raid5.c 203.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include <linux/nodemask.h>
57
#include <linux/flex_array.h>
N
NeilBrown 已提交
58 59
#include <trace/events/block.h>

60
#include "md.h"
61
#include "raid5.h"
62
#include "raid0.h"
63
#include "bitmap.h"
64

65 66 67
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE

68 69 70 71
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72
static struct workqueue_struct *raid5_wq;
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
82
#define BYPASS_THRESHOLD	1
83
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
84
#define HASH_MASK		(NR_HASH - 1)
85
#define MAX_STRIPE_BATCH	8
L
Linus Torvalds 已提交
86

87
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 89 90 91
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static inline int stripe_hash_locks_hash(sector_t sect)
{
	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}

static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_lock_irq(conf->hash_locks + hash);
	spin_lock(&conf->device_lock);
}

static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_unlock(&conf->device_lock);
	spin_unlock_irq(conf->hash_locks + hash);
}

static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	local_irq_disable();
	spin_lock(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
	spin_lock(&conf->device_lock);
}

static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	spin_unlock(&conf->device_lock);
	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
		spin_unlock(conf->hash_locks + i - 1);
	local_irq_enable();
}

L
Linus Torvalds 已提交
129 130 131 132 133 134
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
135
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
136 137
 * of the current stripe+device
 */
138 139
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
140
	int sectors = bio_sectors(bio);
141
	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 143 144 145
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
146

147
/*
148 149
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150
 */
151
static inline int raid5_bi_processed_stripes(struct bio *bio)
152
{
153 154
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
155 156
}

157
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158
{
159 160
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
161 162
}

163
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164
{
165 166
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
167 168
}

169 170
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
171
{
172 173
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
174

175 176 177 178
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
179 180
}

181
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182
{
183 184
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
185 186
}

187 188 189
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
190 191 192 193
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
194 195 196 197 198
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
199 200 201 202 203
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
204

205 206 207 208 209
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
210 211
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
212
{
213
	int slot = *count;
214

215
	if (sh->ddf_layout)
216
		(*count)++;
217
	if (idx == sh->pd_idx)
218
		return syndrome_disks;
219
	if (idx == sh->qd_idx)
220
		return syndrome_disks + 1;
221
	if (!sh->ddf_layout)
222
		(*count)++;
223 224 225
	return slot;
}

226 227 228 229 230 231 232
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
233
		bi->bi_iter.bi_size = 0;
234 235
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
236
		bio_endio(bi, 0);
237 238 239 240
		bi = return_bi;
	}
}

241
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
242

243 244 245 246 247 248 249
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

250 251 252 253
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
	struct r5conf *conf = sh->raid_conf;
	struct r5worker_group *group;
254
	int thread_cnt;
255 256 257 258 259 260 261 262 263 264 265
	int i, cpu = sh->cpu;

	if (!cpu_online(cpu)) {
		cpu = cpumask_any(cpu_online_mask);
		sh->cpu = cpu;
	}

	if (list_empty(&sh->lru)) {
		struct r5worker_group *group;
		group = conf->worker_groups + cpu_to_group(cpu);
		list_add_tail(&sh->lru, &group->handle_list);
266 267
		group->stripes_cnt++;
		sh->group = group;
268 269 270 271 272 273 274 275 276
	}

	if (conf->worker_cnt_per_group == 0) {
		md_wakeup_thread(conf->mddev->thread);
		return;
	}

	group = conf->worker_groups + cpu_to_group(sh->cpu);

277 278 279 280 281 282 283 284 285 286 287 288 289 290
	group->workers[0].working = true;
	/* at least one worker should run to avoid race */
	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);

	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
	/* wakeup more workers */
	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
		if (group->workers[i].working == false) {
			group->workers[i].working = true;
			queue_work_on(sh->cpu, raid5_wq,
				      &group->workers[i].work);
			thread_cnt--;
		}
	}
291 292
}

293 294
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
			      struct list_head *temp_inactive_list)
L
Linus Torvalds 已提交
295
{
296 297 298 299
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301
			list_add_tail(&sh->lru, &conf->delayed_list);
302
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 304 305 306 307
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 309 310 311 312 313
			if (conf->worker_cnt_per_group == 0) {
				list_add_tail(&sh->lru, &conf->handle_list);
			} else {
				raid5_wakeup_stripe_thread(sh);
				return;
			}
314 315 316 317 318 319 320 321 322
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
323 324
		if (!test_bit(STRIPE_EXPANDING, &sh->state))
			list_add_tail(&sh->lru, temp_inactive_list);
L
Linus Torvalds 已提交
325 326
	}
}
327

328 329
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
			     struct list_head *temp_inactive_list)
330 331
{
	if (atomic_dec_and_test(&sh->count))
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		do_release_stripe(conf, sh, temp_inactive_list);
}

/*
 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 *
 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 * given time. Adding stripes only takes device lock, while deleting stripes
 * only takes hash lock.
 */
static void release_inactive_stripe_list(struct r5conf *conf,
					 struct list_head *temp_inactive_list,
					 int hash)
{
	int size;
	bool do_wakeup = false;
	unsigned long flags;

	if (hash == NR_STRIPE_HASH_LOCKS) {
		size = NR_STRIPE_HASH_LOCKS;
		hash = NR_STRIPE_HASH_LOCKS - 1;
	} else
		size = 1;
	while (size) {
		struct list_head *list = &temp_inactive_list[size - 1];

		/*
		 * We don't hold any lock here yet, get_active_stripe() might
		 * remove stripes from the list
		 */
		if (!list_empty_careful(list)) {
			spin_lock_irqsave(conf->hash_locks + hash, flags);
364 365 366
			if (list_empty(conf->inactive_list + hash) &&
			    !list_empty(list))
				atomic_dec(&conf->empty_inactive_list_nr);
367 368 369 370 371 372 373 374 375 376 377 378 379
			list_splice_tail_init(list, conf->inactive_list + hash);
			do_wakeup = true;
			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
		}
		size--;
		hash--;
	}

	if (do_wakeup) {
		wake_up(&conf->wait_for_stripe);
		if (conf->retry_read_aligned)
			md_wakeup_thread(conf->mddev->thread);
	}
380 381
}

S
Shaohua Li 已提交
382
/* should hold conf->device_lock already */
383 384
static int release_stripe_list(struct r5conf *conf,
			       struct list_head *temp_inactive_list)
S
Shaohua Li 已提交
385 386 387 388 389 390
{
	struct stripe_head *sh;
	int count = 0;
	struct llist_node *head;

	head = llist_del_all(&conf->released_stripes);
S
Shaohua Li 已提交
391
	head = llist_reverse_order(head);
S
Shaohua Li 已提交
392
	while (head) {
393 394
		int hash;

S
Shaohua Li 已提交
395 396 397 398 399 400 401 402 403 404
		sh = llist_entry(head, struct stripe_head, release_list);
		head = llist_next(head);
		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
		smp_mb();
		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
		/*
		 * Don't worry the bit is set here, because if the bit is set
		 * again, the count is always > 1. This is true for
		 * STRIPE_ON_UNPLUG_LIST bit too.
		 */
405 406
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
S
Shaohua Li 已提交
407 408 409 410 411 412
		count++;
	}

	return count;
}

L
Linus Torvalds 已提交
413 414
static void release_stripe(struct stripe_head *sh)
{
415
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
416
	unsigned long flags;
417 418
	struct list_head list;
	int hash;
S
Shaohua Li 已提交
419
	bool wakeup;
420

421 422 423 424 425
	/* Avoid release_list until the last reference.
	 */
	if (atomic_add_unless(&sh->count, -1, 1))
		return;

426 427
	if (unlikely(!conf->mddev->thread) ||
		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
S
Shaohua Li 已提交
428 429 430 431 432 433
		goto slow_path;
	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
	if (wakeup)
		md_wakeup_thread(conf->mddev->thread);
	return;
slow_path:
434
	local_irq_save(flags);
S
Shaohua Li 已提交
435
	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 438 439
		INIT_LIST_HEAD(&list);
		hash = sh->hash_lock_index;
		do_release_stripe(conf, sh, &list);
440
		spin_unlock(&conf->device_lock);
441
		release_inactive_stripe_list(conf, &list, hash);
442 443
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
444 445
}

446
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
447
{
448 449
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
450

451
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
452 453
}

454
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
455
{
456
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
457

458 459
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
460

461
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
462 463 464
}

/* find an idle stripe, make sure it is unhashed, and return it. */
465
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
466 467 468 469
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

470
	if (list_empty(conf->inactive_list + hash))
L
Linus Torvalds 已提交
471
		goto out;
472
	first = (conf->inactive_list + hash)->next;
L
Linus Torvalds 已提交
473 474 475 476
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
477
	BUG_ON(hash != sh->hash_lock_index);
478 479
	if (list_empty(conf->inactive_list + hash))
		atomic_inc(&conf->empty_inactive_list_nr);
L
Linus Torvalds 已提交
480 481 482 483
out:
	return sh;
}

484
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
485 486 487
{
	struct page *p;
	int i;
488
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
489

490
	for (i = 0; i < num ; i++) {
491
		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
L
Linus Torvalds 已提交
492 493 494 495
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
496
		put_page(p);
L
Linus Torvalds 已提交
497 498 499
	}
}

500
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
501 502
{
	int i;
503
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
504

505
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
506 507 508 509 510 511
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
512
		sh->dev[i].orig_page = page;
L
Linus Torvalds 已提交
513 514 515 516
	}
	return 0;
}

517
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
520

521
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
522
{
523
	struct r5conf *conf = sh->raid_conf;
524
	int i, seq;
L
Linus Torvalds 已提交
525

526 527
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528
	BUG_ON(stripe_operations_active(sh));
529

530
	pr_debug("init_stripe called, stripe %llu\n",
531
		(unsigned long long)sector);
532 533
retry:
	seq = read_seqcount_begin(&conf->gen_lock);
534
	sh->generation = conf->generation - previous;
535
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
536
	sh->sector = sector;
537
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
538 539
	sh->state = 0;

540
	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
541 542
		struct r5dev *dev = &sh->dev[i];

543
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
544
		    test_bit(R5_LOCKED, &dev->flags)) {
545
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
546
			       (unsigned long long)sh->sector, i, dev->toread,
547
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
548
			       test_bit(R5_LOCKED, &dev->flags));
549
			WARN_ON(1);
L
Linus Torvalds 已提交
550 551
		}
		dev->flags = 0;
552
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
553
	}
554 555
	if (read_seqcount_retry(&conf->gen_lock, seq))
		goto retry;
L
Linus Torvalds 已提交
556
	insert_hash(conf, sh);
557
	sh->cpu = smp_processor_id();
L
Linus Torvalds 已提交
558 559
}

560
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
561
					 short generation)
L
Linus Torvalds 已提交
562 563 564
{
	struct stripe_head *sh;

565
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
566
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
567
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
568
			return sh;
569
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
570 571 572
	return NULL;
}

573 574 575 576 577 578 579 580 581 582 583 584 585
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
586
static int calc_degraded(struct r5conf *conf)
587
{
588
	int degraded, degraded2;
589 590 591 592 593
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
594
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
595 596
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
615 616
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
617
	rcu_read_lock();
618
	degraded2 = 0;
619
	for (i = 0; i < conf->raid_disks; i++) {
620
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
621 622
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
623
		if (!rdev || test_bit(Faulty, &rdev->flags))
624
			degraded2++;
625 626 627 628 629 630 631 632 633
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
634
				degraded2++;
635 636
	}
	rcu_read_unlock();
637 638 639 640 641 642 643 644 645 646 647 648 649
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
650 651 652 653 654
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

655
static struct stripe_head *
656
get_active_stripe(struct r5conf *conf, sector_t sector,
657
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
658 659
{
	struct stripe_head *sh;
660
	int hash = stripe_hash_locks_hash(sector);
L
Linus Torvalds 已提交
661

662
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
663

664
	spin_lock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
665 666

	do {
667
		wait_event_lock_irq(conf->wait_for_stripe,
668
				    conf->quiesce == 0 || noquiesce,
669
				    *(conf->hash_locks + hash));
670
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
671 672
		if (!sh) {
			if (!conf->inactive_blocked)
673
				sh = get_free_stripe(conf, hash);
L
Linus Torvalds 已提交
674 675 676 677
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
678 679 680 681 682 683 684
				wait_event_lock_irq(
					conf->wait_for_stripe,
					!list_empty(conf->inactive_list + hash) &&
					(atomic_read(&conf->active_stripes)
					 < (conf->max_nr_stripes * 3 / 4)
					 || !conf->inactive_blocked),
					*(conf->hash_locks + hash));
L
Linus Torvalds 已提交
685
				conf->inactive_blocked = 0;
686
			} else {
687
				init_stripe(sh, sector, previous);
688 689
				atomic_inc(&sh->count);
			}
690
		} else if (!atomic_inc_not_zero(&sh->count)) {
691
			spin_lock(&conf->device_lock);
692
			if (!atomic_read(&sh->count)) {
L
Linus Torvalds 已提交
693 694
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
695 696
				BUG_ON(list_empty(&sh->lru) &&
				       !test_bit(STRIPE_EXPANDING, &sh->state));
697
				list_del_init(&sh->lru);
698 699 700 701
				if (sh->group) {
					sh->group->stripes_cnt--;
					sh->group = NULL;
				}
L
Linus Torvalds 已提交
702
			}
703
			atomic_inc(&sh->count);
704
			spin_unlock(&conf->device_lock);
L
Linus Torvalds 已提交
705 706 707
		}
	} while (sh == NULL);

708
	spin_unlock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
709 710 711
	return sh;
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

733 734 735 736
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
737

738
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
739
{
740
	struct r5conf *conf = sh->raid_conf;
741 742 743 744 745 746
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
747
		int replace_only = 0;
748 749
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
750 751 752 753 754
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
755
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
756
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
757
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
758
			rw = READ;
759 760 761 762 763
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
764
			continue;
S
Shaohua Li 已提交
765 766
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
767 768

		bi = &sh->dev[i].req;
769
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
770 771

		rcu_read_lock();
772
		rrdev = rcu_dereference(conf->disks[i].replacement);
773 774 775 776 777 778
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
779 780 781
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
782 783 784
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
785
		} else {
786
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
787 788 789
				rdev = rrdev;
			rrdev = NULL;
		}
790

791 792 793 794
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
795 796 797 798
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
799 800
		rcu_read_unlock();

801
		/* We have already checked bad blocks for reads.  Now
802 803
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
824 825 826 827 828 829
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
830 831 832 833 834 835 836 837
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

838
		if (rdev) {
839 840
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
841 842
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
843 844
			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
845
			bio_reset(bi);
846
			bi->bi_bdev = rdev->bdev;
K
Kent Overstreet 已提交
847 848 849 850 851 852
			bi->bi_rw = rw;
			bi->bi_end_io = (rw & WRITE)
				? raid5_end_write_request
				: raid5_end_read_request;
			bi->bi_private = sh;

