5040
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			INIT_LIST_HEAD(cb->temp_inactive_list + i);
	}
5041 5042 5043 5044 5045 5046 5047

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

5060 5061
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
S
Shaohua Li 已提交
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5083 5084 5085 5086 5087 5088 5089
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
5102
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
5103
		finish_wait(&conf->wait_for_overlap, &w);
5104
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
5105 5106 5107 5108 5109 5110
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
5111
			sh->overwrite_disks++;
S
Shaohua Li 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
5136
		bio_endio(bi);
S
Shaohua Li 已提交
5137 5138 5139
	}
}

5140
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
5141
{
5142
	struct r5conf *conf = mddev->private;
5143
	int dd_idx;
L
Linus Torvalds 已提交
5144 5145 5146
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
5147
	const int rw = bio_data_dir(bi);
5148
	int remaining;
5149 5150
	DEFINE_WAIT(w);
	bool do_prepare;
L
Linus Torvalds 已提交
5151

T
Tejun Heo 已提交
5152 5153
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
5154
		return;
5155 5156
	}

5157
	md_write_start(mddev, bi);
5158

5159 5160 5161 5162 5163 5164
	/*
	 * If array is degraded, better not do chunk aligned read because
	 * later we might have to read it again in order to reconstruct
	 * data on failed drives.
	 */
	if (rw == READ && mddev->degraded == 0 &&
5165
	     mddev->reshape_position == MaxSector &&
5166
	     chunk_aligned_read(mddev,bi))
5167
		return;
5168

S
Shaohua Li 已提交
5169 5170 5171 5172 5173
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

5174
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
K
Kent Overstreet 已提交
5175
	last_sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
5176 5177
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5178

5179
	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5180
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5181
		int previous;
5182
		int seq;
5183

5184
		do_prepare = false;
5185
	retry:
5186
		seq = read_seqcount_begin(&conf->gen_lock);
5187
		previous = 0;
5188 5189 5190
		if (do_prepare)
			prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5191
		if (unlikely(conf->reshape_progress != MaxSector)) {
5192
			/* spinlock is needed as reshape_progress may be
5193 5194
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
5195
			 * Of course reshape_progress could change after
5196 5197 5198 5199
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
5200
			spin_lock_irq(&conf->device_lock);
5201
			if (mddev->reshape_backwards
5202 5203
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
5204 5205
				previous = 1;
			} else {
5206
				if (mddev->reshape_backwards
5207 5208
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
5209 5210
					spin_unlock_irq(&conf->device_lock);
					schedule();
5211
					do_prepare = true;
5212 5213 5214
					goto retry;
				}
			}
5215 5216
			spin_unlock_irq(&conf->device_lock);
		}
5217

5218 5219
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
5220
						  &dd_idx, NULL);
5221
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5222
			(unsigned long long)new_sector,
L
Linus Torvalds 已提交
5223 5224
			(unsigned long long)logical_sector);

5225
		sh = get_active_stripe(conf, new_sector, previous,
5226
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
5227
		if (sh) {
5228
			if (unlikely(previous)) {
5229
				/* expansion might have moved on while waiting for a
5230 5231 5232 5233 5234 5235
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
5236 5237 5238
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
5239
				if (mddev->reshape_backwards
5240 5241
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
5242 5243 5244 5245 5246
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
5247
					schedule();
5248
					do_prepare = true;
5249 5250 5251
					goto retry;
				}
			}
5252 5253 5254 5255 5256 5257 5258
			if (read_seqcount_retry(&conf->gen_lock, seq)) {
				/* Might have got the wrong stripe_head
				 * by accident
				 */
				release_stripe(sh);
				goto retry;
			}
5259

5260
			if (rw == WRITE &&
5261
			    logical_sector >= mddev->suspend_lo &&
5262 5263
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
5264 5265 5266 5267 5268 5269 5270 5271
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
5272
				    logical_sector < mddev->suspend_hi) {
5273
					schedule();
5274 5275
					do_prepare = true;
				}
5276 5277
				goto retry;
			}
5278 5279

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5280
			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5281 5282
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
5283 5284
				 * and wait a while
				 */
N
NeilBrown 已提交
5285
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
5286 5287
				release_stripe(sh);
				schedule();
5288
				do_prepare = true;
L
Linus Torvalds 已提交
5289 5290
				goto retry;
			}
5291 5292
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
5293 5294
			if ((!sh->batch_head || sh == sh->batch_head) &&
			    (bi->bi_rw & REQ_SYNC) &&
5295 5296
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
5297
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
5298 5299
		} else {
			/* cannot get stripe for read-ahead, just give-up */
5300
			bi->bi_error = -EIO;
L
Linus Torvalds 已提交
5301 5302 5303
			break;
		}
	}
5304
	finish_wait(&conf->wait_for_overlap, &w);
5305

5306
	remaining = raid5_dec_bi_active_stripes(bi);
5307
	if (remaining == 0) {
L
Linus Torvalds 已提交
5308

5309
		if ( rw == WRITE )
L
Linus Torvalds 已提交
5310
			md_write_end(mddev);
5311

5312 5313
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
5314
		bio_endio(bi);
L
Linus Torvalds 已提交
5315 5316 5317
	}
}

5318
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
5319

5320
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
5321
{
5322 5323 5324 5325 5326 5327 5328 5329 5330
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
5331
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5332
	struct stripe_head *sh;
5333
	sector_t first_sector, last_sector;
5334 5335 5336
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
5337 5338
	int i;
	int dd_idx;
5339
	sector_t writepos, readpos, safepos;
5340
	sector_t stripe_addr;
5341
	int reshape_sectors;
5342
	struct list_head stripes;
5343

5344 5345
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
5346
		if (mddev->reshape_backwards &&
5347 5348 5349
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
5350
		} else if (!mddev->reshape_backwards &&
5351 5352
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
5353
		sector_div(sector_nr, new_data_disks);
5354
		if (sector_nr) {
5355 5356
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5357 5358 5359
			*skipped = 1;
			return sector_nr;
		}
5360 5361
	}

5362 5363 5364 5365
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
5366 5367
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
5368
	else
5369
		reshape_sectors = mddev->chunk_sectors;
5370

5371 5372 5373 5374 5375
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
5376
	 */
5377
	writepos = conf->reshape_progress;
5378
	sector_div(writepos, new_data_disks);
5379 5380
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
5381
	safepos = conf->reshape_safe;
5382
	sector_div(safepos, data_disks);
5383
	if (mddev->reshape_backwards) {
5384
		writepos -= min_t(sector_t, reshape_sectors, writepos);
5385
		readpos += reshape_sectors;
5386
		safepos += reshape_sectors;
5387
	} else {
5388
		writepos += reshape_sectors;
5389 5390
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
5391
	}
5392

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

5408 5409 5410 5411
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
5412 5413 5414 5415
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
5428 5429 5430 5431 5432 5433
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

