raid5.c 171.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157
{
158
	int slot = *count;
159

160
	if (sh->ddf_layout)
161
		(*count)++;
162
	if (idx == sh->pd_idx)
163
		return syndrome_disks;
164
	if (idx == sh->qd_idx)
165
		return syndrome_disks + 1;
166
	if (!sh->ddf_layout)
167
		(*count)++;
168 169 170
	return slot;
}

171 172 173 174 175 176 177 178
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
179
		bio_endio(bi, 0);
180 181 182 183
		bi = return_bi;
	}
}

184
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
185

186 187 188 189 190 191 192
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

193
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
194 195
{
	if (atomic_dec_and_test(&sh->count)) {
196 197
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
198
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
S
Shaohua Li 已提交
199 200
			if (test_bit(STRIPE_DELAYED, &sh->state) &&
			    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
L
Linus Torvalds 已提交
201
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
202 203
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
204
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
205
			else {
S
Shaohua Li 已提交
206
				clear_bit(STRIPE_DELAYED, &sh->state);
207
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
208
				list_add_tail(&sh->lru, &conf->handle_list);
209
			}
L
Linus Torvalds 已提交
210 211
			md_wakeup_thread(conf->mddev->thread);
		} else {
212
			BUG_ON(stripe_operations_active(sh));
213 214 215
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				if (atomic_dec_return(&conf->preread_active_stripes)
				    < IO_THRESHOLD)
L
Linus Torvalds 已提交
216 217
					md_wakeup_thread(conf->mddev->thread);
			atomic_dec(&conf->active_stripes);
218 219
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
220
				wake_up(&conf->wait_for_stripe);
221 222
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
223
			}
L
Linus Torvalds 已提交
224 225 226
		}
	}
}
227

L
Linus Torvalds 已提交
228 229
static void release_stripe(struct stripe_head *sh)
{
230
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
231
	unsigned long flags;
232

L
Linus Torvalds 已提交
233 234 235 236 237
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

238
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
239
{
240 241
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
242

243
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
244 245
}

246
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
247
{
248
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
249

250 251
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
252

253
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
254 255 256 257
}


/* find an idle stripe, make sure it is unhashed, and return it. */
258
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

274
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
275 276 277
{
	struct page *p;
	int i;
278
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
279

280
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
281 282 283 284
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
285
		put_page(p);
L
Linus Torvalds 已提交
286 287 288
	}
}

289
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
290 291
{
	int i;
292
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
293

294
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
295 296 297 298 299 300 301 302 303 304
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

305
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
306
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
307
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
308

309
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
310
{
311
	struct r5conf *conf = sh->raid_conf;
312
	int i;
L
Linus Torvalds 已提交
313

314 315
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
316
	BUG_ON(stripe_operations_active(sh));
317

318
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
319 320 321
		(unsigned long long)sh->sector);

	remove_hash(sh);
322

323
	sh->generation = conf->generation - previous;
324
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
325
	sh->sector = sector;
326
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
327 328
	sh->state = 0;

329 330

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
331 332
		struct r5dev *dev = &sh->dev[i];

333
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
334
		    test_bit(R5_LOCKED, &dev->flags)) {
335
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
336
			       (unsigned long long)sh->sector, i, dev->toread,
337
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
338
			       test_bit(R5_LOCKED, &dev->flags));
339
			WARN_ON(1);
L
Linus Torvalds 已提交
340 341
		}
		dev->flags = 0;
342
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
343 344 345 346
	}
	insert_hash(conf, sh);
}

347
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
348
					 short generation)
L
Linus Torvalds 已提交
349 350
{
	struct stripe_head *sh;
351
	struct hlist_node *hn;
L
Linus Torvalds 已提交
352

353
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
356
			return sh;
357
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
358 359 360
	return NULL;
}