853
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
854
				__func__, (unsigned long long)sh->sector,
855 856
				bi->bi_rw, i);
			atomic_inc(&sh->count);
857
			if (use_new_offset(conf, sh))
858
				bi->bi_iter.bi_sector = (sh->sector
859 860
						 + rdev->new_data_offset);
			else
861
				bi->bi_iter.bi_sector = (sh->sector
862
						 + rdev->data_offset);
863
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
864
				bi->bi_rw |= REQ_NOMERGE;
865

866 867 868
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].vec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
869
			bi->bi_vcnt = 1;
870 871
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
872
			bi->bi_iter.bi_size = STRIPE_SIZE;
873 874 875 876 877 878
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				bi->bi_vcnt = 0;
879 880
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
881 882 883 884 885

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
886
			generic_make_request(bi);
887 888
		}
		if (rrdev) {
889 890
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
891 892 893 894
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
895
			bio_reset(rbi);
896
			rbi->bi_bdev = rrdev->bdev;
K
Kent Overstreet 已提交
897 898 899 900 901
			rbi->bi_rw = rw;
			BUG_ON(!(rw & WRITE));
			rbi->bi_end_io = raid5_end_write_request;
			rbi->bi_private = sh;

902 903 904 905 906
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
907
			if (use_new_offset(conf, sh))
908
				rbi->bi_iter.bi_sector = (sh->sector
909 910
						  + rrdev->new_data_offset);
			else
911
				rbi->bi_iter.bi_sector = (sh->sector
912
						  + rrdev->data_offset);
913 914 915
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].rvec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
916
			rbi->bi_vcnt = 1;
917 918
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
919
			rbi->bi_iter.bi_size = STRIPE_SIZE;
920 921 922 923 924 925
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				rbi->bi_vcnt = 0;
926 927 928 929
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
930 931 932
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
933
			if (rw & WRITE)
934 935 936 937 938 939 940 941 942 943
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
944 945 946
async_copy_data(int frombio, struct bio *bio, struct page **page,
	sector_t sector, struct dma_async_tx_descriptor *tx,
	struct stripe_head *sh)
947
{
948 949
	struct bio_vec bvl;
	struct bvec_iter iter;
950 951
	struct page *bio_page;
	int page_offset;
952
	struct async_submit_ctl submit;
D
Dan Williams 已提交
953
	enum async_tx_flags flags = 0;
954

955 956
	if (bio->bi_iter.bi_sector >= sector)
		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
957
	else
958
		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
959

D
Dan Williams 已提交
960 961 962 963
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

964 965
	bio_for_each_segment(bvl, bio, iter) {
		int len = bvl.bv_len;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
981 982
			b_offset += bvl.bv_offset;
			bio_page = bvl.bv_page;
983 984 985 986 987 988 989
			if (frombio) {
				if (sh->raid_conf->skip_copy &&
				    b_offset == 0 && page_offset == 0 &&
				    clen == STRIPE_SIZE)
					*page = bio_page;
				else
					tx = async_memcpy(*page, bio_page, page_offset,
990
						  b_offset, clen, &submit);
991 992
			} else
				tx = async_memcpy(bio_page, *page, b_offset,
993
						  page_offset, clen, &submit);
994
		}
995 996 997
		/* chain the operations */
		submit.depend_tx = tx;

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
1010
	int i;
1011

1012
	pr_debug("%s: stripe %llu\n", __func__,
1013 1014 1015 1016 1017 1018 1019
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
1020 1021
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
1022
		 * !STRIPE_BIOFILL_RUN
1023 1024
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1025 1026 1027 1028 1029
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
1030
			while (rbi && rbi->bi_iter.bi_sector <
1031 1032
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
1033
				if (!raid5_dec_bi_active_stripes(rbi)) {
1034 1035 1036 1037 1038 1039 1040
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
1041
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1042 1043 1044

	return_io(return_bi);

1045
	set_bit(STRIPE_HANDLE, &sh->state);
1046 1047 1048 1049 1050 1051
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
1052
	struct async_submit_ctl submit;
1053 1054
	int i;

1055
	pr_debug("%s: stripe %llu\n", __func__,
1056 1057 1058 1059 1060 1061
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
1062
			spin_lock_irq(&sh->stripe_lock);
1063 1064
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
1065
			spin_unlock_irq(&sh->stripe_lock);
1066
			while (rbi && rbi->bi_iter.bi_sector <
1067
				dev->sector + STRIPE_SECTORS) {
1068 1069
				tx = async_copy_data(0, rbi, &dev->page,
					dev->sector, tx, sh);
1070 1071 1072 1073 1074 1075
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
1076 1077
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
1078 1079
}

1080
static void mark_target_uptodate(struct stripe_head *sh, int target)
1081
{
1082
	struct r5dev *tgt;
1083

1084 1085
	if (target < 0)
		return;
1086

1087
	tgt = &sh->dev[target];
1088 1089 1090
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
1091 1092
}

1093
static void ops_complete_compute(void *stripe_head_ref)
1094 1095 1096
{
	struct stripe_head *sh = stripe_head_ref;

1097
	pr_debug("%s: stripe %llu\n", __func__,
1098 1099
		(unsigned long long)sh->sector);

1100
	/* mark the computed target(s) as uptodate */
1101
	mark_target_uptodate(sh, sh->ops.target);
1102
	mark_target_uptodate(sh, sh->ops.target2);
1103

1104 1105 1106
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
1107 1108 1109 1110
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1111 1112
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1113
				 struct raid5_percpu *percpu, int i)
1114
{
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr + sizeof(struct page *) * (sh->disks + 2);
}

/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr;
1128 1129 1130 1131
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1132 1133
{
	int disks = sh->disks;
1134
	struct page **xor_srcs = to_addr_page(percpu, 0);
1135 1136 1137 1138 1139
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
1140
	struct async_submit_ctl submit;
1141 1142 1143
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
1144
		__func__, (unsigned long long)sh->sector, target);
1145 1146 1147 1148 1149 1150 1151 1152
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
1153
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1154
			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1155
	if (unlikely(count == 1))
1156
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1157
	else
1158
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1159 1160 1161 1162

	return tx;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
1181
		srcs[i] = NULL;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

1192
	return syndrome_disks;
1193 1194 1195 1196 1197 1198
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
1199
	struct page **blocks = to_addr_page(percpu, 0);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
1213
	else
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
1230 1231
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1232
				  to_addr_conv(sh, percpu, 0));
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1243 1244
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1245
				  to_addr_conv(sh, percpu, 0));
1246 1247
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1248 1249 1250 1251

	return tx;
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
1264
	struct page **blocks = to_addr_page(percpu, 0);
1265 1266 1267 1268 1269 1270 1271 1272
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1273
	/* we need to open-code set_syndrome_sources to handle the
1274 1275 1276
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1277
		blocks[i] = NULL;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1304 1305
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
1306
					  to_addr_conv(sh, percpu, 0));
1307
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1327 1328 1329
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
1330
					  to_addr_conv(sh, percpu, 0));
1331 1332 1333 1334
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1335 1336
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
1337
					  to_addr_conv(sh, percpu, 0));
1338 1339 1340 1341
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1342 1343
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1344
				  to_addr_conv(sh, percpu, 0));
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1356 1357 1358
	}
}

1359 1360 1361 1362
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1363
	pr_debug("%s: stripe %llu\n", __func__,
1364 1365 1366 1367
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1368 1369
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1370 1371
{
	int disks = sh->disks;
1372
	struct page **xor_srcs = to_addr_page(percpu, 0);
1373
	int count = 0, pd_idx = sh->pd_idx, i;
1374
	struct async_submit_ctl submit;
1375 1376 1377 1378

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1379
	pr_debug("%s: stripe %llu\n", __func__,
1380 1381 1382 1383 1384
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1385
		if (test_bit(R5_Wantdrain, &dev->flags))
1386 1387 1388
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1389
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1390
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1391
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1392 1393 1394 1395 1396

	return tx;
}

static struct dma_async_tx_descriptor *
1397
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1398 1399
{
	int disks = sh->disks;
1400
	int i;
1401

1402
	pr_debug("%s: stripe %llu\n", __func__,
1403 1404 1405 1406 1407 1408
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1409
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1410 1411
			struct bio *wbi;

S
Shaohua Li 已提交
1412
			spin_lock_irq(&sh->stripe_lock);
1413 1414 1415 1416
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1417
			spin_unlock_irq(&sh->stripe_lock);
1418
			WARN_ON(dev->page != dev->orig_page);
1419

1420
			while (wbi && wbi->bi_iter.bi_sector <
1421
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1422 1423
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1424 1425
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1426
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1427
					set_bit(R5_Discard, &dev->flags);
1428 1429 1430 1431 1432 1433 1434 1435 1436
				else {
					tx = async_copy_data(1, wbi, &dev->page,
						dev->sector, tx, sh);
					if (dev->page != dev->orig_page) {
						set_bit(R5_SkipCopy, &dev->flags);
						clear_bit(R5_UPTODATE, &dev->flags);
						clear_bit(R5_OVERWRITE, &dev->flags);
					}
				}
1437 1438 1439 1440 1441 1442 1443 1444
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1445
static void ops_complete_reconstruct(void *stripe_head_ref)
1446 1447
{
	struct stripe_head *sh = stripe_head_ref;
1448 1449 1450 1451
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1452
	bool fua = false, sync = false, discard = false;
1453

1454
	pr_debug("%s: stripe %llu\n", __func__,
1455 1456
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1457
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1458
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1459
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1460
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1461
	}
T
Tejun Heo 已提交
1462

1463 1464
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1465

T
Tejun Heo 已提交
1466
		if (dev->written || i == pd_idx || i == qd_idx) {
1467
			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1468
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1469 1470
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1471 1472
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1473
		}
1474 1475
	}

1476 1477 1478 1479 1480 1481 1482 1483
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1484 1485 1486 1487 1488 1489

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1490 1491
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1492 1493
{
	int disks = sh->disks;
1494
	struct page **xor_srcs = to_addr_page(percpu, 0);
1495
	struct async_submit_ctl submit;
1496 1497
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1498
	int prexor = 0;
1499 1500
	unsigned long flags;

1501
	pr_debug("%s: stripe %llu\n", __func__,
1502 1503
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1516 1517 1518
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1519 1520
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1541
	flags = ASYNC_TX_ACK |
1542 1543 1544 1545
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1546
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1547
			  to_addr_conv(sh, percpu, 0));
1548 1549 1550 1551
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1552 1553
}

1554 1555 1556 1557 1558
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
1559
	struct page **blocks = to_addr_page(percpu, 0);
S
Shaohua Li 已提交
1560
	int count, i;
1561 1562 1563

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1578 1579 1580 1581 1582
	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1583
			  sh, to_addr_conv(sh, percpu, 0));
1584
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1585 1586 1587 1588 1589 1590
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1591
	pr_debug("%s: stripe %llu\n", __func__,
1592 1593
		(unsigned long long)sh->sector);

1594
	sh->check_state = check_state_check_result;
1595 1596 1597 1598
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1599
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1600 1601
{
	int disks = sh->disks;
1602 1603 1604
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1605
	struct page **xor_srcs = to_addr_page(percpu, 0);
1606
	struct dma_async_tx_descriptor *tx;
1607
	struct async_submit_ctl submit;
1608 1609
	int count;
	int i;
1610

1611
	pr_debug("%s: stripe %llu\n", __func__,
1612 1613
		(unsigned long long)sh->sector);

1614 1615 1616
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1617
	for (i = disks; i--; ) {
1618 1619 1620
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1621 1622
	}

1623
	init_async_submit(&submit, 0, NULL, NULL, NULL,
1624
			  to_addr_conv(sh, percpu, 0));
D
Dan Williams 已提交
1625
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1626
			   &sh->ops.zero_sum_result, &submit);
1627 1628

	atomic_inc(&sh->count);
1629 1630
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1631 1632
}

1633 1634
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
1635
	struct page **srcs = to_addr_page(percpu, 0);
1636 1637 1638 1639 1640 1641 1642 1643 1644
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1645 1646

	atomic_inc(&sh->count);
1647
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1648
			  sh, to_addr_conv(sh, percpu, 0));
1649 1650
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1651 1652
}

N
NeilBrown 已提交
1653
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1654 1655 1656
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1657
	struct r5conf *conf = sh->raid_conf;
1658
	int level = conf->level;
1659 1660
	struct raid5_percpu *percpu;
	unsigned long cpu;
1661

1662 1663
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1664
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1665 1666 1667 1668
		ops_run_biofill(sh);
		overlap_clear++;
	}

1669
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1680 1681
			async_tx_ack(tx);
	}
1682

1683
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1684
		tx = ops_run_prexor(sh, percpu, tx);
1685

1686
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1687
		tx = ops_run_biodrain(sh, tx);
1688 1689 1690
		overlap_clear++;
	}

1691 1692 1693 1694 1695 1696
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1708 1709 1710 1711 1712 1713 1714

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1715
	put_cpu();
1716 1717
}

1718
static int grow_one_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
1719 1720
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1721
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1722 1723
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1724

1725 1726
	sh->raid_conf = conf;

S
Shaohua Li 已提交
1727 1728
	spin_lock_init(&sh->stripe_lock);

1729 1730
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1731 1732 1733
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
1734
	sh->hash_lock_index = hash;
1735 1736 1737 1738 1739 1740 1741 1742
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1743
static int grow_stripes(struct r5conf *conf, int num)
1744
{
1745
	struct kmem_cache *sc;
1746
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1747
	int hash;
L
Linus Torvalds 已提交
1748

1749 1750 1751 1752 1753 1754 1755 1756
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1757 1758
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1759
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1760
			       0, 0, NULL);
L
Linus Torvalds 已提交
1761 1762 1763
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1764
	conf->pool_size = devs;
1765 1766 1767
	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
	while (num--) {
		if (!grow_one_stripe(conf, hash))
L
Linus Torvalds 已提交
1768
			return 1;
1769 1770 1771
		conf->max_nr_stripes++;
		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
	}
L
Linus Torvalds 已提交
1772 1773
	return 0;
}
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
1788
static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
1789
{
1790
	struct flex_array *ret;
1791 1792 1793
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1794 1795 1796 1797 1798 1799 1800 1801 1802
	ret = flex_array_alloc(len, cnt, flags);
	if (!ret)
		return NULL;
	/* always prealloc all elements, so no locking is required */
	if (flex_array_prealloc(ret, 0, cnt, flags)) {
		flex_array_free(ret);
		return NULL;
	}
	return ret;
1803 1804
}

1805
static int resize_stripes(struct r5conf *conf, int newsize)
1806 1807 1808 1809 1810 1811 1812
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
1813
	 * 2/ gather all the old stripe_heads and transfer the pages across
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1833
	unsigned long cpu;
1834
	int err;
1835
	struct kmem_cache *sc;
1836
	int i;
1837
	int hash, cnt;
1838 1839 1840 1841