5434
	if ((mddev->reshape_backwards
5435 5436 5437
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5438 5439
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5440 5441 5442 5443
			   atomic_read(&conf->reshape_stripes)==0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			return 0;
5444
		mddev->reshape_position = conf->reshape_progress;
5445
		mddev->curr_resync_completed = sector_nr;
5446
		conf->reshape_checkpoint = jiffies;
5447
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5448
		md_wakeup_thread(mddev->thread);
5449
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5450 5451 5452
			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			return 0;
5453
		spin_lock_irq(&conf->device_lock);
5454
		conf->reshape_safe = mddev->reshape_position;
5455 5456
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5457
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5458 5459
	}

5460
	INIT_LIST_HEAD(&stripes);
5461
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5462
		int j;
5463
		int skipped_disk = 0;
5464
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5465 5466 5467 5468 5469 5470 5471 5472 5473
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
5474
			if (conf->level == 6 &&
5475
			    j == sh->qd_idx)
5476
				continue;
5477
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
5478
			if (s < raid5_size(mddev, 0, 0)) {
5479
				skipped_disk = 1;
5480 5481 5482 5483 5484 5485
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
5486
		if (!skipped_disk) {
5487 5488 5489
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
5490
		list_add(&sh->lru, &stripes);
5491 5492
	}
	spin_lock_irq(&conf->device_lock);
5493
	if (mddev->reshape_backwards)
5494
		conf->reshape_progress -= reshape_sectors * new_data_disks;
5495
	else
5496
		conf->reshape_progress += reshape_sectors * new_data_disks;
5497 5498 5499 5500 5501 5502 5503
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
5504
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5505
				     1, &dd_idx, NULL);
5506
	last_sector =
5507
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5508
					    * new_data_disks - 1),
5509
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
5510 5511
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
5512
	while (first_sector <= last_sector) {
5513
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5514 5515 5516 5517 5518
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
5519 5520 5521 5522 5523 5524 5525 5526
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
5527 5528 5529
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
5530
	sector_nr += reshape_sectors;
5531 5532
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
5533 5534
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5535 5536 5537 5538
			   atomic_read(&conf->reshape_stripes) == 0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			goto ret;
5539
		mddev->reshape_position = conf->reshape_progress;
5540
		mddev->curr_resync_completed = sector_nr;
5541
		conf->reshape_checkpoint = jiffies;
5542 5543 5544 5545
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5546 5547 5548
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			goto ret;
5549
		spin_lock_irq(&conf->device_lock);
5550
		conf->reshape_safe = mddev->reshape_position;
5551 5552
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5553
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5554
	}
5555
ret:
5556
	return reshape_sectors;
5557 5558
}

5559
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5560
{
5561
	struct r5conf *conf = mddev->private;
5562
	struct stripe_head *sh;
A
Andre Noll 已提交
5563
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
5564
	sector_t sync_blocks;
5565 5566
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
5567

5568
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
5569
		/* just being told to finish up .. nothing much to do */
5570

5571 5572 5573 5574
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
5575 5576 5577 5578

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
5579
		else /* completed sync */
5580 5581 5582
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
5583 5584
		return 0;
	}
5585

5586 5587 5588
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

5589 5590
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
5591

5592 5593 5594 5595 5596 5597
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

5598
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
5599 5600 5601
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
5602
	if (mddev->degraded >= conf->max_degraded &&
5603
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
5604
		sector_t rv = mddev->dev_sectors - sector_nr;
5605
		*skipped = 1;
L
Linus Torvalds 已提交
5606 5607
		return rv;
	}
5608 5609 5610 5611
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
5612 5613 5614 5615 5616
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
5617

N
NeilBrown 已提交
5618 5619
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

5620
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
5621
	if (sh == NULL) {
5622
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
5623
		/* make sure we don't swamp the stripe cache if someone else
5624
		 * is trying to get access
L
Linus Torvalds 已提交
5625
		 */
5626
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
5627
	}
5628
	/* Need to check if array will still be degraded after recovery/resync
5629 5630
	 * Note in case of > 1 drive failures it's possible we're rebuilding
	 * one drive while leaving another faulty drive in array.
5631
	 */
5632 5633 5634 5635 5636
	rcu_read_lock();
	for (i = 0; i < conf->raid_disks; i++) {
		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);

		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5637
			still_degraded = 1;
5638 5639
	}
	rcu_read_unlock();
5640 5641 5642

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

5643
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5644
	set_bit(STRIPE_HANDLE, &sh->state);
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649 5650

	release_stripe(sh);

	return STRIPE_SECTORS;
}

5651
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
5664
	int dd_idx;
5665 5666 5667 5668 5669
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

5670 5671
	logical_sector = raid_bio->bi_iter.bi_sector &
		~((sector_t)STRIPE_SECTORS-1);
5672
	sector = raid5_compute_sector(conf, logical_sector,
5673
				      0, &dd_idx, NULL);
K
Kent Overstreet 已提交
5674
	last_sector = bio_end_sector(raid_bio);
5675 5676

	for (; logical_sector < last_sector;
5677 5678 5679
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
5680

5681
		if (scnt < raid5_bi_processed_stripes(raid_bio))
5682 5683 5684
			/* already done this stripe */
			continue;

5685
		sh = get_active_stripe(conf, sector, 0, 1, 1);
5686 5687 5688

		if (!sh) {
			/* failed to get a stripe - must wait */
5689
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5690 5691 5692 5693
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5694
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5695
			release_stripe(sh);
5696
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5697 5698 5699 5700
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5701
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5702
		handle_stripe(sh);
5703 5704 5705
		release_stripe(sh);
		handled++;
	}
5706
	remaining = raid5_dec_bi_active_stripes(raid_bio);
5707 5708 5709
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
5710
		bio_endio(raid_bio);
5711
	}
5712
	if (atomic_dec_and_test(&conf->active_aligned_reads))
5713
		wake_up(&conf->wait_for_quiescent);
5714 5715 5716
	return handled;
}

5717
static int handle_active_stripes(struct r5conf *conf, int group,
5718 5719
				 struct r5worker *worker,
				 struct list_head *temp_inactive_list)
5720 5721
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5722 5723
	int i, batch_size = 0, hash;
	bool release_inactive = false;
5724 5725

	while (batch_size < MAX_STRIPE_BATCH &&
5726
			(sh = __get_priority_stripe(conf, group)) != NULL)
5727 5728
		batch[batch_size++] = sh;

5729 5730 5731 5732 5733 5734 5735 5736
	if (batch_size == 0) {
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			if (!list_empty(temp_inactive_list + i))
				break;
		if (i == NR_STRIPE_HASH_LOCKS)
			return batch_size;
		release_inactive = true;
	}
5737 5738
	spin_unlock_irq(&conf->device_lock);