361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
374
static int calc_degraded(struct r5conf *conf)
375
{
376
	int degraded, degraded2;
377 378 379 380 381
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
382
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
401 402
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
403
	rcu_read_lock();
404
	degraded2 = 0;
405
	for (i = 0; i < conf->raid_disks; i++) {
406
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
407
		if (!rdev || test_bit(Faulty, &rdev->flags))
408
			degraded2++;
409 410 411 412 413 414 415 416 417
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
418
				degraded2++;
419 420
	}
	rcu_read_unlock();
421 422 423 424 425 426 427 428 429 430 431 432 433
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
434 435 436 437 438
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

439
static struct stripe_head *
440
get_active_stripe(struct r5conf *conf, sector_t sector,
441
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
442 443 444
{
	struct stripe_head *sh;

445
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
446 447 448 449

	spin_lock_irq(&conf->device_lock);

	do {
450
		wait_event_lock_irq(conf->wait_for_stripe,
451
				    conf->quiesce == 0 || noquiesce,
452
				    conf->device_lock, /* nothing */);
453
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
463 464
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
465 466
						     || !conf->inactive_blocked),
						    conf->device_lock,
467
						    );
L
Linus Torvalds 已提交
468 469
				conf->inactive_blocked = 0;
			} else
470
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
471 472
		} else {
			if (atomic_read(&sh->count)) {
473 474
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
475 476 477
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
478 479
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 481
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

514 515 516 517
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
518

519
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
520
{
521
	struct r5conf *conf = sh->raid_conf;
522 523 524 525 526 527
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
528
		int replace_only = 0;
529 530
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
531 532 533 534 535 536
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
537
			rw = READ;
538 539 540 541 542
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
543
			continue;
S
Shaohua Li 已提交
544 545
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
546 547

		bi = &sh->dev[i].req;
548
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
549 550

		bi->bi_rw = rw;
551 552
		rbi->bi_rw = rw;
		if (rw & WRITE) {
553
			bi->bi_end_io = raid5_end_write_request;
554 555
			rbi->bi_end_io = raid5_end_write_request;
		} else
556 557 558
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
559
		rrdev = rcu_dereference(conf->disks[i].replacement);
560 561 562 563 564 565
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
566 567 568
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
569 570 571
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
572
		} else {
573
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
574 575 576
				rdev = rrdev;
			rrdev = NULL;
		}
577

578 579 580 581
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
582 583 584 585
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
586 587
		rcu_read_unlock();

588
		/* We have already checked bad blocks for reads.  Now
589 590
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
611 612 613 614 615 616
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
617 618 619 620 621 622 623 624
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

625
		if (rdev) {
626 627
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
628 629
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
630 631
			set_bit(STRIPE_IO_STARTED, &sh->state);

632 633
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
634
				__func__, (unsigned long long)sh->sector,
635 636
				bi->bi_rw, i);
			atomic_inc(&sh->count);
637 638 639 640 641 642
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
643 644 645 646 647 648
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
649 650
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
651
			generic_make_request(bi);
652 653
		}
		if (rrdev) {
654 655
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
656 657 658 659 660 661 662 663 664 665
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
666 667 668 669 670 671
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
672 673 674 675 676 677 678 679 680
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
681
			if (rw & WRITE)
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
699
	struct async_submit_ctl submit;
D
Dan Williams 已提交
700
	enum async_tx_flags flags = 0;
701 702 703 704 705

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
706

D
Dan Williams 已提交
707 708 709 710
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

711
	bio_for_each_segment(bvl, bio, i) {
712
		int len = bvl->bv_len;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
728 729
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
730 731
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
732
						  b_offset, clen, &submit);
733 734
			else
				tx = async_memcpy(bio_page, page, b_offset,
735
						  page_offset, clen, &submit);
736
		}
737 738 739
		/* chain the operations */
		submit.depend_tx = tx;

740 741 742 743 744 745 746 747 748 749 750 751
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
752
	struct r5conf *conf = sh->raid_conf;
753
	int i;
754

755
	pr_debug("%s: stripe %llu\n", __func__,
756 757 758
		(unsigned long long)sh->sector);