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1842 1843 1844
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1845

1846 1847 1848
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1849
			       0, 0, NULL);
1850 1851 1852 1853
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1854
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1855 1856 1857 1858
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1859
		spin_lock_init(&nsh->stripe_lock);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
1877 1878
	hash = 0;
	cnt = 0;
1879
	list_for_each_entry(nsh, &newstripes, lru) {
1880 1881 1882 1883 1884 1885 1886
		lock_device_hash_lock(conf, hash);
		wait_event_cmd(conf->wait_for_stripe,
				    !list_empty(conf->inactive_list + hash),
				    unlock_device_hash_lock(conf, hash),
				    lock_device_hash_lock(conf, hash));
		osh = get_free_stripe(conf, hash);
		unlock_device_hash_lock(conf, hash);
1887
		atomic_set(&nsh->count, 1);
1888
		for(i=0; i<conf->pool_size; i++) {
1889
			nsh->dev[i].page = osh->dev[i].page;
1890 1891
			nsh->dev[i].orig_page = osh->dev[i].page;
		}
1892 1893
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
1894
		nsh->hash_lock_index = hash;
1895
		kmem_cache_free(conf->slab_cache, osh);
1896 1897 1898 1899 1900 1901
		cnt++;
		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
			hash++;
			cnt = 0;
		}
1902 1903 1904 1905 1906 1907
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1908
	 * conf->disks and the scribble region
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1919 1920 1921
	get_online_cpus();
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
1922
		struct flex_array *scribble;
1923 1924

		percpu = per_cpu_ptr(conf->percpu, cpu);
1925 1926
		scribble = scribble_alloc(newsize, conf->chunk_sectors /
			STRIPE_SECTORS, GFP_NOIO);
1927 1928

		if (scribble) {
1929
			flex_array_free(percpu->scribble);
1930 1931 1932 1933 1934 1935 1936 1937
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1938 1939 1940 1941
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1942

1943 1944 1945 1946
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
1947
				nsh->dev[i].orig_page = p;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1960

1961
static int drop_one_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
1962 1963 1964
{
	struct stripe_head *sh;

1965 1966 1967
	spin_lock_irq(conf->hash_locks + hash);
	sh = get_free_stripe(conf, hash);
	spin_unlock_irq(conf->hash_locks + hash);
1968 1969
	if (!sh)
		return 0;
1970
	BUG_ON(atomic_read(&sh->count));
1971
	shrink_buffers(sh);
1972 1973 1974 1975 1976
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1977
static void shrink_stripes(struct r5conf *conf)
1978
{
1979 1980 1981 1982
	int hash;
	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
		while (drop_one_stripe(conf, hash))
			;
1983

N
NeilBrown 已提交
1984 1985
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1986 1987 1988
	conf->slab_cache = NULL;
}

1989
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1990
{
1991
	struct stripe_head *sh = bi->bi_private;
1992
	struct r5conf *conf = sh->raid_conf;
1993
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1994
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1995
	char b[BDEVNAME_SIZE];
1996
	struct md_rdev *rdev = NULL;
1997
	sector_t s;
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

2003 2004
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
2005 2006 2007
		uptodate);
	if (i == disks) {
		BUG();
2008
		return;
L
Linus Torvalds 已提交
2009
	}
2010
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2011 2012 2013 2014 2015
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
2016
		rdev = conf->disks[i].replacement;
2017
	if (!rdev)
2018
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2019

2020 2021 2022 2023
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
2024 2025
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2026
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2027 2028 2029 2030
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
2031 2032 2033 2034 2035
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
2036
				(unsigned long long)s,
2037
				bdevname(rdev->bdev, b));
2038
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2039 2040
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2041 2042 2043
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

2044 2045
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
2046
	} else {
2047
		const char *bdn = bdevname(rdev->bdev, b);
2048
		int retry = 0;
2049
		int set_bad = 0;
2050

L
Linus Torvalds 已提交
2051
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2052
		atomic_inc(&rdev->read_errors);
2053 2054 2055 2056 2057 2058
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2059
				(unsigned long long)s,
2060
				bdn);
2061 2062
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
2063 2064 2065 2066 2067
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2068
				(unsigned long long)s,
2069
				bdn);
2070
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2071
			/* Oh, no!!! */
2072
			set_bad = 1;
2073 2074 2075 2076 2077
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2078
				(unsigned long long)s,
2079
				bdn);
2080
		} else if (atomic_read(&rdev->read_errors)
2081
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
2082
			printk(KERN_WARNING
2083
			       "md/raid:%s: Too many read errors, failing device %s.\n",
2084
			       mdname(conf->mddev), bdn);
2085 2086
		else
			retry = 1;
2087 2088 2089
		if (set_bad && test_bit(In_sync, &rdev->flags)
		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			retry = 1;
2090
		if (retry)
2091 2092 2093 2094 2095
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2096
		else {
2097 2098
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2099 2100 2101 2102 2103
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
2104
		}
L
Linus Torvalds 已提交
2105
	}
2106
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2107 2108 2109 2110 2111
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

2112
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
2113
{
2114
	struct stripe_head *sh = bi->bi_private;
2115
	struct r5conf *conf = sh->raid_conf;
2116
	int disks = sh->disks, i;
2117
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
2118
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2119 2120
	sector_t first_bad;
	int bad_sectors;
2121
	int replacement = 0;
L
Linus Torvalds 已提交
2122

2123 2124 2125
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2126
			break;
2127 2128 2129
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
2130 2131 2132 2133 2134 2135 2136 2137
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
2138 2139 2140
			break;
		}
	}
2141
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
2142 2143 2144 2145
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
2146
		return;
L
Linus Torvalds 已提交
2147 2148
	}

2149 2150 2151 2152 2153 2154 2155 2156 2157
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
2158
			set_bit(STRIPE_DEGRADED, &sh->state);
2159 2160
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
2161 2162 2163
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
2164 2165
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
2166
				       &first_bad, &bad_sectors)) {
2167
			set_bit(R5_MadeGood, &sh->dev[i].flags);
2168 2169 2170 2171 2172 2173 2174
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
2175 2176
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2177

2178 2179
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
2180
	set_bit(STRIPE_HANDLE, &sh->state);
2181
	release_stripe(sh);
L
Linus Torvalds 已提交
2182 2183
}

2184
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2185

2186
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
2192
	dev->req.bi_max_vecs = 1;
L
Linus Torvalds 已提交
2193 2194
	dev->req.bi_private = sh;

2195 2196
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
2197
	dev->rreq.bi_max_vecs = 1;
2198 2199
	dev->rreq.bi_private = sh;

L
Linus Torvalds 已提交
2200
	dev->flags = 0;
2201
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
2202 2203
}

2204
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
2205 2206
{
	char b[BDEVNAME_SIZE];
2207
	struct r5conf *conf = mddev->private;
2208
	unsigned long flags;
2209
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
2210

2211 2212 2213 2214 2215 2216
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

2217
	set_bit(Blocked, &rdev->flags);
2218 2219 2220 2221 2222 2223 2224 2225 2226
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
2227
}
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
2233
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2234 2235
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
2236
{
N
NeilBrown 已提交
2237
	sector_t stripe, stripe2;
2238
	sector_t chunk_number;
L
Linus Torvalds 已提交
2239
	unsigned int chunk_offset;
2240
	int pd_idx, qd_idx;
2241
	int ddf_layout = 0;
L
Linus Torvalds 已提交
2242
	sector_t new_sector;
2243 2244
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
2245 2246
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2247 2248 2249
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2262 2263
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2264
	stripe2 = stripe;
L
Linus Torvalds 已提交
2265 2266 2267
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2268
	pd_idx = qd_idx = -1;
2269 2270
	switch(conf->level) {
	case 4:
2271
		pd_idx = data_disks;
2272 2273
		break;
	case 5:
2274
		switch (algorithm) {
L
Linus Torvalds 已提交
2275
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2276
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2277
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2278 2279 2280
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2281
			pd_idx = sector_div(stripe2, raid_disks);
2282
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2283 2284 2285
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2286
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2287
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2288 2289
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2290
			pd_idx = sector_div(stripe2, raid_disks);
2291
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2292
			break;
2293 2294 2295 2296 2297 2298 2299
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2300
		default:
2301
			BUG();
2302 2303 2304 2305
		}
		break;
	case 6:

2306
		switch (algorithm) {
2307
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2308
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309 2310
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2311
				(*dd_idx)++;	/* Q D D D P */
2312 2313
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2314 2315 2316
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2317
			pd_idx = sector_div(stripe2, raid_disks);
2318 2319
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2320
				(*dd_idx)++;	/* Q D D D P */
2321 2322
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2323 2324 2325
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2326
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2327 2328
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2329 2330
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2331
			pd_idx = sector_div(stripe2, raid_disks);
2332 2333
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2334
			break;
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2350
			pd_idx = sector_div(stripe2, raid_disks);
2351 2352 2353 2354 2355 2356
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2357
			ddf_layout = 1;
2358 2359 2360 2361 2362 2363 2364
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2365 2366
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2367 2368 2369 2370 2371 2372
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2373
			ddf_layout = 1;
2374 2375 2376 2377
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2378
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2379 2380
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2381
			ddf_layout = 1;
2382 2383 2384 2385
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2386
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2387 2388 2389 2390 2391 2392
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2393
			pd_idx = sector_div(stripe2, raid_disks-1);
2394 2395 2396 2397 2398 2399
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2400
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2401 2402 2403 2404 2405
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2406
			pd_idx = sector_div(stripe2, raid_disks-1);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2417
		default:
2418
			BUG();
2419 2420
		}
		break;
L
Linus Torvalds 已提交
2421 2422
	}

2423 2424 2425
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2426
		sh->ddf_layout = ddf_layout;
2427
	}
L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433 2434
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}

2435
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2436
{
2437
	struct r5conf *conf = sh->raid_conf;
2438 2439
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2440
	sector_t new_sector = sh->sector, check;
2441 2442
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2443 2444
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2445 2446
	sector_t stripe;
	int chunk_offset;
2447 2448
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2449
	sector_t r_sector;
2450
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2451 2452 2453 2454

	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2455 2456 2457 2458 2459
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2460
		switch (algorithm) {
L
Linus Torvalds 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2472 2473 2474 2475 2476
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2477
		default:
2478
			BUG();
2479 2480 2481
		}
		break;
	case 6:
2482
		if (i == sh->qd_idx)
2483
			return 0; /* It is the Q disk */
2484
		switch (algorithm) {
2485 2486
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2487 2488 2489 2490
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2505 2506 2507 2508 2509 2510
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2511
			/* Like left_symmetric, but P is before Q */
2512 2513
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2514 2515 2516 2517 2518 2519
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2535
		default:
2536
			BUG();
2537 2538
		}
		break;
L
Linus Torvalds 已提交
2539 2540 2541
	}

	chunk_number = stripe * data_disks + i;
2542
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2543

2544
	check = raid5_compute_sector(conf, r_sector,
2545
				     previous, &dummy1, &sh2);
2546 2547
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2548 2549
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554
		return 0;
	}
	return r_sector;
}

2555
static void
2556
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2557
			 int rcw, int expand)
2558 2559
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2560
	struct r5conf *conf = sh->raid_conf;
2561
	int level = conf->level;
2562 2563 2564 2565 2566 2567 2568 2569

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2570
				set_bit(R5_Wantdrain, &dev->flags);
2571 2572
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2573
				s->locked++;
2574 2575
			}
		}
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2591
		if (s->locked + conf->max_degraded == disks)
2592
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2593
				atomic_inc(&conf->pending_full_writes);
2594
	} else {
2595
		BUG_ON(level == 6);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2606 2607
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2608 2609
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2610
				s->locked++;
2611 2612
			}
		}
2613 2614 2615 2616 2617 2618 2619
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2620 2621
	}

2622
	/* keep the parity disk(s) locked while asynchronous operations
2623 2624 2625 2626
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2627
	s->locked++;
2628

2629 2630 2631 2632 2633 2634 2635 2636 2637
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2638
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2639
		__func__, (unsigned long long)sh->sector,
2640
		s->locked, s->ops_request);
2641
}
2642

L
Linus Torvalds 已提交
2643 2644
/*
 * Each stripe/dev can have one or more bion attached.
2645
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2651
	struct r5conf *conf = sh->raid_conf;
2652
	int firstwrite=0;
L
Linus Torvalds 已提交
2653

2654
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2655
		(unsigned long long)bi->bi_iter.bi_sector,
L
Linus Torvalds 已提交
2656 2657
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2667
	if (forwrite) {
L
Linus Torvalds 已提交
2668
		bip = &sh->dev[dd_idx].towrite;
2669
		if (*bip == NULL)
2670 2671
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2672
		bip = &sh->dev[dd_idx].toread;
2673 2674
	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
L
Linus Torvalds 已提交
2675 2676 2677
			goto overlap;
		bip = & (*bip)->bi_next;
	}
2678
	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
L
Linus Torvalds 已提交
2679 2680
		goto overlap;

2681
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2682 2683 2684
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2685
	raid5_inc_bi_active_stripes(bi);
2686

L
Linus Torvalds 已提交
2687 2688 2689 2690 2691
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2692
			     bi && bi->bi_iter.bi_sector <= sector;
L
Linus Torvalds 已提交
2693
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
K
Kent Overstreet 已提交
2694 2695
			if (bio_end_sector(bi) >= sector)
				sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
2696 2697 2698 2699
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2700 2701

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2702
		(unsigned long long)(*bip)->bi_iter.bi_sector,
2703
		(unsigned long long)sh->sector, dd_idx);
2704
	spin_unlock_irq(&sh->stripe_lock);
2705 2706 2707 2708 2709 2710 2711

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2712 2713 2714 2715
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
2716
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
2717 2718 2719
	return 0;
}

2720
static void end_reshape(struct r5conf *conf);
2721

2722
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2723
			    struct stripe_head *sh)
2724
{
2725
	int sectors_per_chunk =
2726
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2727
	int dd_idx;
2728
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2729
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2730

2731 2732
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2733
			     *sectors_per_chunk + chunk_offset,
2734
			     previous,
2735
			     &dd_idx, sh);
2736 2737
}

2738
static void
2739
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2740 2741 2742 2743 2744 2745 2746 2747 2748
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2749
			struct md_rdev *rdev;
2750 2751 2752
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2753 2754 2755
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2756
			rcu_read_unlock();
2757 2758 2759 2760 2761 2762 2763 2764
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2765
		}
S
Shaohua Li 已提交
2766
		spin_lock_irq(&sh->stripe_lock);
2767 2768 2769
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
S
Shaohua Li 已提交
2770
		spin_unlock_irq(&sh->stripe_lock);
2771
		if (bi)
2772 2773 2774 2775 2776
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