5739 5740 5741 5742 5743 5744 5745 5746
	release_inactive_stripe_list(conf, temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);

	if (release_inactive) {
		spin_lock_irq(&conf->device_lock);
		return 0;
	}

5747 5748 5749 5750 5751 5752
	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
5753 5754 5755 5756
	for (i = 0; i < batch_size; i++) {
		hash = batch[i]->hash_lock_index;
		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
	}
5757 5758
	return batch_size;
}
5759

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
static void raid5_do_work(struct work_struct *work)
{
	struct r5worker *worker = container_of(work, struct r5worker, work);
	struct r5worker_group *group = worker->group;
	struct r5conf *conf = group->conf;
	int group_id = group - conf->worker_groups;
	int handled;
	struct blk_plug plug;

	pr_debug("+++ raid5worker active\n");

	blk_start_plug(&plug);
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
		int batch_size, released;

5777
		released = release_stripe_list(conf, worker->temp_inactive_list);
5778

5779 5780
		batch_size = handle_active_stripes(conf, group_id, worker,
						   worker->temp_inactive_list);
5781
		worker->working = false;
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
		if (!batch_size && !released)
			break;
		handled += batch_size;
	}
	pr_debug("%d stripes handled\n", handled);

	spin_unlock_irq(&conf->device_lock);
	blk_finish_plug(&plug);

	pr_debug("--- raid5worker inactive\n");
}

L
Linus Torvalds 已提交
5794 5795 5796 5797 5798 5799 5800
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
5801
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
5802
{
S
Shaohua Li 已提交
5803
	struct mddev *mddev = thread->mddev;
5804
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5805
	int handled;
5806
	struct blk_plug plug;
L
Linus Torvalds 已提交
5807

5808
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
5809 5810 5811

	md_check_recovery(mddev);

5812
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
5813 5814 5815
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
5816
		struct bio *bio;
S
Shaohua Li 已提交
5817 5818
		int batch_size, released;

5819
		released = release_stripe_list(conf, conf->temp_inactive_list);
5820 5821
		if (released)
			clear_bit(R5_DID_ALLOC, &conf->cache_state);
L
Linus Torvalds 已提交
5822

5823
		if (
5824 5825 5826
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
5827
			spin_unlock_irq(&conf->device_lock);
5828
			bitmap_unplug(mddev->bitmap);
5829
			spin_lock_irq(&conf->device_lock);
5830
			conf->seq_write = conf->seq_flush;
5831
			activate_bit_delay(conf, conf->temp_inactive_list);
5832
		}
5833
		raid5_activate_delayed(conf);
5834

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

5845 5846
		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
						   conf->temp_inactive_list);
S
Shaohua Li 已提交
5847
		if (!batch_size && !released)
L
Linus Torvalds 已提交
5848
			break;
5849
		handled += batch_size;
L
Linus Torvalds 已提交
5850

5851 5852
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
5853
			md_check_recovery(mddev);
5854 5855
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
5856
	}
5857
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
5858 5859

	spin_unlock_irq(&conf->device_lock);
5860 5861 5862 5863 5864 5865 5866
	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
		grow_one_stripe(conf, __GFP_NOWARN);
		/* Set flag even if allocation failed.  This helps
		 * slow down allocation requests when mem is short
		 */
		set_bit(R5_DID_ALLOC, &conf->cache_state);
	}
L
Linus Torvalds 已提交
5867

5868
	async_tx_issue_pending_all();
5869
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
5870

5871
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
5872 5873
}

5874
static ssize_t
5875
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5876
{
5877 5878 5879 5880
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5881
	if (conf)
5882
		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5883 5884
	spin_unlock(&mddev->lock);
	return ret;
5885 5886
}

5887
int
5888
raid5_set_cache_size(struct mddev *mddev, int size)
5889
{
5890
	struct r5conf *conf = mddev->private;
5891 5892
	int err;

5893
	if (size <= 16 || size > 32768)
5894
		return -EINVAL;
5895

5896
	conf->min_nr_stripes = size;
5897 5898 5899 5900
	while (size < conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;

5901

5902 5903 5904
	err = md_allow_write(mddev);
	if (err)
		return err;
5905 5906 5907 5908 5909

	while (size > conf->max_nr_stripes)
		if (!grow_one_stripe(conf, GFP_KERNEL))
			break;

5910 5911 5912 5913 5914
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
5915
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5916
{
5917
	struct r5conf *conf;
5918 5919 5920 5921 5922
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
5923
	if (kstrtoul(page, 10, &new))
5924
		return -EINVAL;
5925
	err = mddev_lock(mddev);
5926 5927
	if (err)
		return err;
5928 5929 5930 5931 5932 5933 5934 5935
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else
		err = raid5_set_cache_size(mddev, new);
	mddev_unlock(mddev);

	return err ?: len;
5936
}
5937

5938 5939 5940 5941
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
5942

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
static ssize_t
raid5_show_rmw_level(struct mddev  *mddev, char *page)
{
	struct r5conf *conf = mddev->private;
	if (conf)
		return sprintf(page, "%d\n", conf->rmw_level);
	else
		return 0;
}

static ssize_t
raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
{
	struct r5conf *conf = mddev->private;
	unsigned long new;

	if (!conf)
		return -ENODEV;

	if (len >= PAGE_SIZE)
		return -EINVAL;

	if (kstrtoul(page, 10, &new))
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW &&
	    new != PARITY_ENABLE_RMW &&
	    new != PARITY_PREFER_RMW)
		return -EINVAL;

	conf->rmw_level = new;
	return len;
}

static struct md_sysfs_entry
raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
			 raid5_show_rmw_level,
			 raid5_store_rmw_level);


5986
static ssize_t
5987
raid5_show_preread_threshold(struct mddev *mddev, char *page)
5988
{
5989 5990 5991 5992
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5993
	if (conf)
5994 5995 5996
		ret = sprintf(page, "%d\n", conf->bypass_threshold);
	spin_unlock(&mddev->lock);
	return ret;
5997 5998 5999
}

static ssize_t
6000
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6001
{
6002
	struct r5conf *conf;
6003
	unsigned long new;
6004 6005
	int err;

6006 6007
	if (len >= PAGE_SIZE)
		return -EINVAL;
6008
	if (kstrtoul(page, 10, &new))
6009
		return -EINVAL;
6010 6011 6012 6013 6014 6015 6016

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
6017
	else if (new > conf->min_nr_stripes)
6018 6019 6020 6021 6022
		err = -EINVAL;
	else
		conf->bypass_threshold = new;
	mddev_unlock(mddev);
	return err ?: len;
6023 6024 6025 6026 6027 6028 6029 6030
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