2777
		while (bi && bi->bi_iter.bi_sector <
2778 2779 2780
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2781
			if (!raid5_dec_bi_active_stripes(bi)) {
2782 2783 2784 2785 2786 2787
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
2788 2789 2790 2791
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
2792 2793 2794
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
2795 2796 2797 2798 2799
		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].page = sh->dev[i].orig_page;
		}

2800
		if (bi) bitmap_end = 1;
2801
		while (bi && bi->bi_iter.bi_sector <
2802 2803 2804
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2805
			if (!raid5_dec_bi_active_stripes(bi)) {
2806 2807 2808 2809 2810 2811 2812
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2813 2814 2815 2816 2817 2818
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2819
			spin_lock_irq(&sh->stripe_lock);
2820 2821
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
2822
			spin_unlock_irq(&sh->stripe_lock);
2823 2824
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
2825
			while (bi && bi->bi_iter.bi_sector <
2826 2827 2828 2829
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2830
				if (!raid5_dec_bi_active_stripes(bi)) {
2831 2832 2833 2834 2835 2836 2837 2838 2839
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2840 2841 2842 2843
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2844 2845
	}

2846 2847 2848
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2849 2850
}

2851
static void
2852
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2853 2854 2855 2856 2857 2858
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
2859 2860
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
2861
	s->syncing = 0;
2862
	s->replacing = 0;
2863
	/* There is nothing more to do for sync/check/repair.
2864 2865 2866
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2867
	 * For recover/replace we need to record a bad block on all
2868 2869
	 * non-sync devices, or abort the recovery
	 */
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2893
	}
2894
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2895 2896
}

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2913
/* fetch_block - checks the given member device to see if its data needs
2914 2915 2916
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2917
 * 0 to tell the loop in handle_stripe_fill to continue
2918
 */
2919 2920 2921

static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
			   int disk_idx, int disks)
2922
{
2923
	struct r5dev *dev = &sh->dev[disk_idx];
2924 2925
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2926
	int i;
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

	if (test_bit(R5_LOCKED, &dev->flags) ||
	    test_bit(R5_UPTODATE, &dev->flags))
		/* No point reading this as we already have it or have
		 * decided to get it.
		 */
		return 0;

	if (dev->toread ||
	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
		/* We need this block to directly satisfy a request */
		return 1;

	if (s->syncing || s->expanding ||
	    (s->replacing && want_replace(sh, disk_idx)))
		/* When syncing, or expanding we read everything.
		 * When replacing, we need the replaced block.
		 */
		return 1;

	if ((s->failed >= 1 && fdev[0]->toread) ||
	    (s->failed >= 2 && fdev[1]->toread))
		/* If we want to read from a failed device, then
		 * we need to actually read every other device.
		 */
		return 1;

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	/* Sometimes neither read-modify-write nor reconstruct-write
	 * cycles can work.  In those cases we read every block we
	 * can.  Then the parity-update is certain to have enough to
	 * work with.
	 * This can only be a problem when we need to write something,
	 * and some device has failed.  If either of those tests
	 * fail we need look no further.
	 */
	if (!s->failed || !s->to_write)
		return 0;

	if (test_bit(R5_Insync, &dev->flags) &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		/* Pre-reads at not permitted until after short delay
		 * to gather multiple requests.  However if this
		 * device is no Insync, the block could only be be computed
		 * and there is no need to delay that.
		 */
		return 0;
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

	for (i = 0; i < s->failed; i++) {
		if (fdev[i]->towrite &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			/* If we have a partial write to a failed
			 * device, then we will need to reconstruct
			 * the content of that device, so all other
			 * devices must be read.
			 */
			return 1;
	}

	/* If we are forced to do a reconstruct-write, either because
	 * the current RAID6 implementation only supports that, or
	 * or because parity cannot be trusted and we are currently
	 * recovering it, there is extra need to be careful.
	 * If one of the devices that we would need to read, because
	 * it is not being overwritten (and maybe not written at all)
	 * is missing/faulty, then we need to read everything we can.
	 */
	if (sh->raid_conf->level != 6 &&
	    sh->sector < sh->raid_conf->mddev->recovery_cp)
		/* reconstruct-write isn't being forced */
		return 0;
	for (i = 0; i < s->failed; i++) {
		if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			return 1;
	}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	return 0;
}

static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
{
	struct r5dev *dev = &sh->dev[disk_idx];

	/* is the data in this block needed, and can we get it? */
	if (need_this_block(sh, s, disk_idx, disks)) {
3015 3016 3017 3018 3019 3020
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
3021 3022
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
3023 3024
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
3025
			 */
3026 3027 3028 3029 3030 3031 3032 3033
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
3034 3035 3036 3037 3038 3039
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
3053
			}
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
3073 3074
		}
	}
3075 3076 3077 3078 3079

	return 0;
}

/**
3080
 * handle_stripe_fill - read or compute data to satisfy pending requests.
3081
 */
3082 3083 3084
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
3095
			if (fetch_block(sh, s, i, disks))
3096
				break;
3097 3098 3099
	set_bit(STRIPE_HANDLE, &sh->state);
}

3100
/* handle_stripe_clean_event
3101 3102 3103 3104
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
3105
static void handle_stripe_clean_event(struct r5conf *conf,
3106 3107 3108 3109
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;
3110
	int discard_pending = 0;
3111 3112 3113 3114 3115

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
3116
			    (test_bit(R5_UPTODATE, &dev->flags) ||
3117 3118
			     test_bit(R5_Discard, &dev->flags) ||
			     test_bit(R5_SkipCopy, &dev->flags))) {
3119 3120
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
3121
				pr_debug("Return write for disc %d\n", i);
3122 3123
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
3124 3125 3126 3127
				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
					dev->page = dev->orig_page;
				}
3128 3129
				wbi = dev->written;
				dev->written = NULL;
3130
				while (wbi && wbi->bi_iter.bi_sector <
3131 3132
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
3133
					if (!raid5_dec_bi_active_stripes(wbi)) {
3134 3135 3136 3137 3138 3139
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
3140 3141
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
3142
					 !test_bit(STRIPE_DEGRADED, &sh->state),
3143
						0);
3144 3145
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
3146 3147
			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
			WARN_ON(dev->page != dev->orig_page);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
3159 3160 3161 3162 3163 3164 3165 3166
		/*
		 * SCSI discard will change some bio fields and the stripe has
		 * no updated data, so remove it from hash list and the stripe
		 * will be reinitialized
		 */
		spin_lock_irq(&conf->device_lock);
		remove_hash(sh);
		spin_unlock_irq(&conf->device_lock);
3167 3168 3169 3170
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
3171 3172 3173 3174

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3175 3176
}

3177
static void handle_stripe_dirtying(struct r5conf *conf,
3178 3179 3180
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
3181 3182
{
	int rmw = 0, rcw = 0, i;
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	sector_t recovery_cp = conf->mddev->recovery_cp;

	/* RAID6 requires 'rcw' in current implementation.
	 * Otherwise, check whether resync is now happening or should start.
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
	if (conf->max_degraded == 2 ||
3194 3195
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
	     s->failed == 0)) {
3196
		/* Calculate the real rcw later - for now make it
3197 3198 3199
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
3200 3201 3202
		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->max_degraded, (unsigned long long)recovery_cp,
			 (unsigned long long)sh->sector);
3203
	} else for (i = disks; i--; ) {
3204 3205 3206 3207
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
3208 3209
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
3210 3211 3212 3213 3214 3215 3216 3217
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
3218 3219
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
3220 3221
			if (test_bit(R5_Insync, &dev->flags))
				rcw++;
3222 3223 3224 3225
			else
				rcw += 2*disks;
		}
	}
3226
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3227 3228
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
N
NeilBrown 已提交
3229
	if (rmw < rcw && rmw > 0) {
3230
		/* prefer read-modify-write, but need to get some data */
3231 3232 3233 3234
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
3235 3236 3237 3238
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
3239 3240
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
3241
			    test_bit(R5_Insync, &dev->flags)) {
3242 3243 3244 3245
				if (test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
					pr_debug("Read_old block %d for r-m-w\n",
						 i);
3246 3247 3248 3249 3250 3251 3252 3253 3254
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
3255
	}
3256
	if (rcw <= rmw && rcw > 0) {
3257
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
3258
		int qread =0;
3259
		rcw = 0;
3260 3261 3262
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3263
			    i != sh->pd_idx && i != sh->qd_idx &&
3264
			    !test_bit(R5_LOCKED, &dev->flags) &&
3265
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3266 3267
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
3268 3269 3270
				if (test_bit(R5_Insync, &dev->flags) &&
				    test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
3271
					pr_debug("Read_old block "
3272 3273 3274 3275
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
3276
					qread++;
3277 3278 3279 3280 3281 3282
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
3283
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
3284 3285 3286
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3287
	}
3288 3289 3290 3291 3292

	if (rcw > disks && rmw > disks &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		set_bit(STRIPE_DELAYED, &sh->state);

3293 3294 3295
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
3296 3297
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
3298 3299
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
3300 3301 3302
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
3303 3304 3305
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3306
		schedule_reconstruction(sh, s, rcw == 0, 0);
3307 3308
}

3309
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3310 3311
				struct stripe_head_state *s, int disks)
{
3312
	struct r5dev *dev = NULL;
3313

3314
	set_bit(STRIPE_HANDLE, &sh->state);
3315

3316 3317 3318
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
3319 3320
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
3321 3322
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3323 3324
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
3325
			break;
3326
		}
3327
		dev = &sh->dev[s->failed_num[0]];
3328 3329 3330 3331 3332 3333 3334 3335 3336
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
3337

3338 3339 3340 3341 3342
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
3343
		s->locked++;
3344
		set_bit(R5_Wantwrite, &dev->flags);
3345

3346 3347
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
3364
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3365 3366 3367 3368 3369
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
3370
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3371 3372 3373 3374 3375
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3376
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3377 3378 3379 3380
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3381
				sh->ops.target2 = -1;
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3393 3394 3395
	}
}

3396
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3397
				  struct stripe_head_state *s,
3398
				  int disks)
3399 3400
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3401
	int qd_idx = sh->qd_idx;
3402
	struct r5dev *dev;
3403 3404 3405 3406

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3407

3408 3409 3410 3411 3412 3413
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3414 3415 3416
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3417
		if (s->failed == s->q_failed) {
3418
			/* The only possible failed device holds Q, so it
3419 3420 3421
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3422
			sh->check_state = check_state_run;
3423
		}
3424
		if (!s->q_failed && s->failed < 2) {
3425
			/* Q is not failed, and we didn't use it to generate
3426 3427
			 * anything, so it makes sense to check it
			 */
3428 3429 3430 3431
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3432 3433
		}

3434 3435
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3436

3437 3438 3439 3440
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3441
		}
3442 3443 3444 3445 3446 3447 3448
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3449 3450
		}

3451 3452 3453 3454 3455
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3456

3457 3458 3459
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3460 3461

		/* now write out any block on a failed drive,
3462
		 * or P or Q if they were recomputed
3463
		 */
3464
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3465
		if (s->failed == 2) {
3466
			dev = &sh->dev[s->failed_num[1]];
3467 3468 3469 3470 3471
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3472
			dev = &sh->dev[s->failed_num[0]];
3473 3474 3475 3476
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3477
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3478 3479 3480 3481 3482
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3483
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3484 3485 3486 3487 3488 3489 3490 3491
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3521
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3556 3557 3558
	}
}

3559
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3560 3561 3562 3563 3564 3565
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3566
	struct dma_async_tx_descriptor *tx = NULL;
3567 3568
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3569
		if (i != sh->pd_idx && i != sh->qd_idx) {
3570
			int dd_idx, j;
3571
			struct stripe_head *sh2;
3572
			struct async_submit_ctl submit;
3573

3574
			sector_t bn = compute_blocknr(sh, i, 1);
3575 3576
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3577
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3590 3591

			/* place all the copies on one channel */
3592
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3593
			tx = async_memcpy(sh2->dev[dd_idx].page,
3594
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3595
					  &submit);
3596

3597 3598 3599 3600
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3601
				    j != sh2->qd_idx &&
3602 3603 3604 3605 3606 3607 3608
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3609

3610
		}
3611
	/* done submitting copies, wait for them to complete */
3612
	async_tx_quiesce(&tx);
3613
}
L
Linus Torvalds 已提交
3614 3615 3616 3617

/*
 * handle_stripe - do things to a stripe.
 *
3618 3619
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3620
 * Possible results:
3621 3622
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3623 3624 3625 3626 3627
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3628

3629
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3630
{
3631
	struct r5conf *conf = sh->raid_conf;
3632
	int disks = sh->disks;
3633 3634
	struct r5dev *dev;
	int i;
3635
	int do_recovery = 0;
L
Linus Torvalds 已提交
3636

3637 3638 3639 3640 3641 3642
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3643

3644
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3645
	rcu_read_lock();
3646
	for (i=disks; i--; ) {
3647
		struct md_rdev *rdev;
3648 3649 3650
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3651

3652
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3653

3654
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3655 3656
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3657 3658 3659 3660 3661 3662 3663 3664
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3665

3666
		/* now count some things */
3667 3668 3669 3670
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3671
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3672 3673
			s->compute++;
			BUG_ON(s->compute > 2);
3674
		}
L
Linus Torvalds 已提交
3675

3676
		if (test_bit(R5_Wantfill, &dev->flags))
3677
			s->to_fill++;
3678
		else if (dev->toread)
3679
			s->to_read++;
3680
		if (dev->towrite) {
3681
			s->to_write++;
3682
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3683
				s->non_overwrite++;
3684
		}
3685
		if (dev->written)
3686
			s->written++;
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3697 3698
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3699 3700 3701
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3702 3703
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3716
		}
3717 3718 3719
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3720 3721
		else if (is_bad) {
			/* also not in-sync */
3722 3723
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3724 3725 3726 3727 3728 3729 3730
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3731
			set_bit(R5_Insync, &dev->flags);
3732
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3733
			/* in sync if before recovery_offset */
3734 3735 3736 3737 3738 3739 3740 3741 3742
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

3743
		if (test_bit(R5_WriteError, &dev->flags)) {
3744 3745 3746 3747 3748 3749 3750
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3751
				s->handle_bad_blocks = 1;
3752
				atomic_inc(&rdev2->nr_pending);
3753 3754 3755
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
3756
		if (test_bit(R5_MadeGood, &dev->flags)) {
3757 3758 3759 3760 3761
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3762
				s->handle_bad_blocks = 1;
3763
				atomic_inc(&rdev2->nr_pending);
3764 3765 3766
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3767 3768 3769 3770 3771 3772 3773 3774 3775
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3776
		if (!test_bit(R5_Insync, &dev->flags)) {
3777 3778 3779
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3780
		}
3781 3782 3783
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3784 3785 3786
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3787 3788
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3789
		}
L
Linus Torvalds 已提交
3790
	}
3791 3792 3793 3794
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3795
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3796 3797 3798 3799 3800
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3801 3802
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3803 3804 3805 3806
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3807
	rcu_read_unlock();
3808 3809 3810 3811 3812
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3813
	struct r5conf *conf = sh->raid_conf;
3814
	int i;
3815 3816
	int prexor;
	int disks = sh->disks;
3817
	struct r5dev *pdev, *qdev;
3818 3819

	clear_bit(STRIPE_HANDLE, &sh->state);
3820
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3821 3822 3823 3824 3825 3826
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