6031 6032 6033
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
6034 6035 6036 6037
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6038
	if (conf)
6039 6040 6041
		ret = sprintf(page, "%d\n", conf->skip_copy);
	spin_unlock(&mddev->lock);
	return ret;
6042 6043 6044 6045 6046
}

static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
6047
	struct r5conf *conf;
6048
	unsigned long new;
6049 6050
	int err;

6051 6052 6053 6054 6055
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;
	new = !!new;
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->skip_copy) {
		mddev_suspend(mddev);
		conf->skip_copy = new;
		if (new)
			mddev->queue->backing_dev_info.capabilities |=
				BDI_CAP_STABLE_WRITES;
		else
			mddev->queue->backing_dev_info.capabilities &=
				~BDI_CAP_STABLE_WRITES;
		mddev_resume(mddev);
	}
	mddev_unlock(mddev);
	return err ?: len;
6076 6077 6078 6079 6080 6081 6082
}

static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
					raid5_show_skip_copy,
					raid5_store_skip_copy);

6083
static ssize_t
6084
stripe_cache_active_show(struct mddev *mddev, char *page)
6085
{
6086
	struct r5conf *conf = mddev->private;
6087 6088 6089 6090
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
6091 6092
}

6093 6094
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6095

6096 6097 6098
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
6099 6100 6101 6102
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6103
	if (conf)
6104 6105 6106
		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
	spin_unlock(&mddev->lock);
	return ret;
6107 6108
}

6109 6110 6111 6112
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups);
6113 6114 6115
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
6116
	struct r5conf *conf;
6117 6118
	unsigned long new;
	int err;
6119 6120
	struct r5worker_group *new_groups, *old_groups;
	int group_cnt, worker_cnt_per_group;
6121 6122 6123 6124 6125 6126

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;

6127 6128 6129 6130 6131 6132 6133 6134
	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->worker_cnt_per_group) {
		mddev_suspend(mddev);
6135

6136 6137 6138
		old_groups = conf->worker_groups;
		if (old_groups)
			flush_workqueue(raid5_wq);
6139

6140 6141 6142 6143 6144 6145 6146 6147 6148
		err = alloc_thread_groups(conf, new,
					  &group_cnt, &worker_cnt_per_group,
					  &new_groups);
		if (!err) {
			spin_lock_irq(&conf->device_lock);
			conf->group_cnt = group_cnt;
			conf->worker_cnt_per_group = worker_cnt_per_group;
			conf->worker_groups = new_groups;
			spin_unlock_irq(&conf->device_lock);
6149

6150 6151 6152 6153 6154
			if (old_groups)
				kfree(old_groups[0].workers);
			kfree(old_groups);
		}
		mddev_resume(mddev);
6155
	}
6156
	mddev_unlock(mddev);
6157

6158
	return err ?: len;
6159 6160 6161 6162 6163 6164 6165
}

static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
				raid5_show_group_thread_cnt,
				raid5_store_group_thread_cnt);

6166
static struct attribute *raid5_attrs[] =  {
6167 6168
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
6169
	&raid5_preread_bypass_threshold.attr,
6170
	&raid5_group_thread_cnt.attr,
6171
	&raid5_skip_copy.attr,
6172
	&raid5_rmw_level.attr,
6173 6174
	NULL,
};
6175 6176 6177
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
6178 6179
};

6180 6181 6182 6183
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups)
6184
{
6185
	int i, j, k;
6186 6187 6188
	ssize_t size;
	struct r5worker *workers;

6189
	*worker_cnt_per_group = cnt;
6190
	if (cnt == 0) {
6191 6192
		*group_cnt = 0;
		*worker_groups = NULL;
6193 6194
		return 0;
	}
6195
	*group_cnt = num_possible_nodes();
6196
	size = sizeof(struct r5worker) * cnt;
6197 6198 6199 6200
	workers = kzalloc(size * *group_cnt, GFP_NOIO);
	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
				*group_cnt, GFP_NOIO);
	if (!*worker_groups || !workers) {
6201
		kfree(workers);
6202
		kfree(*worker_groups);
6203 6204 6205
		return -ENOMEM;
	}

6206
	for (i = 0; i < *group_cnt; i++) {
6207 6208
		struct r5worker_group *group;

6209
		group = &(*worker_groups)[i];
6210 6211 6212 6213 6214
		INIT_LIST_HEAD(&group->handle_list);
		group->conf = conf;
		group->workers = workers + i * cnt;

		for (j = 0; j < cnt; j++) {
6215 6216 6217 6218 6219 6220
			struct r5worker *worker = group->workers + j;
			worker->group = group;
			INIT_WORK(&worker->work, raid5_do_work);

			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
		}
	}

	return 0;
}

static void free_thread_groups(struct r5conf *conf)
{
	if (conf->worker_groups)
		kfree(conf->worker_groups[0].workers);
	kfree(conf->worker_groups);
	conf->worker_groups = NULL;
}

6235
static sector_t
6236
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6237
{
6238
	struct r5conf *conf = mddev->private;
6239 6240 6241

	if (!sectors)
		sectors = mddev->dev_sectors;
6242
	if (!raid_disks)
6243
		/* size is defined by the smallest of previous and new size */
6244
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6245

6246
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6247
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6248 6249 6250
	return sectors * (raid_disks - conf->max_degraded);
}

6251 6252 6253
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	safe_put_page(percpu->spare_page);
6254 6255
	if (percpu->scribble)
		flex_array_free(percpu->scribble);
6256 6257 6258 6259 6260 6261 6262 6263 6264
	percpu->spare_page = NULL;
	percpu->scribble = NULL;
}

static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	if (conf->level == 6 && !percpu->spare_page)
		percpu->spare_page = alloc_page(GFP_KERNEL);
	if (!percpu->scribble)
6265
		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6266 6267 6268 6269 6270
						      conf->previous_raid_disks),
						  max(conf->chunk_sectors,
						      conf->prev_chunk_sectors)
						   / STRIPE_SECTORS,
						  GFP_KERNEL);
6271 6272 6273 6274 6275 6276 6277 6278 6279

	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
		free_scratch_buffer(conf, percpu);
		return -ENOMEM;
	}

	return 0;
}

6280
static void raid5_free_percpu(struct r5conf *conf)
6281 6282 6283 6284 6285 6286 6287 6288 6289
{
	unsigned long cpu;

	if (!conf->percpu)
		return;

#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
6290 6291 6292 6293

	get_online_cpus();
	for_each_possible_cpu(cpu)
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6294 6295 6296 6297 6298
	put_online_cpus();

	free_percpu(conf->percpu);
}

6299
static void free_conf(struct r5conf *conf)
6300
{
6301 6302
	if (conf->shrinker.seeks)
		unregister_shrinker(&conf->shrinker);
6303
	free_thread_groups(conf);
6304
	shrink_stripes(conf);
6305
	raid5_free_percpu(conf);
6306 6307 6308 6309 6310
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