3827 3828 3829 3830 3831 3832 3833
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
3834
			clear_bit(STRIPE_REPLACED, &sh->state);
3835 3836
		}
		spin_unlock(&sh->stripe_lock);
3837 3838 3839 3840 3841 3842 3843 3844
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3845

3846
	analyse_stripe(sh, &s);
3847

3848 3849 3850 3851 3852
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3853 3854
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3855
		    s.replacing || s.to_write || s.written) {
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3876 3877 3878 3879 3880
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3881
		if (s.syncing + s.replacing)
3882 3883
			handle_failed_sync(conf, sh, &s);
	}
3884

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
3898 3899
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3900
		BUG_ON(sh->qd_idx >= 0 &&
3901 3902
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3903 3904 3905 3906 3907 3908 3909 3910 3911
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
3912 3913
				if (s.failed > 1)
					continue;
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3981

3982 3983 3984
	if ((s.replacing || s.syncing) && s.locked == 0
	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3985 3986
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
3987 3988
			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3989 3990 3991 3992
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
3993 3994 3995
		if (s.replacing)
			set_bit(STRIPE_INSYNC, &sh->state);
		set_bit(STRIPE_REPLACED, &sh->state);
3996 3997
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
3998
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3999
	    test_bit(STRIPE_INSYNC, &sh->state)) {
4000 4001
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
4002 4003
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
4057

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
4074

4075
finish:
4076
	/* wait for this device to become unblocked */
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
4089

4090 4091
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
4092
			struct md_rdev *rdev;
4093 4094 4095 4096 4097 4098 4099 4100 4101
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
4102 4103 4104
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
4105
						     STRIPE_SECTORS, 0);
4106 4107
				rdev_dec_pending(rdev, conf->mddev);
			}
4108 4109
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
4110 4111 4112
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
4113
				rdev_clear_badblocks(rdev, sh->sector,
4114
						     STRIPE_SECTORS, 0);
4115 4116
				rdev_dec_pending(rdev, conf->mddev);
			}
4117 4118
		}

4119 4120 4121
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
4122
	ops_run_io(sh, &s);
4123

4124
	if (s.dec_preread_active) {
4125
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
4126
		 * is waiting on a flush, it won't continue until the writes
4127 4128 4129 4130 4131 4132 4133 4134
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

4135
	return_io(s.return_bi);
4136

4137
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4138 4139
}

4140
static void raid5_activate_delayed(struct r5conf *conf)
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4151
			list_add_tail(&sh->lru, &conf->hold_list);
4152
			raid5_wakeup_stripe_thread(sh);
4153
		}
N
NeilBrown 已提交
4154
	}
4155 4156
}

4157 4158
static void activate_bit_delay(struct r5conf *conf,
	struct list_head *temp_inactive_list)
4159 4160 4161 4162 4163 4164 4165
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4166
		int hash;
4167 4168
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
4169 4170
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4171 4172 4173
	}
}

4174
static int raid5_congested(struct mddev *mddev, int bits)
4175
{
4176
	struct r5conf *conf = mddev->private;
4177 4178 4179 4180

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
4181

4182 4183 4184 4185
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
4186
	if (atomic_read(&conf->empty_inactive_list_nr))
4187 4188 4189 4190 4191
		return 1;

	return 0;
}

4192 4193 4194
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
4195
static int raid5_mergeable_bvec(struct mddev *mddev,
4196 4197
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
4198
{
4199
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4200
	int max;
4201
	unsigned int chunk_sectors = mddev->chunk_sectors;
4202
	unsigned int bio_sectors = bvm->bi_size >> 9;
4203

4204
	if ((bvm->bi_rw & 1) == WRITE)
4205 4206
		return biovec->bv_len; /* always allow writes to be mergeable */

4207 4208
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
4209 4210 4211 4212 4213 4214 4215 4216
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

4217
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4218
{
4219
	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4220
	unsigned int chunk_sectors = mddev->chunk_sectors;
4221
	unsigned int bio_sectors = bio_sectors(bio);
4222

4223 4224
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
4225 4226 4227 4228
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

4229 4230 4231 4232
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
4233
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}

4246
static struct bio *remove_bio_from_retry(struct r5conf *conf)
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
4257
		conf->retry_read_aligned_list = bi->bi_next;
4258
		bi->bi_next = NULL;
4259 4260 4261 4262
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
4263
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4264 4265 4266 4267 4268
	}

	return bi;
}

4269 4270 4271 4272 4273 4274
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
4275
static void raid5_align_endio(struct bio *bi, int error)
4276 4277
{
	struct bio* raid_bi  = bi->bi_private;
4278
	struct mddev *mddev;
4279
	struct r5conf *conf;
4280
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4281
	struct md_rdev *rdev;
4282

4283
	bio_put(bi);
4284 4285 4286

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
4287 4288
	mddev = rdev->mddev;
	conf = mddev->private;
4289 4290 4291 4292

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
4293 4294
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
4295
		bio_endio(raid_bi, 0);
4296 4297
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
4298
		return;
4299 4300
	}

4301
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4302 4303

	add_bio_to_retry(raid_bi, conf);
4304 4305
}

4306 4307
static int bio_fits_rdev(struct bio *bi)
{
4308
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4309

4310
	if (bio_sectors(bi) > queue_max_sectors(q))
4311 4312
		return 0;
	blk_recount_segments(q, bi);
4313
	if (bi->bi_phys_segments > queue_max_segments(q))
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}

4325
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4326
{
4327
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4328
	int dd_idx;
4329
	struct bio* align_bi;
4330
	struct md_rdev *rdev;
4331
	sector_t end_sector;
4332 4333

	if (!in_chunk_boundary(mddev, raid_bio)) {
4334
		pr_debug("chunk_aligned_read : non aligned\n");
4335 4336 4337
		return 0;
	}
	/*
4338
	 * use bio_clone_mddev to make a copy of the bio
4339
	 */
4340
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
4352 4353 4354
	align_bi->bi_iter.bi_sector =
		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
				     0, &dd_idx, NULL);
4355

K
Kent Overstreet 已提交
4356
	end_sector = bio_end_sector(align_bi);
4357
	rcu_read_lock();
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4369 4370 4371
		sector_t first_bad;
		int bad_sectors;

4372 4373
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4374 4375
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
4376
		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4377

4378
		if (!bio_fits_rdev(align_bi) ||
4379 4380
		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
				bio_sectors(align_bi),
4381 4382
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4383 4384 4385 4386 4387
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4388
		/* No reshape active, so we can trust rdev->data_offset */
4389
		align_bi->bi_iter.bi_sector += rdev->data_offset;
4390

4391 4392 4393
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
4394
				    conf->device_lock);
4395 4396 4397
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4398 4399 4400
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
4401
					      raid_bio->bi_iter.bi_sector);
4402 4403 4404 4405
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4406
		bio_put(align_bi);
4407 4408 4409 4410
		return 0;
	}
}

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4421
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4422
{
4423 4424
	struct stripe_head *sh = NULL, *tmp;
	struct list_head *handle_list = NULL;
4425
	struct r5worker_group *wg = NULL;
4426 4427 4428 4429 4430

	if (conf->worker_cnt_per_group == 0) {
		handle_list = &conf->handle_list;
	} else if (group != ANY_GROUP) {
		handle_list = &conf->worker_groups[group].handle_list;
4431
		wg = &conf->worker_groups[group];
4432 4433 4434 4435
	} else {
		int i;
		for (i = 0; i < conf->group_cnt; i++) {
			handle_list = &conf->worker_groups[i].handle_list;
4436
			wg = &conf->worker_groups[i];
4437 4438 4439 4440
			if (!list_empty(handle_list))
				break;
		}
	}
4441 4442 4443

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
4444
		  list_empty(handle_list) ? "empty" : "busy",
4445 4446 4447
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

4448 4449
	if (!list_empty(handle_list)) {
		sh = list_entry(handle_list->next, typeof(*sh), lru);
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482

		list_for_each_entry(tmp, &conf->hold_list,  lru) {
			if (conf->worker_cnt_per_group == 0 ||
			    group == ANY_GROUP ||
			    !cpu_online(tmp->cpu) ||
			    cpu_to_group(tmp->cpu) == group) {
				sh = tmp;
				break;
			}
		}

		if (sh) {
			conf->bypass_count -= conf->bypass_threshold;
			if (conf->bypass_count < 0)
				conf->bypass_count = 0;
		}
4483
		wg = NULL;
4484 4485 4486
	}

	if (!sh)
4487 4488
		return NULL;

4489 4490 4491 4492
	if (wg) {
		wg->stripes_cnt--;
		sh->group = NULL;
	}
4493
	list_del_init(&sh->lru);
4494
	BUG_ON(atomic_inc_return(&sh->count) != 1);
4495 4496
	return sh;
}
4497

4498 4499 4500
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
4501
	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4502 4503 4504 4505 4506 4507 4508 4509 4510
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4511
	int cnt = 0;
4512
	int hash;
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
4524
			smp_mb__before_atomic();
4525
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
S
Shaohua Li 已提交
4526 4527 4528 4529
			/*
			 * STRIPE_ON_RELEASE_LIST could be set here. In that
			 * case, the count is always > 1 here
			 */
4530 4531
			hash = sh->hash_lock_index;
			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
N
NeilBrown 已提交
4532
			cnt++;
4533 4534 4535
		}
		spin_unlock_irq(&conf->device_lock);
	}
4536 4537
	release_inactive_stripe_list(conf, cb->temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);
4538 4539
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

4558 4559
	if (cb->list.next == NULL) {
		int i;
4560
		INIT_LIST_HEAD(&cb->list);
4561 4562 4563
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			INIT_LIST_HEAD(cb->temp_inactive_list + i);
	}
4564 4565 4566 4567 4568 4569 4570

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

4583 4584
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
S
Shaohua Li 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
4606 4607 4608 4609 4610 4611 4612
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
4625
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
		finish_wait(&conf->wait_for_overlap, &w);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

4661
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
4662
{
4663
	struct r5conf *conf = mddev->private;
4664
	int dd_idx;
L
Linus Torvalds 已提交
4665 4666 4667
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
4668
	const int rw = bio_data_dir(bi);
4669
	int remaining;
4670 4671
	DEFINE_WAIT(w);
	bool do_prepare;
L
Linus Torvalds 已提交
4672

T
Tejun Heo 已提交
4673 4674
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4675
		return;
4676 4677
	}

4678
	md_write_start(mddev, bi);
4679

4680
	if (rw == READ &&
4681
	     mddev->reshape_position == MaxSector &&
4682
	     chunk_aligned_read(mddev,bi))
4683
		return;
4684

S
Shaohua Li 已提交
4685 4686 4687 4688 4689
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

4690
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
K
Kent Overstreet 已提交
4691
	last_sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
4692 4693
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4694

4695
	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4696
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4697
		int previous;
4698
		int seq;
4699

4700
		do_prepare = false;
4701
	retry:
4702
		seq = read_seqcount_begin(&conf->gen_lock);
4703
		previous = 0;
4704 4705 4706
		if (do_prepare)
			prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
4707
		if (unlikely(conf->reshape_progress != MaxSector)) {
4708
			/* spinlock is needed as reshape_progress may be
4709 4710
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4711
			 * Of course reshape_progress could change after
4712 4713 4714 4715
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4716
			spin_lock_irq(&conf->device_lock);
4717
			if (mddev->reshape_backwards
4718 4719
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4720 4721
				previous = 1;
			} else {
4722
				if (mddev->reshape_backwards
4723 4724
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4725 4726
					spin_unlock_irq(&conf->device_lock);
					schedule();
4727
					do_prepare = true;
4728 4729 4730
					goto retry;
				}
			}
4731 4732
			spin_unlock_irq(&conf->device_lock);
		}
4733

4734 4735
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4736
						  &dd_idx, NULL);
4737
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4738
			(unsigned long long)new_sector,
L
Linus Torvalds 已提交
4739 4740
			(unsigned long long)logical_sector);

4741
		sh = get_active_stripe(conf, new_sector, previous,
4742
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4743
		if (sh) {
4744
			if (unlikely(previous)) {
4745
				/* expansion might have moved on while waiting for a
4746 4747 4748 4749 4750 4751
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4752 4753 4754
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4755
				if (mddev->reshape_backwards
4756 4757
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4758 4759 4760 4761 4762
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4763
					schedule();
4764
					do_prepare = true;
4765 4766 4767
					goto retry;
				}
			}
4768 4769 4770 4771 4772 4773 4774
			if (read_seqcount_retry(&conf->gen_lock, seq)) {
				/* Might have got the wrong stripe_head
				 * by accident
				 */
				release_stripe(sh);
				goto retry;
			}
4775

4776
			if (rw == WRITE &&
4777
			    logical_sector >= mddev->suspend_lo &&
4778 4779
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4780 4781 4782 4783 4784 4785 4786 4787
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
4788
				    logical_sector < mddev->suspend_hi) {
4789
					schedule();
4790 4791
					do_prepare = true;
				}
4792 4793
				goto retry;
			}
4794 4795

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4796
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4797 4798
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4799 4800
				 * and wait a while
				 */
N
NeilBrown 已提交
4801
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4802 4803
				release_stripe(sh);
				schedule();
4804
				do_prepare = true;
L
Linus Torvalds 已提交
4805 4806
				goto retry;
			}
4807 4808
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4809
			if ((bi->bi_rw & REQ_SYNC) &&
4810 4811
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4812
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			break;
		}
	}
4819
	finish_wait(&conf->wait_for_overlap, &w);
4820

4821
	remaining = raid5_dec_bi_active_stripes(bi);
4822
	if (remaining == 0) {
L
Linus Torvalds 已提交
4823

4824
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4825
			md_write_end(mddev);
4826

4827 4828
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
4829
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4830 4831 4832
	}
}

4833
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4834

4835
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4836
{
4837 4838 4839 4840 4841 4842 4843 4844 4845
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4846
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4847
	struct stripe_head *sh;
4848
	sector_t first_sector, last_sector;
4849 4850 4851
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4852 4853
	int i;
	int dd_idx;
4854
	sector_t writepos, readpos, safepos;
4855
	sector_t stripe_addr;
4856
	int reshape_sectors;
4857
	struct list_head stripes;
4858