6311 6312 6313 6314
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
6315
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6316 6317 6318 6319 6320 6321
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
6322
		if (alloc_scratch_buffer(conf, percpu)) {
6323 6324
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6325
			return notifier_from_errno(-ENOMEM);
6326 6327 6328 6329
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
6330
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6331 6332 6333 6334 6335 6336 6337 6338
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

6339
static int raid5_alloc_percpu(struct r5conf *conf)
6340 6341
{
	unsigned long cpu;
6342
	int err = 0;
6343

6344 6345
	conf->percpu = alloc_percpu(struct raid5_percpu);
	if (!conf->percpu)
6346
		return -ENOMEM;
6347 6348 6349 6350 6351 6352 6353 6354

#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	err = register_cpu_notifier(&conf->cpu_notify);
	if (err)
		return err;
#endif
6355 6356 6357

	get_online_cpus();
	for_each_present_cpu(cpu) {
6358 6359 6360 6361
		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
		if (err) {
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6362 6363 6364 6365 6366 6367 6368 6369
			break;
		}
	}
	put_online_cpus();

	return err;
}

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
static unsigned long raid5_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
	int ret = 0;
	while (ret < sc->nr_to_scan) {
		if (drop_one_stripe(conf) == 0)
			return SHRINK_STOP;
		ret++;
	}
	return ret;
}

static unsigned long raid5_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);

	if (conf->max_nr_stripes < conf->min_nr_stripes)
		/* unlikely, but not impossible */
		return 0;
	return conf->max_nr_stripes - conf->min_nr_stripes;
}

6394
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
6395
{
6396
	struct r5conf *conf;
6397
	int raid_disk, memory, max_disks;
6398
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
6399
	struct disk_info *disk;
6400
	char pers_name[6];
6401
	int i;
6402 6403
	int group_cnt, worker_cnt_per_group;
	struct r5worker_group *new_group;
L
Linus Torvalds 已提交
6404

N
NeilBrown 已提交
6405 6406 6407
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
6408
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
6409 6410
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
6411
	}
N
NeilBrown 已提交
6412 6413 6414 6415
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
6416
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
6417 6418
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
6419
	}
N
NeilBrown 已提交
6420
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6421
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
6422 6423
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
6424 6425
	}

6426 6427 6428
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
6429 6430
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
6431
		return ERR_PTR(-EINVAL);
6432 6433
	}

6434
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
6435
	if (conf == NULL)
L
Linus Torvalds 已提交
6436
		goto abort;
6437
	/* Don't enable multi-threading by default*/
6438 6439 6440 6441 6442 6443
	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
				 &new_group)) {
		conf->group_cnt = group_cnt;
		conf->worker_cnt_per_group = worker_cnt_per_group;
		conf->worker_groups = new_group;
	} else
6444
		goto abort;
6445
	spin_lock_init(&conf->device_lock);
6446
	seqcount_init(&conf->gen_lock);
6447
	init_waitqueue_head(&conf->wait_for_quiescent);
6448 6449 6450
	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
		init_waitqueue_head(&conf->wait_for_stripe[i]);
	}
6451 6452 6453 6454 6455
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
S
Shaohua Li 已提交
6456
	init_llist_head(&conf->released_stripes);
6457 6458 6459 6460
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
6461
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
6462 6463 6464 6465 6466

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
6467
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6468
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6469

6470
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6471 6472 6473
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
6474

L
Linus Torvalds 已提交
6475 6476
	conf->mddev = mddev;

6477
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
6478 6479
		goto abort;

6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
	/* We init hash_locks[0] separately to that it can be used
	 * as the reference lock in the spin_lock_nest_lock() call
	 * in lock_all_device_hash_locks_irq in order to convince
	 * lockdep that we know what we are doing.
	 */
	spin_lock_init(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_init(conf->hash_locks + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->inactive_list + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->temp_inactive_list + i);

6495
	conf->level = mddev->new_level;
6496
	conf->chunk_sectors = mddev->new_chunk_sectors;
6497 6498 6499
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

6500
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
6501

N
NeilBrown 已提交
6502
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
6503
		raid_disk = rdev->raid_disk;
6504
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
6505 6506 6507 6508
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

6509 6510 6511 6512 6513 6514 6515 6516 6517
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
6518

6519
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
6520
			char b[BDEVNAME_SIZE];
6521 6522 6523
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
6524
		} else if (rdev->saved_raid_disk != raid_disk)
6525 6526
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
6527 6528
	}

N
NeilBrown 已提交
6529
	conf->level = mddev->new_level;
6530
	if (conf->level == 6) {
6531
		conf->max_degraded = 2;
6532 6533 6534 6535 6536
		if (raid6_call.xor_syndrome)
			conf->rmw_level = PARITY_ENABLE_RMW;
		else
			conf->rmw_level = PARITY_DISABLE_RMW;
	} else {
6537
		conf->max_degraded = 1;
6538 6539
		conf->rmw_level = PARITY_ENABLE_RMW;
	}
N
NeilBrown 已提交
6540
	conf->algorithm = mddev->new_layout;
6541
	conf->reshape_progress = mddev->reshape_position;
6542
	if (conf->reshape_progress != MaxSector) {
6543
		conf->prev_chunk_sectors = mddev->chunk_sectors;
6544 6545
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
6546

6547 6548
	conf->min_nr_stripes = NR_STRIPES;
	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6549
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6550
	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6551
	if (grow_stripes(conf, conf->min_nr_stripes)) {
N
NeilBrown 已提交
6552
		printk(KERN_ERR
6553 6554
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
6555 6556
		goto abort;
	} else
6557 6558
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	/*
	 * Losing a stripe head costs more than the time to refill it,
	 * it reduces the queue depth and so can hurt throughput.
	 * So set it rather large, scaled by number of devices.
	 */
	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
	conf->shrinker.scan_objects = raid5_cache_scan;
	conf->shrinker.count_objects = raid5_cache_count;
	conf->shrinker.batch = 128;
	conf->shrinker.flags = 0;
	register_shrinker(&conf->shrinker);
L
Linus Torvalds 已提交
6570

6571 6572
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
6573 6574
	if (!conf->thread) {
		printk(KERN_ERR
6575
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
6576
		       mdname(mddev));
6577 6578
		goto abort;
	}
N
NeilBrown 已提交
6579 6580 6581 6582 6583

	return conf;

 abort:
	if (conf) {
6584
		free_conf(conf);
N
NeilBrown 已提交
6585 6586 6587 6588 6589
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
6602
		if (raid_disk == 0 ||
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

6616
static int run(struct mddev *mddev)
N
NeilBrown 已提交
6617
{
6618
	struct r5conf *conf;
6619
	int working_disks = 0;
6620
	int dirty_parity_disks = 0;
6621
	struct md_rdev *rdev;
6622
	sector_t reshape_offset = 0;
6623
	int i;
6624 6625
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
6626

6627
	if (mddev->recovery_cp != MaxSector)
6628
		printk(KERN_NOTICE "md/raid:%s: not clean"
6629 6630
		       " -- starting background reconstruction\n",
		       mdname(mddev));
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
6648 6649
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
6660 6661 6662
		 */
		sector_t here_new, here_old;
		int old_disks;
6663
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
6664

6665
		if (mddev->new_level != mddev->level) {
6666
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
6677
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
6678
			       (mddev->raid_disks - max_degraded))) {
6679 6680
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
6681 6682
			return -EINVAL;
		}
6683
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
6684 6685
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
6686
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
6687 6688 6689
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
6690
		if (mddev->delta_disks == 0) {
6691 6692 6693 6694 6695 6696
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
6697
			/* We cannot be sure it is safe to start an in-place
6698
			 * reshape.  It is only safe if user-space is monitoring
6699 6700 6701 6702 6703
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
6704 6705 6706 6707 6708 6709 6710
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
6711
				       mdname(mddev));
6712 6713
				return -EINVAL;
			}
6714
		} else if (mddev->reshape_backwards
6715
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6716 6717
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
6718
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
6719
			/* Reading from the same stripe as writing to - bad */
6720 6721 6722
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
6723 6724
			return -EINVAL;
		}
6725 6726
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
6727 6728 6729 6730
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
6731
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
6732
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
6733
	}
N
NeilBrown 已提交
6734

6735 6736 6737 6738 6739
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
6740 6741 6742
	if (IS_ERR(conf))
		return PTR_ERR(conf);

6743
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
6744 6745 6746 6747
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
6759
			continue;
6760 6761 6762 6763 6764 6765 6766
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
6767
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
6768
			working_disks++;
6769 6770
			continue;
		}
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
6783

6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
6799

6800 6801 6802
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
6803
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
6804

6805
	if (has_failed(conf)) {
6806
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
6807
			" (%d/%d failed)\n",
6808
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
6809 6810 6811
		goto abort;
	}

N
NeilBrown 已提交
6812
	/* device size must be a multiple of chunk size */
6813
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
6814 6815
	mddev->resync_max_sectors = mddev->dev_sectors;

6816
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
6817
	    mddev->recovery_cp != MaxSector) {
6818 6819
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
6820 6821
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
6822 6823 6824
			       mdname(mddev));
		else {
			printk(KERN_ERR
6825
			       "md/raid:%s: cannot start dirty degraded array.\n",
6826 6827 6828
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
6829 6830 6831
	}

	if (mddev->degraded == 0)
6832 6833
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6834 6835
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
6836
	else
6837 6838 6839 6840 6841
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
6842 6843 6844

	print_raid5_conf(conf);

6845 6846
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
6847 6848 6849 6850 6851 6852
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6853
							"reshape");
6854 6855
	}

L
Linus Torvalds 已提交
6856
	/* Ok, everything is just fine now */
6857 6858
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
6859 6860
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6861
		printk(KERN_WARNING
6862
		       "raid5: failed to create sysfs attributes for %s\n",
6863
		       mdname(mddev));
6864
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6865

6866
	if (mddev->queue) {
6867
		int chunk_size;
S
Shaohua Li 已提交
6868
		bool discard_supported = true;
6869 6870 6871 6872 6873 6874 6875 6876 6877
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
6878

6879 6880 6881 6882
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
6883
		mddev->queue->limits.raid_partial_stripes_expensive = 1;
S
Shaohua Li 已提交
6884 6885 6886 6887 6888
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
6889 6890 6891 6892
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
6893 6894 6895 6896
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
6897
		 * guarantee discard_zeroes_data
S
Shaohua Li 已提交
6898 6899
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
6900

6901 6902
		blk_queue_max_write_same_sectors(mddev->queue, 0);

6903
		rdev_for_each(rdev, mddev) {
6904 6905
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
6906 6907
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
			/* Unfortunately, discard_zeroes_data is not currently
			 * a guarantee - just a hint.  So we only allow DISCARD
			 * if the sysadmin has confirmed that only safe devices
			 * are in use by setting a module parameter.
			 */
			if (!devices_handle_discard_safely) {
				if (discard_supported) {
					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
				}
				discard_supported = false;
			}
6934
		}
S
Shaohua Li 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
6944
	}
6945

L
Linus Torvalds 已提交
6946 6947
	return 0;
abort:
6948
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
6949 6950
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
6951
	mddev->private = NULL;
6952
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
6953 6954 6955
	return -EIO;
}

N
NeilBrown 已提交
6956
static void raid5_free(struct mddev *mddev, void *priv)
L
Linus Torvalds 已提交
6957
{
N
NeilBrown 已提交
6958
	struct r5conf *conf = priv;
L
Linus Torvalds 已提交
6959

6960
	free_conf(conf);
6961
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
6962 6963
}

6964
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
6965
{
6966
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6967 6968
	int i;

6969 6970
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
6971
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
6972 6973 6974
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
6975
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
6976 6977 6978
	seq_printf (seq, "]");
}

6979
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
6980 6981 6982 6983
{
	int i;
	struct disk_info *tmp;

6984
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
6985 6986 6987 6988
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
6989 6990 6991
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
6992 6993 6994 6995 6996

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
6997 6998 6999
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
7000 7001 7002
	}
}

7003
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
7004 7005
{
	int i;
7006
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7007
	struct disk_info *tmp;
7008 7009
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
7010 7011 7012

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
7032
		    && tmp->rdev->recovery_offset == MaxSector
7033
		    && !test_bit(Faulty, &tmp->rdev->flags)
7034
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7035
			count++;
7036
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
7037 7038
		}
	}
7039
	spin_lock_irqsave(&conf->device_lock, flags);
7040
	mddev->degraded = calc_degraded(conf);
7041
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
7042
	print_raid5_conf(conf);
7043
	return count;
L
Linus Torvalds 已提交
7044 7045
}

7046
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7047
{
7048
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7049
	int err = 0;
7050
	int number = rdev->raid_disk;
7051
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
7052 7053 7054
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
7077
	    (!p->replacement || p->replacement == rdev) &&
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
7102 7103 7104 7105 7106 7107
abort:

	print_raid5_conf(conf);
	return err;
}

7108
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7109
{
7110
	struct r5conf *conf = mddev->private;
7111
	int err = -EEXIST;
L
Linus Torvalds 已提交
7112 7113
	int disk;
	struct disk_info *p;
7114 7115
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
7116

7117 7118 7119
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
7120
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
7121
		/* no point adding a device */
7122
		return -EINVAL;
L
Linus Torvalds 已提交
7123