4859 4860
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4861
		if (mddev->reshape_backwards &&
4862 4863 4864
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4865
		} else if (!mddev->reshape_backwards &&
4866 4867
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4868
		sector_div(sector_nr, new_data_disks);
4869
		if (sector_nr) {
4870 4871
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4872 4873 4874
			*skipped = 1;
			return sector_nr;
		}
4875 4876
	}

4877 4878 4879 4880
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4881 4882
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4883
	else
4884
		reshape_sectors = mddev->chunk_sectors;
4885

4886 4887 4888 4889 4890
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4891
	 */
4892
	writepos = conf->reshape_progress;
4893
	sector_div(writepos, new_data_disks);
4894 4895
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4896
	safepos = conf->reshape_safe;
4897
	sector_div(safepos, data_disks);
4898
	if (mddev->reshape_backwards) {
4899
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4900
		readpos += reshape_sectors;
4901
		safepos += reshape_sectors;
4902
	} else {
4903
		writepos += reshape_sectors;
4904 4905
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4906
	}
4907

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4923 4924 4925 4926
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4927 4928 4929 4930
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4943 4944 4945 4946 4947 4948
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4949
	if ((mddev->reshape_backwards
4950 4951 4952
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4953 4954
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
4955 4956 4957 4958
			   atomic_read(&conf->reshape_stripes)==0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			return 0;
4959
		mddev->reshape_position = conf->reshape_progress;
4960
		mddev->curr_resync_completed = sector_nr;
4961
		conf->reshape_checkpoint = jiffies;
4962
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4963
		md_wakeup_thread(mddev->thread);
4964
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4965 4966 4967
			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			return 0;
4968
		spin_lock_irq(&conf->device_lock);
4969
		conf->reshape_safe = mddev->reshape_position;
4970 4971
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4972
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4973 4974
	}

4975
	INIT_LIST_HEAD(&stripes);
4976
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4977
		int j;
4978
		int skipped_disk = 0;
4979
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4980 4981 4982 4983 4984 4985 4986 4987 4988
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4989
			if (conf->level == 6 &&
4990
			    j == sh->qd_idx)
4991
				continue;
4992
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4993
			if (s < raid5_size(mddev, 0, 0)) {
4994
				skipped_disk = 1;
4995 4996 4997 4998 4999 5000
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
5001
		if (!skipped_disk) {
5002 5003 5004
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
5005
		list_add(&sh->lru, &stripes);
5006 5007
	}
	spin_lock_irq(&conf->device_lock);
5008
	if (mddev->reshape_backwards)
5009
		conf->reshape_progress -= reshape_sectors * new_data_disks;
5010
	else
5011
		conf->reshape_progress += reshape_sectors * new_data_disks;
5012 5013 5014 5015 5016 5017 5018
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
5019
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5020
				     1, &dd_idx, NULL);
5021
	last_sector =
5022
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5023
					    * new_data_disks - 1),
5024
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
5025 5026
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
5027
	while (first_sector <= last_sector) {
5028
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5029 5030 5031 5032 5033
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
5034 5035 5036 5037 5038 5039 5040 5041
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
5042 5043 5044
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
5045
	sector_nr += reshape_sectors;
5046 5047
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
5048 5049
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5050 5051 5052 5053
			   atomic_read(&conf->reshape_stripes) == 0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			goto ret;
5054
		mddev->reshape_position = conf->reshape_progress;
5055
		mddev->curr_resync_completed = sector_nr;
5056
		conf->reshape_checkpoint = jiffies;
5057 5058 5059 5060
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5061 5062 5063
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			goto ret;
5064
		spin_lock_irq(&conf->device_lock);
5065
		conf->reshape_safe = mddev->reshape_position;
5066 5067
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5068
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5069
	}
5070
ret:
5071
	return reshape_sectors;
5072 5073
}

5074
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5075
{
5076
	struct r5conf *conf = mddev->private;
5077
	struct stripe_head *sh;
A
Andre Noll 已提交
5078
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
5079
	sector_t sync_blocks;
5080 5081
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
5082

5083
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
5084
		/* just being told to finish up .. nothing much to do */
5085

5086 5087 5088 5089
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
5090 5091 5092 5093

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
5094
		else /* completed sync */
5095 5096 5097
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
5098 5099
		return 0;
	}
5100

5101 5102 5103
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

5104 5105
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
5106

5107 5108 5109 5110 5111 5112
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

5113
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
5114 5115 5116
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
5117
	if (mddev->degraded >= conf->max_degraded &&
5118
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
5119
		sector_t rv = mddev->dev_sectors - sector_nr;
5120
		*skipped = 1;
L
Linus Torvalds 已提交
5121 5122
		return rv;
	}
5123 5124 5125 5126
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
5127 5128 5129 5130 5131
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
5132

N
NeilBrown 已提交
5133 5134
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

5135
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
5136
	if (sh == NULL) {
5137
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
5138
		/* make sure we don't swamp the stripe cache if someone else
5139
		 * is trying to get access
L
Linus Torvalds 已提交
5140
		 */
5141
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
5142
	}
5143
	/* Need to check if array will still be degraded after recovery/resync
5144 5145
	 * Note in case of > 1 drive failures it's possible we're rebuilding
	 * one drive while leaving another faulty drive in array.
5146
	 */
5147 5148 5149 5150 5151
	rcu_read_lock();
	for (i = 0; i < conf->raid_disks; i++) {
		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);

		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5152
			still_degraded = 1;
5153 5154
	}
	rcu_read_unlock();
5155 5156 5157

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

5158
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5159
	set_bit(STRIPE_HANDLE, &sh->state);
L
Linus Torvalds 已提交
5160 5161 5162 5163 5164 5165

	release_stripe(sh);

	return STRIPE_SECTORS;
}

5166
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
5179
	int dd_idx;
5180 5181 5182 5183 5184
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

5185 5186
	logical_sector = raid_bio->bi_iter.bi_sector &
		~((sector_t)STRIPE_SECTORS-1);
5187
	sector = raid5_compute_sector(conf, logical_sector,
5188
				      0, &dd_idx, NULL);
K
Kent Overstreet 已提交
5189
	last_sector = bio_end_sector(raid_bio);
5190 5191

	for (; logical_sector < last_sector;
5192 5193 5194
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
5195

5196
		if (scnt < raid5_bi_processed_stripes(raid_bio))
5197 5198 5199
			/* already done this stripe */
			continue;

5200
		sh = get_active_stripe(conf, sector, 0, 1, 1);
5201 5202 5203

		if (!sh) {
			/* failed to get a stripe - must wait */
5204
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5205 5206 5207 5208
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5209 5210
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
5211
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5212 5213 5214 5215
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5216
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5217
		handle_stripe(sh);
5218 5219 5220
		release_stripe(sh);
		handled++;
	}
5221
	remaining = raid5_dec_bi_active_stripes(raid_bio);
5222 5223 5224
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
5225
		bio_endio(raid_bio, 0);
5226
	}
5227 5228 5229 5230 5231
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

5232
static int handle_active_stripes(struct r5conf *conf, int group,
5233 5234
				 struct r5worker *worker,
				 struct list_head *temp_inactive_list)
5235 5236
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5237 5238
	int i, batch_size = 0, hash;
	bool release_inactive = false;
5239 5240

	while (batch_size < MAX_STRIPE_BATCH &&
5241
			(sh = __get_priority_stripe(conf, group)) != NULL)
5242 5243
		batch[batch_size++] = sh;

5244 5245 5246 5247 5248 5249 5250 5251
	if (batch_size == 0) {
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			if (!list_empty(temp_inactive_list + i))
				break;
		if (i == NR_STRIPE_HASH_LOCKS)
			return batch_size;
		release_inactive = true;
	}
5252 5253
	spin_unlock_irq(&conf->device_lock);

5254 5255 5256 5257 5258 5259 5260 5261
	release_inactive_stripe_list(conf, temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);

	if (release_inactive) {
		spin_lock_irq(&conf->device_lock);
		return 0;
	}

5262 5263 5264 5265 5266 5267
	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
5268 5269 5270 5271
	for (i = 0; i < batch_size; i++) {
		hash = batch[i]->hash_lock_index;
		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
	}
5272 5273
	return batch_size;
}
5274

5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
static void raid5_do_work(struct work_struct *work)
{
	struct r5worker *worker = container_of(work, struct r5worker, work);
	struct r5worker_group *group = worker->group;
	struct r5conf *conf = group->conf;
	int group_id = group - conf->worker_groups;
	int handled;
	struct blk_plug plug;

	pr_debug("+++ raid5worker active\n");

	blk_start_plug(&plug);
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
		int batch_size, released;

5292
		released = release_stripe_list(conf, worker->temp_inactive_list);
5293

5294 5295
		batch_size = handle_active_stripes(conf, group_id, worker,
						   worker->temp_inactive_list);
5296
		worker->working = false;
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		if (!batch_size && !released)
			break;
		handled += batch_size;
	}
	pr_debug("%d stripes handled\n", handled);

	spin_unlock_irq(&conf->device_lock);
	blk_finish_plug(&plug);

	pr_debug("--- raid5worker inactive\n");
}

L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
5316
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
5317
{
S
Shaohua Li 已提交
5318
	struct mddev *mddev = thread->mddev;
5319
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5320
	int handled;
5321
	struct blk_plug plug;
L
Linus Torvalds 已提交
5322

5323
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
5324 5325 5326

	md_check_recovery(mddev);

5327
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
5328 5329 5330
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
5331
		struct bio *bio;
S
Shaohua Li 已提交
5332 5333
		int batch_size, released;

5334
		released = release_stripe_list(conf, conf->temp_inactive_list);
L
Linus Torvalds 已提交
5335

5336
		if (
5337 5338 5339
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
5340
			spin_unlock_irq(&conf->device_lock);
5341
			bitmap_unplug(mddev->bitmap);
5342
			spin_lock_irq(&conf->device_lock);
5343
			conf->seq_write = conf->seq_flush;
5344
			activate_bit_delay(conf, conf->temp_inactive_list);
5345
		}
5346
		raid5_activate_delayed(conf);
5347

5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

5358 5359
		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
						   conf->temp_inactive_list);
S
Shaohua Li 已提交
5360
		if (!batch_size && !released)
L
Linus Torvalds 已提交
5361
			break;
5362
		handled += batch_size;
L
Linus Torvalds 已提交
5363

5364 5365
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
5366
			md_check_recovery(mddev);
5367 5368
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
5369
	}
5370
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
5371 5372 5373

	spin_unlock_irq(&conf->device_lock);

5374
	async_tx_issue_pending_all();
5375
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
5376

5377
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
5378 5379
}

5380
static ssize_t
5381
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5382
{
5383 5384 5385 5386
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5387
	if (conf)
5388 5389 5390
		ret = sprintf(page, "%d\n", conf->max_nr_stripes);
	spin_unlock(&mddev->lock);
	return ret;
5391 5392
}

5393
int
5394
raid5_set_cache_size(struct mddev *mddev, int size)
5395
{
5396
	struct r5conf *conf = mddev->private;
5397
	int err;
5398
	int hash;
5399

5400
	if (size <= 16 || size > 32768)
5401
		return -EINVAL;
5402
	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5403
	while (size < conf->max_nr_stripes) {
5404
		if (drop_one_stripe(conf, hash))
5405 5406 5407
			conf->max_nr_stripes--;
		else
			break;
5408 5409 5410
		hash--;
		if (hash < 0)
			hash = NR_STRIPE_HASH_LOCKS - 1;
5411
	}
5412 5413 5414
	err = md_allow_write(mddev);
	if (err)
		return err;
5415
	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5416
	while (size > conf->max_nr_stripes) {
5417
		if (grow_one_stripe(conf, hash))
5418 5419
			conf->max_nr_stripes++;
		else break;
5420
		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5421
	}
5422 5423 5424 5425 5426
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
5427
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5428
{
5429
	struct r5conf *conf;
5430 5431 5432 5433 5434
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
5435
	if (kstrtoul(page, 10, &new))
5436
		return -EINVAL;
5437
	err = mddev_lock(mddev);
5438 5439
	if (err)
		return err;
5440 5441 5442 5443 5444 5445 5446 5447
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else
		err = raid5_set_cache_size(mddev, new);
	mddev_unlock(mddev);

	return err ?: len;
5448
}
5449

5450 5451 5452 5453
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
5454

5455
static ssize_t
5456
raid5_show_preread_threshold(struct mddev *mddev, char *page)
5457
{
5458 5459 5460 5461
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5462
	if (conf)
5463 5464 5465
		ret = sprintf(page, "%d\n", conf->bypass_threshold);
	spin_unlock(&mddev->lock);
	return ret;
5466 5467 5468
}

static ssize_t
5469
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5470
{
5471
	struct r5conf *conf;
5472
	unsigned long new;
5473 5474
	int err;

5475 5476
	if (len >= PAGE_SIZE)
		return -EINVAL;
5477
	if (kstrtoul(page, 10, &new))
5478
		return -EINVAL;
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new > conf->max_nr_stripes)
		err = -EINVAL;
	else
		conf->bypass_threshold = new;
	mddev_unlock(mddev);
	return err ?: len;
5492 5493 5494 5495 5496 5497 5498 5499
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

5500 5501 5502
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
5503 5504 5505 5506
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5507
	if (conf)
5508 5509 5510
		ret = sprintf(page, "%d\n", conf->skip_copy);
	spin_unlock(&mddev->lock);
	return ret;
5511 5512 5513 5514 5515
}

static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
5516
	struct r5conf *conf;
5517
	unsigned long new;
5518 5519
	int err;

5520 5521 5522 5523 5524
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;
	new = !!new;
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->skip_copy) {
		mddev_suspend(mddev);
		conf->skip_copy = new;
		if (new)
			mddev->queue->backing_dev_info.capabilities |=
				BDI_CAP_STABLE_WRITES;
		else
			mddev->queue->backing_dev_info.capabilities &=
				~BDI_CAP_STABLE_WRITES;
		mddev_resume(mddev);
	}
	mddev_unlock(mddev);
	return err ?: len;
5545 5546 5547 5548 5549 5550 5551
}

static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
					raid5_show_skip_copy,
					raid5_store_skip_copy);

5552
static ssize_t
5553
stripe_cache_active_show(struct mddev *mddev, char *page)
5554
{
5555
	struct r5conf *conf = mddev->private;
5556 5557 5558 5559
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
5560 5561
}

5562 5563
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5564

5565 5566 5567
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
5568 5569 5570 5571
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5572
	if (conf)
5573 5574 5575
		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
	spin_unlock(&mddev->lock);
	return ret;
5576 5577
}

5578 5579 5580 5581
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups);
5582 5583 5584
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
5585
	struct r5conf *conf;
5586 5587
	unsigned long new;
	int err;
5588 5589
	struct r5worker_group *new_groups, *old_groups;
	int group_cnt, worker_cnt_per_group;
5590 5591 5592 5593 5594 5595

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;