7124 7125
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
7126 7127

	/*
7128 7129
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
7130
	 */
7131
	if (rdev->saved_raid_disk >= 0 &&
7132
	    rdev->saved_raid_disk >= first &&
7133
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7134 7135 7136
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
7137 7138
		p = conf->disks + disk;
		if (p->rdev == NULL) {
7139
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
7140
			rdev->raid_disk = disk;
7141
			err = 0;
7142 7143
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
7144
			rcu_assign_pointer(p->rdev, rdev);
7145
			goto out;
L
Linus Torvalds 已提交
7146
		}
7147 7148 7149
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
7161
out:
L
Linus Torvalds 已提交
7162
	print_raid5_conf(conf);
7163
	return err;
L
Linus Torvalds 已提交
7164 7165
}

7166
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
7167 7168 7169 7170 7171 7172 7173 7174
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
7175
	sector_t newsize;
7176
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7177 7178 7179
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
7180
		return -EINVAL;
7181 7182 7183 7184 7185 7186
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
7187
	set_capacity(mddev->gendisk, mddev->array_sectors);
7188
	revalidate_disk(mddev->gendisk);
7189 7190
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
7191
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
7192 7193
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
7194
	mddev->dev_sectors = sectors;
7195
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
7196 7197 7198
	return 0;
}

7199
static int check_stripe_cache(struct mddev *mddev)
7200 7201 7202 7203 7204 7205 7206 7207 7208
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
7209
	struct r5conf *conf = mddev->private;
7210
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7211
	    > conf->min_nr_stripes ||
7212
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7213
	    > conf->min_nr_stripes) {
7214 7215
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
7216 7217 7218 7219 7220 7221 7222
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

7223
static int check_reshape(struct mddev *mddev)
7224
{
7225
	struct r5conf *conf = mddev->private;
7226

7227 7228
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
7229
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7230
		return 0; /* nothing to do */
7231
	if (has_failed(conf))
7232
		return -EINVAL;
7233
	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
7245

7246
	if (!check_stripe_cache(mddev))
7247 7248
		return -ENOSPC;

7249 7250 7251 7252 7253 7254 7255 7256 7257
	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
	    mddev->delta_disks > 0)
		if (resize_chunks(conf,
				  conf->previous_raid_disks
				  + max(0, mddev->delta_disks),
				  max(mddev->new_chunk_sectors,
				      mddev->chunk_sectors)
			    ) < 0)
			return -ENOMEM;
7258 7259
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
7260 7261
}

7262
static int raid5_start_reshape(struct mddev *mddev)
7263
{
7264
	struct r5conf *conf = mddev->private;
7265
	struct md_rdev *rdev;
7266
	int spares = 0;
7267
	unsigned long flags;
7268

7269
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7270 7271
		return -EBUSY;

7272 7273 7274
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

7275 7276 7277
	if (has_failed(conf))
		return -EINVAL;

7278
	rdev_for_each(rdev, mddev) {
7279 7280
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
7281
			spares++;
7282
	}
7283

7284
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7285 7286 7287 7288 7289
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

7290 7291 7292 7293 7294 7295
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
7296
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7297 7298 7299 7300
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

7301
	atomic_set(&conf->reshape_stripes, 0);
7302
	spin_lock_irq(&conf->device_lock);
7303
	write_seqcount_begin(&conf->gen_lock);
7304
	conf->previous_raid_disks = conf->raid_disks;
7305
	conf->raid_disks += mddev->delta_disks;
7306 7307
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
7308 7309
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
7310 7311 7312 7313 7314
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
7315
	if (mddev->reshape_backwards)
7316 7317 7318 7319
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
7320
	write_seqcount_end(&conf->gen_lock);
7321 7322
	spin_unlock_irq(&conf->device_lock);

7323 7324 7325 7326 7327 7328 7329
	/* Now make sure any requests that proceeded on the assumption
	 * the reshape wasn't running - like Discard or Read - have
	 * completed.
	 */
	mddev_suspend(mddev);
	mddev_resume(mddev);

7330 7331
	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
7332 7333 7334 7335
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
7336
	 */
7337
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
7338
		rdev_for_each(rdev, mddev)
7339 7340 7341 7342
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
7343
					    >= conf->previous_raid_disks)
7344
						set_bit(In_sync, &rdev->flags);
7345
					else
7346
						rdev->recovery_offset = 0;
7347 7348

					if (sysfs_link_rdev(mddev, rdev))
7349
						/* Failure here is OK */;
7350
				}
7351 7352 7353 7354 7355
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
7356

7357 7358 7359 7360
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
7361
		spin_lock_irqsave(&conf->device_lock, flags);
7362
		mddev->degraded = calc_degraded(conf);
7363 7364
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
7365
	mddev->raid_disks = conf->raid_disks;
7366
	mddev->reshape_position = conf->reshape_progress;
7367
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7368

7369 7370
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7371
	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7372 7373 7374
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7375
						"reshape");
7376 7377 7378
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
7379
		write_seqcount_begin(&conf->gen_lock);
7380
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7381 7382 7383
		mddev->new_chunk_sectors =
			conf->chunk_sectors = conf->prev_chunk_sectors;
		mddev->new_layout = conf->algorithm = conf->prev_algo;
7384 7385 7386
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
7387
		conf->generation --;
7388
		conf->reshape_progress = MaxSector;
7389
		mddev->reshape_position = MaxSector;
7390
		write_seqcount_end(&conf->gen_lock);
7391 7392 7393
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
7394
	conf->reshape_checkpoint = jiffies;
7395 7396 7397 7398 7399
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

7400 7401 7402
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
7403
static void end_reshape(struct r5conf *conf)
7404 7405
{

7406
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7407
		struct md_rdev *rdev;
7408 7409

		spin_lock_irq(&conf->device_lock);
7410
		conf->previous_raid_disks = conf->raid_disks;
7411 7412 7413
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
7414
		conf->reshape_progress = MaxSector;
7415
		spin_unlock_irq(&conf->device_lock);
7416
		wake_up(&conf->wait_for_overlap);
7417 7418 7419 7420

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
7421
		if (conf->mddev->queue) {
7422
			int data_disks = conf->raid_disks - conf->max_degraded;
7423
			int stripe = data_disks * ((conf->chunk_sectors << 9)
7424
						   / PAGE_SIZE);
7425 7426 7427
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
7428 7429 7430
	}
}

7431 7432 7433
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
7434
static void raid5_finish_reshape(struct mddev *mddev)
7435
{
7436
	struct r5conf *conf = mddev->private;
7437 7438 7439

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

7440 7441 7442
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
7443
			revalidate_disk(mddev->gendisk);
7444 7445
		} else {
			int d;
7446 7447 7448
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
7449 7450
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
7451
			     d++) {
7452
				struct md_rdev *rdev = conf->disks[d].rdev;
7453 7454 7455 7456 7457
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
7458
			}
7459
		}
7460
		mddev->layout = conf->algorithm;
7461
		mddev->chunk_sectors = conf->chunk_sectors;
7462 7463
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
7464
		mddev->reshape_backwards = 0;
7465 7466 7467
	}
}