5596 5597 5598 5599 5600 5601 5602 5603
	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->worker_cnt_per_group) {
		mddev_suspend(mddev);
5604

5605 5606 5607
		old_groups = conf->worker_groups;
		if (old_groups)
			flush_workqueue(raid5_wq);
5608

5609 5610 5611 5612 5613 5614 5615 5616 5617
		err = alloc_thread_groups(conf, new,
					  &group_cnt, &worker_cnt_per_group,
					  &new_groups);
		if (!err) {
			spin_lock_irq(&conf->device_lock);
			conf->group_cnt = group_cnt;
			conf->worker_cnt_per_group = worker_cnt_per_group;
			conf->worker_groups = new_groups;
			spin_unlock_irq(&conf->device_lock);
5618

5619 5620 5621 5622 5623
			if (old_groups)
				kfree(old_groups[0].workers);
			kfree(old_groups);
		}
		mddev_resume(mddev);
5624
	}
5625
	mddev_unlock(mddev);
5626

5627
	return err ?: len;
5628 5629 5630 5631 5632 5633 5634
}

static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
				raid5_show_group_thread_cnt,
				raid5_store_group_thread_cnt);

5635
static struct attribute *raid5_attrs[] =  {
5636 5637
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
5638
	&raid5_preread_bypass_threshold.attr,
5639
	&raid5_group_thread_cnt.attr,
5640
	&raid5_skip_copy.attr,
5641 5642
	NULL,
};
5643 5644 5645
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
5646 5647
};

5648 5649 5650 5651
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups)
5652
{
5653
	int i, j, k;
5654 5655 5656
	ssize_t size;
	struct r5worker *workers;

5657
	*worker_cnt_per_group = cnt;
5658
	if (cnt == 0) {
5659 5660
		*group_cnt = 0;
		*worker_groups = NULL;
5661 5662
		return 0;
	}
5663
	*group_cnt = num_possible_nodes();
5664
	size = sizeof(struct r5worker) * cnt;
5665 5666 5667 5668
	workers = kzalloc(size * *group_cnt, GFP_NOIO);
	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
				*group_cnt, GFP_NOIO);
	if (!*worker_groups || !workers) {
5669
		kfree(workers);
5670
		kfree(*worker_groups);
5671 5672 5673
		return -ENOMEM;
	}

5674
	for (i = 0; i < *group_cnt; i++) {
5675 5676
		struct r5worker_group *group;

5677
		group = &(*worker_groups)[i];
5678 5679 5680 5681 5682
		INIT_LIST_HEAD(&group->handle_list);
		group->conf = conf;
		group->workers = workers + i * cnt;

		for (j = 0; j < cnt; j++) {
5683 5684 5685 5686 5687 5688
			struct r5worker *worker = group->workers + j;
			worker->group = group;
			INIT_WORK(&worker->work, raid5_do_work);

			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
		}
	}

	return 0;
}

static void free_thread_groups(struct r5conf *conf)
{
	if (conf->worker_groups)
		kfree(conf->worker_groups[0].workers);
	kfree(conf->worker_groups);
	conf->worker_groups = NULL;
}

5703
static sector_t
5704
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5705
{
5706
	struct r5conf *conf = mddev->private;
5707 5708 5709

	if (!sectors)
		sectors = mddev->dev_sectors;
5710
	if (!raid_disks)
5711
		/* size is defined by the smallest of previous and new size */
5712
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5713

5714
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5715
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5716 5717 5718
	return sectors * (raid_disks - conf->max_degraded);
}

5719 5720 5721
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	safe_put_page(percpu->spare_page);
5722 5723
	if (percpu->scribble)
		flex_array_free(percpu->scribble);
5724 5725 5726 5727 5728 5729 5730 5731 5732
	percpu->spare_page = NULL;
	percpu->scribble = NULL;
}

static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	if (conf->level == 6 && !percpu->spare_page)
		percpu->spare_page = alloc_page(GFP_KERNEL);
	if (!percpu->scribble)
5733 5734 5735
		percpu->scribble = scribble_alloc(max(conf->raid_disks,
			conf->previous_raid_disks), conf->chunk_sectors /
			STRIPE_SECTORS, GFP_KERNEL);
5736 5737 5738 5739 5740 5741 5742 5743 5744

	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
		free_scratch_buffer(conf, percpu);
		return -ENOMEM;
	}

	return 0;
}

5745
static void raid5_free_percpu(struct r5conf *conf)
5746 5747 5748 5749 5750 5751 5752 5753 5754
{
	unsigned long cpu;

	if (!conf->percpu)
		return;

#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
5755 5756 5757 5758

	get_online_cpus();
	for_each_possible_cpu(cpu)
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5759 5760 5761 5762 5763
	put_online_cpus();

	free_percpu(conf->percpu);
}

5764
static void free_conf(struct r5conf *conf)
5765
{
5766
	free_thread_groups(conf);
5767
	shrink_stripes(conf);
5768
	raid5_free_percpu(conf);
5769 5770 5771 5772 5773
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

5774 5775 5776 5777
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
5778
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5779 5780 5781 5782 5783 5784
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5785
		if (alloc_scratch_buffer(conf, percpu)) {
5786 5787
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
5788
			return notifier_from_errno(-ENOMEM);
5789 5790 5791 5792
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
5793
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5794 5795 5796 5797 5798 5799 5800 5801
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

5802
static int raid5_alloc_percpu(struct r5conf *conf)
5803 5804
{
	unsigned long cpu;
5805
	int err = 0;
5806

5807 5808
	conf->percpu = alloc_percpu(struct raid5_percpu);
	if (!conf->percpu)
5809
		return -ENOMEM;
5810 5811 5812 5813 5814 5815 5816 5817

#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	err = register_cpu_notifier(&conf->cpu_notify);
	if (err)
		return err;
#endif
5818 5819 5820

	get_online_cpus();
	for_each_present_cpu(cpu) {
5821 5822 5823 5824
		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
		if (err) {
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
5825 5826 5827 5828 5829 5830 5831 5832
			break;
		}
	}
	put_online_cpus();

	return err;
}

5833
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
5834
{
5835
	struct r5conf *conf;
5836
	int raid_disk, memory, max_disks;
5837
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
5838
	struct disk_info *disk;
5839
	char pers_name[6];
5840
	int i;
5841 5842
	int group_cnt, worker_cnt_per_group;
	struct r5worker_group *new_group;
L
Linus Torvalds 已提交
5843

N
NeilBrown 已提交
5844 5845 5846
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
5847
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
5848 5849
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
5850
	}
N
NeilBrown 已提交
5851 5852 5853 5854
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
5855
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
5856 5857
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
5858
	}
N
NeilBrown 已提交
5859
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5860
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
5861 5862
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
5863 5864
	}

5865 5866 5867
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
5868 5869
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
5870
		return ERR_PTR(-EINVAL);
5871 5872
	}

5873
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
5874
	if (conf == NULL)
L
Linus Torvalds 已提交
5875
		goto abort;
5876
	/* Don't enable multi-threading by default*/
5877 5878 5879 5880 5881 5882
	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
				 &new_group)) {
		conf->group_cnt = group_cnt;
		conf->worker_cnt_per_group = worker_cnt_per_group;
		conf->worker_groups = new_group;
	} else
5883
		goto abort;
5884
	spin_lock_init(&conf->device_lock);
5885
	seqcount_init(&conf->gen_lock);
5886 5887 5888 5889 5890 5891
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
S
Shaohua Li 已提交
5892
	init_llist_head(&conf->released_stripes);
5893 5894 5895 5896
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
5897
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
5898 5899 5900 5901 5902

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
5903
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5904
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5905

5906
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5907 5908 5909
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
5910

L
Linus Torvalds 已提交
5911 5912
	conf->mddev = mddev;

5913
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
5914 5915
		goto abort;

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
	/* We init hash_locks[0] separately to that it can be used
	 * as the reference lock in the spin_lock_nest_lock() call
	 * in lock_all_device_hash_locks_irq in order to convince
	 * lockdep that we know what we are doing.
	 */
	spin_lock_init(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_init(conf->hash_locks + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->inactive_list + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->temp_inactive_list + i);

5931
	conf->level = mddev->new_level;
5932
	conf->chunk_sectors = mddev->new_chunk_sectors;
5933 5934 5935
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

5936
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
5937

N
NeilBrown 已提交
5938
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
5939
		raid_disk = rdev->raid_disk;
5940
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
5941 5942 5943 5944
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

5945 5946 5947 5948 5949 5950 5951 5952 5953
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
5954

5955
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
5956
			char b[BDEVNAME_SIZE];
5957 5958 5959
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
5960
		} else if (rdev->saved_raid_disk != raid_disk)
5961 5962
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
5963 5964
	}

N
NeilBrown 已提交
5965
	conf->level = mddev->new_level;
5966 5967 5968 5969
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
5970
	conf->algorithm = mddev->new_layout;
5971
	conf->reshape_progress = mddev->reshape_position;
5972
	if (conf->reshape_progress != MaxSector) {
5973
		conf->prev_chunk_sectors = mddev->chunk_sectors;
5974 5975
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
5976

N
NeilBrown 已提交
5977
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5978
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5979
	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5980
	if (grow_stripes(conf, NR_STRIPES)) {
N
NeilBrown 已提交
5981
		printk(KERN_ERR
5982 5983
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
5984 5985
		goto abort;
	} else
5986 5987
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
5988

5989 5990
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
5991 5992
	if (!conf->thread) {
		printk(KERN_ERR
5993
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
5994
		       mdname(mddev));
5995 5996
		goto abort;
	}
N
NeilBrown 已提交
5997 5998 5999 6000 6001

	return conf;

 abort:
	if (conf) {
6002
		free_conf(conf);
N
NeilBrown 已提交
6003 6004 6005 6006 6007
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
6020
		if (raid_disk == 0 ||
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

6034
static int run(struct mddev *mddev)
N
NeilBrown 已提交
6035
{
6036
	struct r5conf *conf;
6037
	int working_disks = 0;
6038
	int dirty_parity_disks = 0;
6039
	struct md_rdev *rdev;
6040
	sector_t reshape_offset = 0;
6041
	int i;
6042 6043
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
6044

6045
	if (mddev->recovery_cp != MaxSector)
6046
		printk(KERN_NOTICE "md/raid:%s: not clean"
6047 6048
		       " -- starting background reconstruction\n",
		       mdname(mddev));
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
6066 6067
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
6078 6079 6080
		 */
		sector_t here_new, here_old;
		int old_disks;
6081
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
6082

6083
		if (mddev->new_level != mddev->level) {
6084
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
6095
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
6096
			       (mddev->raid_disks - max_degraded))) {
6097 6098
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
6099 6100
			return -EINVAL;
		}
6101
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
6102 6103
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
6104
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
6105 6106 6107
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
6108
		if (mddev->delta_disks == 0) {
6109 6110 6111 6112 6113 6114
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
6115
			/* We cannot be sure it is safe to start an in-place
6116
			 * reshape.  It is only safe if user-space is monitoring
6117 6118 6119 6120 6121
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
6122 6123 6124 6125 6126 6127 6128
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
6129
				       mdname(mddev));
6130 6131
				return -EINVAL;
			}
6132
		} else if (mddev->reshape_backwards
6133
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6134 6135
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
6136
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
6137
			/* Reading from the same stripe as writing to - bad */
6138 6139 6140
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
6141 6142
			return -EINVAL;
		}
6143 6144
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
6145 6146 6147 6148
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
6149
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
6150
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
6151
	}
N
NeilBrown 已提交
6152

6153 6154 6155 6156 6157
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
6158 6159 6160
	if (IS_ERR(conf))
		return PTR_ERR(conf);

6161
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
6162 6163 6164 6165
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
6177
			continue;
6178 6179 6180 6181 6182 6183 6184
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
6185
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
6186
			working_disks++;
6187 6188
			continue;
		}
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
6201

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
6217

6218 6219 6220
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
6221
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
6222

6223
	if (has_failed(conf)) {
6224
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
6225
			" (%d/%d failed)\n",
6226
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
6227 6228 6229
		goto abort;
	}

N
NeilBrown 已提交
6230
	/* device size must be a multiple of chunk size */
6231
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
6232 6233
	mddev->resync_max_sectors = mddev->dev_sectors;

6234
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
6235
	    mddev->recovery_cp != MaxSector) {
6236 6237
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
6238 6239
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
6240 6241 6242
			       mdname(mddev));
		else {
			printk(KERN_ERR
6243
			       "md/raid:%s: cannot start dirty degraded array.\n",
6244 6245 6246
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
6247 6248 6249
	}

	if (mddev->degraded == 0)
6250 6251
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6252 6253
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
6254
	else
6255 6256 6257 6258 6259
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
6260 6261 6262

	print_raid5_conf(conf);

6263 6264
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
6265 6266 6267 6268 6269 6270
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6271
							"reshape");
6272 6273
	}

L
Linus Torvalds 已提交
6274
	/* Ok, everything is just fine now */
6275 6276
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
6277 6278
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6279
		printk(KERN_WARNING
6280
		       "raid5: failed to create sysfs attributes for %s\n",
6281
		       mdname(mddev));
6282
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6283

6284
	if (mddev->queue) {
6285
		int chunk_size;
S
Shaohua Li 已提交
6286
		bool discard_supported = true;
6287 6288 6289 6290 6291 6292 6293 6294 6295
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
6296

6297 6298 6299 6300
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
6301
		mddev->queue->limits.raid_partial_stripes_expensive = 1;
S
Shaohua Li 已提交
6302 6303 6304 6305 6306
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
6307 6308 6309 6310
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
6311 6312 6313 6314
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
6315
		 * guarantee discard_zeroes_data
S
Shaohua Li 已提交
6316 6317
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
6318

6319 6320
		blk_queue_max_write_same_sectors(mddev->queue, 0);

6321
		rdev_for_each(rdev, mddev) {
6322 6323
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
6324 6325
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
			/* Unfortunately, discard_zeroes_data is not currently
			 * a guarantee - just a hint.  So we only allow DISCARD
			 * if the sysadmin has confirmed that only safe devices
			 * are in use by setting a module parameter.
			 */
			if (!devices_handle_discard_safely) {
				if (discard_supported) {
					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
				}
				discard_supported = false;
			}
6352
		}
S
Shaohua Li 已提交
6353 6354 6355 6356 6357 6358 6359 6360 6361

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
6362
	}
6363

L
Linus Torvalds 已提交
6364 6365
	return 0;
abort:
6366
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
6367 6368
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
6369
	mddev->private = NULL;
6370
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
6371 6372 6373
	return -EIO;
}

N
NeilBrown 已提交
6374
static void raid5_free(struct mddev *mddev, void *priv)
L
Linus Torvalds 已提交
6375
{
N
NeilBrown 已提交
6376
	struct r5conf *conf = priv;
L
Linus Torvalds 已提交
6377

6378
	free_conf(conf);
6379
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
6380 6381
}