7468
static void raid5_quiesce(struct mddev *mddev, int state)
7469
{
7470
	struct r5conf *conf = mddev->private;
7471 7472

	switch(state) {
7473 7474 7475 7476
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

7477
	case 1: /* stop all writes */
7478
		lock_all_device_hash_locks_irq(conf);
7479 7480 7481 7482
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
7483
		wait_event_cmd(conf->wait_for_quiescent,
7484 7485
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
7486 7487
				    unlock_all_device_hash_locks_irq(conf),
				    lock_all_device_hash_locks_irq(conf));
7488
		conf->quiesce = 1;
7489
		unlock_all_device_hash_locks_irq(conf);
7490 7491
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
7492 7493 7494
		break;

	case 0: /* re-enable writes */
7495
		lock_all_device_hash_locks_irq(conf);
7496
		conf->quiesce = 0;
7497
		wake_up(&conf->wait_for_quiescent);
7498
		wake_up(&conf->wait_for_overlap);
7499
		unlock_all_device_hash_locks_irq(conf);
7500 7501 7502
		break;
	}
}
7503

7504
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7505
{
7506
	struct r0conf *raid0_conf = mddev->private;
7507
	sector_t sectors;
7508

D
Dan Williams 已提交
7509
	/* for raid0 takeover only one zone is supported */
7510
	if (raid0_conf->nr_strip_zones > 1) {
7511 7512
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
7513 7514 7515
		return ERR_PTR(-EINVAL);
	}

7516 7517
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7518
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
7519
	mddev->new_level = level;
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}

7530
static void *raid5_takeover_raid1(struct mddev *mddev)
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7552
	mddev->new_chunk_sectors = chunksect;
7553 7554 7555 7556

	return setup_conf(mddev);
}

7557
static void *raid5_takeover_raid6(struct mddev *mddev)
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

7590
static int raid5_check_reshape(struct mddev *mddev)
7591
{
7592 7593 7594 7595
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
7596
	 */
7597
	struct r5conf *conf = mddev->private;
7598
	int new_chunk = mddev->new_chunk_sectors;
7599

7600
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7601 7602
		return -EINVAL;
	if (new_chunk > 0) {
7603
		if (!is_power_of_2(new_chunk))
7604
			return -EINVAL;
7605
		if (new_chunk < (PAGE_SIZE>>9))
7606
			return -EINVAL;
7607
		if (mddev->array_sectors & (new_chunk-1))
7608 7609 7610 7611 7612 7613
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

7614
	if (mddev->raid_disks == 2) {
7615 7616 7617 7618
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
7619 7620
		}
		if (new_chunk > 0) {
7621 7622
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
7623 7624 7625
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
7626
	}
7627
	return check_reshape(mddev);
7628 7629
}

7630
static int raid6_check_reshape(struct mddev *mddev)
7631
{
7632
	int new_chunk = mddev->new_chunk_sectors;
7633

7634
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7635
		return -EINVAL;
7636
	if (new_chunk > 0) {
7637
		if (!is_power_of_2(new_chunk))
7638
			return -EINVAL;
7639
		if (new_chunk < (PAGE_SIZE >> 9))
7640
			return -EINVAL;
7641
		if (mddev->array_sectors & (new_chunk-1))
7642 7643
			/* not factor of array size */
			return -EINVAL;
7644
	}
7645 7646

	/* They look valid */
7647
	return check_reshape(mddev);
7648 7649
}

7650
static void *raid5_takeover(struct mddev *mddev)
7651 7652
{
	/* raid5 can take over:
D
Dan Williams 已提交
7653
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7654 7655 7656 7657
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
7658 7659
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
7660 7661
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
7662 7663 7664 7665 7666
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
7667 7668
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
7669 7670 7671 7672

	return ERR_PTR(-EINVAL);
}

7673
static void *raid4_takeover(struct mddev *mddev)
7674
{
D
Dan Williams 已提交
7675 7676 7677
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
7678
	 */
D
Dan Williams 已提交
7679 7680
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
7681 7682 7683 7684 7685 7686 7687 7688
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
7689

7690
static struct md_personality raid5_personality;
7691

7692
static void *raid6_takeover(struct mddev *mddev)
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}

7738
static struct md_personality raid6_personality =
7739 7740 7741 7742 7743 7744
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7745
	.free		= raid5_free,
7746 7747 7748 7749 7750 7751 7752
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7753
	.size		= raid5_size,
7754
	.check_reshape	= raid6_check_reshape,
7755
	.start_reshape  = raid5_start_reshape,
7756
	.finish_reshape = raid5_finish_reshape,
7757
	.quiesce	= raid5_quiesce,
7758
	.takeover	= raid6_takeover,
7759
	.congested	= raid5_congested,
7760
	.mergeable_bvec	= raid5_mergeable_bvec,
7761
};
7762
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
7763 7764
{
	.name		= "raid5",
7765
	.level		= 5,
L
Linus Torvalds 已提交
7766 7767 7768
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7769
	.free		= raid5_free,
L
Linus Torvalds 已提交
7770 7771 7772 7773 7774 7775 7776
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7777
	.size		= raid5_size,
7778 7779
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7780
	.finish_reshape = raid5_finish_reshape,
7781
	.quiesce	= raid5_quiesce,
7782
	.takeover	= raid5_takeover,
7783
	.congested	= raid5_congested,
7784
	.mergeable_bvec	= raid5_mergeable_bvec,
L
Linus Torvalds 已提交
7785 7786
};

7787
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
7788
{
7789 7790 7791 7792 7793
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7794
	.free		= raid5_free,
7795 7796 7797 7798 7799 7800 7801
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7802
	.size		= raid5_size,
7803 7804
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7805
	.finish_reshape = raid5_finish_reshape,
7806
	.quiesce	= raid5_quiesce,
7807
	.takeover	= raid4_takeover,
7808
	.congested	= raid5_congested,
7809
	.mergeable_bvec	= raid5_mergeable_bvec,
7810 7811 7812 7813
};

static int __init raid5_init(void)
{
7814 7815 7816 7817
	raid5_wq = alloc_workqueue("raid5wq",
		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
	if (!raid5_wq)
		return -ENOMEM;
7818
	register_md_personality(&raid6_personality);
7819 7820 7821
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
7822 7823
}

7824
static void raid5_exit(void)
L
Linus Torvalds 已提交
7825
{
7826
	unregister_md_personality(&raid6_personality);
7827 7828
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
7829
	destroy_workqueue(raid5_wq);
L
Linus Torvalds 已提交
7830 7831 7832 7833 7834
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
7835
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
7836
MODULE_ALIAS("md-personality-4"); /* RAID5 */
7837 7838
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
7839 7840
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
7841 7842 7843 7844 7845 7846 7847
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");