6382
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
6383
{
6384
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6385 6386
	int i;

6387 6388
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
6389
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
6390 6391 6392
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
6393
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
6394 6395 6396
	seq_printf (seq, "]");
}

6397
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
6398 6399 6400 6401
{
	int i;
	struct disk_info *tmp;

6402
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
6403 6404 6405 6406
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
6407 6408 6409
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
6410 6411 6412 6413 6414

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
6415 6416 6417
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
6418 6419 6420
	}
}

6421
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
6422 6423
{
	int i;
6424
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6425
	struct disk_info *tmp;
6426 6427
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
6428 6429 6430

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
6450
		    && tmp->rdev->recovery_offset == MaxSector
6451
		    && !test_bit(Faulty, &tmp->rdev->flags)
6452
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6453
			count++;
6454
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
6455 6456
		}
	}
6457
	spin_lock_irqsave(&conf->device_lock, flags);
6458
	mddev->degraded = calc_degraded(conf);
6459
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
6460
	print_raid5_conf(conf);
6461
	return count;
L
Linus Torvalds 已提交
6462 6463
}

6464
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
6465
{
6466
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6467
	int err = 0;
6468
	int number = rdev->raid_disk;
6469
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
6470 6471 6472
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
6495
	    (!p->replacement || p->replacement == rdev) &&
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
6520 6521 6522 6523 6524 6525
abort:

	print_raid5_conf(conf);
	return err;
}

6526
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
6527
{
6528
	struct r5conf *conf = mddev->private;
6529
	int err = -EEXIST;
L
Linus Torvalds 已提交
6530 6531
	int disk;
	struct disk_info *p;
6532 6533
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
6534

6535 6536 6537
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
6538
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
6539
		/* no point adding a device */
6540
		return -EINVAL;
L
Linus Torvalds 已提交
6541

6542 6543
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
6544 6545

	/*
6546 6547
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
6548
	 */
6549
	if (rdev->saved_raid_disk >= 0 &&
6550
	    rdev->saved_raid_disk >= first &&
6551
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6552 6553 6554
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
6555 6556
		p = conf->disks + disk;
		if (p->rdev == NULL) {
6557
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
6558
			rdev->raid_disk = disk;
6559
			err = 0;
6560 6561
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
6562
			rcu_assign_pointer(p->rdev, rdev);
6563
			goto out;
L
Linus Torvalds 已提交
6564
		}
6565 6566 6567
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
6579
out:
L
Linus Torvalds 已提交
6580
	print_raid5_conf(conf);
6581
	return err;
L
Linus Torvalds 已提交
6582 6583
}

6584
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
6585 6586 6587 6588 6589 6590 6591 6592
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
6593
	sector_t newsize;
6594
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6595 6596 6597
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
6598
		return -EINVAL;
6599 6600 6601 6602 6603 6604
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
6605
	set_capacity(mddev->gendisk, mddev->array_sectors);
6606
	revalidate_disk(mddev->gendisk);
6607 6608
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
6609
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
6610 6611
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
6612
	mddev->dev_sectors = sectors;
6613
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
6614 6615 6616
	return 0;
}

6617
static int check_stripe_cache(struct mddev *mddev)
6618 6619 6620 6621 6622 6623 6624 6625 6626
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
6627
	struct r5conf *conf = mddev->private;
6628 6629 6630 6631
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
6632 6633
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
6634 6635 6636 6637 6638 6639 6640
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

6641
static int check_reshape(struct mddev *mddev)
6642
{
6643
	struct r5conf *conf = mddev->private;
6644

6645 6646
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
6647
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6648
		return 0; /* nothing to do */
6649
	if (has_failed(conf))
6650
		return -EINVAL;
6651
	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
6663

6664
	if (!check_stripe_cache(mddev))
6665 6666
		return -ENOSPC;

6667 6668
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
6669 6670
}

6671
static int raid5_start_reshape(struct mddev *mddev)
6672
{
6673
	struct r5conf *conf = mddev->private;
6674
	struct md_rdev *rdev;
6675
	int spares = 0;
6676
	unsigned long flags;
6677

6678
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6679 6680
		return -EBUSY;

6681 6682 6683
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

6684 6685 6686
	if (has_failed(conf))
		return -EINVAL;

6687
	rdev_for_each(rdev, mddev) {
6688 6689
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
6690
			spares++;
6691
	}
6692

6693
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6694 6695 6696 6697 6698
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

6699 6700 6701 6702 6703 6704
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
6705
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6706 6707 6708 6709
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

6710
	atomic_set(&conf->reshape_stripes, 0);
6711
	spin_lock_irq(&conf->device_lock);
6712
	write_seqcount_begin(&conf->gen_lock);
6713
	conf->previous_raid_disks = conf->raid_disks;
6714
	conf->raid_disks += mddev->delta_disks;
6715 6716
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
6717 6718
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
6719 6720 6721 6722 6723
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
6724
	if (mddev->reshape_backwards)
6725 6726 6727 6728
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
6729
	write_seqcount_end(&conf->gen_lock);
6730 6731
	spin_unlock_irq(&conf->device_lock);

6732 6733 6734 6735 6736 6737 6738
	/* Now make sure any requests that proceeded on the assumption
	 * the reshape wasn't running - like Discard or Read - have
	 * completed.
	 */
	mddev_suspend(mddev);
	mddev_resume(mddev);

6739 6740
	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
6741 6742 6743 6744
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
6745
	 */
6746
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
6747
		rdev_for_each(rdev, mddev)
6748 6749 6750 6751
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
6752
					    >= conf->previous_raid_disks)
6753
						set_bit(In_sync, &rdev->flags);
6754
					else
6755
						rdev->recovery_offset = 0;
6756 6757

					if (sysfs_link_rdev(mddev, rdev))
6758
						/* Failure here is OK */;
6759
				}
6760 6761 6762 6763 6764
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
6765

6766 6767 6768 6769
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
6770
		spin_lock_irqsave(&conf->device_lock, flags);
6771
		mddev->degraded = calc_degraded(conf);
6772 6773
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
6774
	mddev->raid_disks = conf->raid_disks;
6775
	mddev->reshape_position = conf->reshape_progress;
6776
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6777

6778 6779 6780 6781 6782
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6783
						"reshape");
6784 6785 6786
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
6787
		write_seqcount_begin(&conf->gen_lock);
6788
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6789 6790 6791
		mddev->new_chunk_sectors =
			conf->chunk_sectors = conf->prev_chunk_sectors;
		mddev->new_layout = conf->algorithm = conf->prev_algo;
6792 6793 6794
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
6795
		conf->generation --;
6796
		conf->reshape_progress = MaxSector;
6797
		mddev->reshape_position = MaxSector;
6798
		write_seqcount_end(&conf->gen_lock);
6799 6800 6801
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
6802
	conf->reshape_checkpoint = jiffies;
6803 6804 6805 6806 6807
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

6808 6809 6810
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
6811
static void end_reshape(struct r5conf *conf)
6812 6813
{

6814
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6815
		struct md_rdev *rdev;
6816 6817

		spin_lock_irq(&conf->device_lock);
6818
		conf->previous_raid_disks = conf->raid_disks;
6819 6820 6821
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
6822
		conf->reshape_progress = MaxSector;
6823
		spin_unlock_irq(&conf->device_lock);
6824
		wake_up(&conf->wait_for_overlap);
6825 6826 6827 6828

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
6829
		if (conf->mddev->queue) {
6830
			int data_disks = conf->raid_disks - conf->max_degraded;
6831
			int stripe = data_disks * ((conf->chunk_sectors << 9)
6832
						   / PAGE_SIZE);
6833 6834 6835
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
6836 6837 6838
	}
}

6839 6840 6841
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
6842
static void raid5_finish_reshape(struct mddev *mddev)
6843
{
6844
	struct r5conf *conf = mddev->private;
6845 6846 6847

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

6848 6849 6850
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
6851
			revalidate_disk(mddev->gendisk);
6852 6853
		} else {
			int d;
6854 6855 6856
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
6857 6858
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
6859
			     d++) {
6860
				struct md_rdev *rdev = conf->disks[d].rdev;
6861 6862 6863 6864 6865
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
6866
			}
6867
		}
6868
		mddev->layout = conf->algorithm;
6869
		mddev->chunk_sectors = conf->chunk_sectors;
6870 6871
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
6872
		mddev->reshape_backwards = 0;
6873 6874 6875
	}
}

6876
static void raid5_quiesce(struct mddev *mddev, int state)
6877
{
6878
	struct r5conf *conf = mddev->private;
6879 6880

	switch(state) {
6881 6882 6883 6884
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

6885
	case 1: /* stop all writes */
6886
		lock_all_device_hash_locks_irq(conf);
6887 6888 6889 6890
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
6891
		wait_event_cmd(conf->wait_for_stripe,
6892 6893
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
6894 6895
				    unlock_all_device_hash_locks_irq(conf),
				    lock_all_device_hash_locks_irq(conf));
6896
		conf->quiesce = 1;
6897
		unlock_all_device_hash_locks_irq(conf);
6898 6899
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
6900 6901 6902
		break;

	case 0: /* re-enable writes */
6903
		lock_all_device_hash_locks_irq(conf);
6904 6905
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
6906
		wake_up(&conf->wait_for_overlap);
6907
		unlock_all_device_hash_locks_irq(conf);
6908 6909 6910
		break;
	}
}
6911

6912
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6913
{
6914
	struct r0conf *raid0_conf = mddev->private;
6915
	sector_t sectors;
6916

D
Dan Williams 已提交
6917
	/* for raid0 takeover only one zone is supported */
6918
	if (raid0_conf->nr_strip_zones > 1) {
6919 6920
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
6921 6922 6923
		return ERR_PTR(-EINVAL);
	}

6924 6925
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6926
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
6927
	mddev->new_level = level;
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}

6938
static void *raid5_takeover_raid1(struct mddev *mddev)
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6960
	mddev->new_chunk_sectors = chunksect;
6961 6962 6963 6964

	return setup_conf(mddev);
}

6965
static void *raid5_takeover_raid6(struct mddev *mddev)
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

6998
static int raid5_check_reshape(struct mddev *mddev)
6999
{
7000 7001 7002 7003
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
7004
	 */
7005
	struct r5conf *conf = mddev->private;
7006
	int new_chunk = mddev->new_chunk_sectors;
7007

7008
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7009 7010
		return -EINVAL;
	if (new_chunk > 0) {
7011
		if (!is_power_of_2(new_chunk))
7012
			return -EINVAL;
7013
		if (new_chunk < (PAGE_SIZE>>9))
7014
			return -EINVAL;
7015
		if (mddev->array_sectors & (new_chunk-1))
7016 7017 7018 7019 7020 7021
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

7022
	if (mddev->raid_disks == 2) {
7023 7024 7025 7026
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
7027 7028
		}
		if (new_chunk > 0) {
7029 7030
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
7031 7032 7033
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
7034
	}
7035
	return check_reshape(mddev);
7036 7037
}

7038
static int raid6_check_reshape(struct mddev *mddev)
7039
{
7040
	int new_chunk = mddev->new_chunk_sectors;
7041

7042
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7043
		return -EINVAL;
7044
	if (new_chunk > 0) {
7045
		if (!is_power_of_2(new_chunk))
7046
			return -EINVAL;
7047
		if (new_chunk < (PAGE_SIZE >> 9))
7048
			return -EINVAL;
7049
		if (mddev->array_sectors & (new_chunk-1))
7050 7051
			/* not factor of array size */
			return -EINVAL;
7052
	}
7053 7054

	/* They look valid */
7055
	return check_reshape(mddev);
7056 7057
}

7058
static void *raid5_takeover(struct mddev *mddev)
7059 7060
{
	/* raid5 can take over:
D
Dan Williams 已提交
7061
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7062 7063 7064 7065
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
7066 7067
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
7068 7069
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
7070 7071 7072 7073 7074
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
7075 7076
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
7077 7078 7079 7080

	return ERR_PTR(-EINVAL);
}

7081
static void *raid4_takeover(struct mddev *mddev)
7082
{
D
Dan Williams 已提交
7083 7084 7085
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
7086
	 */
D
Dan Williams 已提交
7087 7088
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
7089 7090 7091 7092 7093 7094 7095 7096
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
7097

7098
static struct md_personality raid5_personality;
7099

7100
static void *raid6_takeover(struct mddev *mddev)
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}

7146
static struct md_personality raid6_personality =
7147 7148 7149 7150 7151 7152
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7153
	.free		= raid5_free,
7154 7155 7156 7157 7158 7159 7160
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7161
	.size		= raid5_size,
7162
	.check_reshape	= raid6_check_reshape,
7163
	.start_reshape  = raid5_start_reshape,
7164
	.finish_reshape = raid5_finish_reshape,
7165
	.quiesce	= raid5_quiesce,
7166
	.takeover	= raid6_takeover,
7167
	.congested	= raid5_congested,
7168
	.mergeable_bvec	= raid5_mergeable_bvec,
7169
};
7170
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
7171 7172
{
	.name		= "raid5",
7173
	.level		= 5,
L
Linus Torvalds 已提交
7174 7175 7176
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7177
	.free		= raid5_free,
L
Linus Torvalds 已提交
7178 7179 7180 7181 7182 7183 7184
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7185
	.size		= raid5_size,
7186 7187
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7188
	.finish_reshape = raid5_finish_reshape,
7189
	.quiesce	= raid5_quiesce,
7190
	.takeover	= raid5_takeover,
7191
	.congested	= raid5_congested,
7192
	.mergeable_bvec	= raid5_mergeable_bvec,
L
Linus Torvalds 已提交
7193 7194
};

7195
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
7196
{
7197 7198 7199 7200 7201
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7202
	.free		= raid5_free,
7203 7204 7205 7206 7207 7208 7209
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7210
	.size		= raid5_size,
7211 7212
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7213
	.finish_reshape = raid5_finish_reshape,
7214
	.quiesce	= raid5_quiesce,
7215
	.takeover	= raid4_takeover,
7216
	.congested	= raid5_congested,
7217
	.mergeable_bvec	= raid5_mergeable_bvec,
7218 7219 7220 7221
};

static int __init raid5_init(void)
{
7222 7223 7224 7225
	raid5_wq = alloc_workqueue("raid5wq",
		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
	if (!raid5_wq)
		return -ENOMEM;
7226
	register_md_personality(&raid6_personality);
7227 7228 7229
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
7230 7231
}

7232
static void raid5_exit(void)
L
Linus Torvalds 已提交
7233
{
7234
	unregister_md_personality(&raid6_personality);
7235 7236
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
7237
	destroy_workqueue(raid5_wq);
L
Linus Torvalds 已提交
7238 7239 7240 7241 7242
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
7243
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
7244
MODULE_ALIAS("md-personality-4"); /* RAID5 */
7245 7246
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
7247 7248
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
7249 7250 7251 7252 7253 7254 7255
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");