	/* clear completed biofills */
759
	spin_lock_irq(&conf->device_lock);
760 761 762 763
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
764 765
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
766
		 * !STRIPE_BIOFILL_RUN
767 768
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
769 770 771 772 773 774 775 776
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
777
				if (!raid5_dec_bi_phys_segments(rbi)) {
778 779 780 781 782 783 784
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
785 786
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
787 788 789

	return_io(return_bi);

790
	set_bit(STRIPE_HANDLE, &sh->state);
791 792 793 794 795 796
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
797
	struct r5conf *conf = sh->raid_conf;
798
	struct async_submit_ctl submit;
799 800
	int i;

801
	pr_debug("%s: stripe %llu\n", __func__,
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
822 823
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
824 825
}

826
static void mark_target_uptodate(struct stripe_head *sh, int target)
827
{
828
	struct r5dev *tgt;
829

830 831
	if (target < 0)
		return;
832

833
	tgt = &sh->dev[target];
834 835 836
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
837 838
}

839
static void ops_complete_compute(void *stripe_head_ref)
840 841 842
{
	struct stripe_head *sh = stripe_head_ref;

843
	pr_debug("%s: stripe %llu\n", __func__,
844 845
		(unsigned long long)sh->sector);

846
	/* mark the computed target(s) as uptodate */
847
	mark_target_uptodate(sh, sh->ops.target);
848
	mark_target_uptodate(sh, sh->ops.target2);
849

850 851 852
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
853 854 855 856
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

857 858 859 860 861 862 863 864 865
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
866 867
{
	int disks = sh->disks;
868
	struct page **xor_srcs = percpu->scribble;
869 870 871 872 873
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
874
	struct async_submit_ctl submit;
875 876 877
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
878
		__func__, (unsigned long long)sh->sector, target);
879 880 881 882 883 884 885 886
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
887
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
888
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
889
	if (unlikely(count == 1))
890
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
891
	else
892
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
893 894 895 896

	return tx;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
915
		srcs[i] = NULL;
916 917 918 919 920 921 922 923 924 925

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

926
	return syndrome_disks;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
947
	else
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
964 965
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
966 967 968 969 970 971 972 973 974 975 976
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
977 978
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
979 980 981
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
982 983 984 985

	return tx;
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1007
	/* we need to open-code set_syndrome_sources to handle the
1008 1009 1010
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1011
		blocks[i] = NULL;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1038 1039 1040
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1041
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1061 1062 1063 1064
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1065 1066 1067 1068
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1069 1070 1071
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1072 1073 1074 1075
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1090 1091 1092 1093
	}
}


1094 1095 1096 1097
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1098
	pr_debug("%s: stripe %llu\n", __func__,
1099 1100 1101 1102
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1103 1104
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1105 1106
{
	int disks = sh->disks;
1107
	struct page **xor_srcs = percpu->scribble;
1108
	int count = 0, pd_idx = sh->pd_idx, i;
1109
	struct async_submit_ctl submit;
1110 1111 1112 1113

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1114
	pr_debug("%s: stripe %llu\n", __func__,
1115 1116 1117 1118 1119
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1120
		if (test_bit(R5_Wantdrain, &dev->flags))
1121 1122 1123
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1124
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1125
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1126
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 1128 1129 1130 1131

	return tx;
}

static struct dma_async_tx_descriptor *
1132
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1133 1134
{
	int disks = sh->disks;
1135
	int i;
1136

1137
	pr_debug("%s: stripe %llu\n", __func__,
1138 1139 1140 1141 1142 1143
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1144
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1145 1146
			struct bio *wbi;

1147
			spin_lock_irq(&sh->raid_conf->device_lock);
1148 1149 1150 1151
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1152
			spin_unlock_irq(&sh->raid_conf->device_lock);
1153 1154 1155

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1156 1157
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1158 1159
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1170
static void ops_complete_reconstruct(void *stripe_head_ref)
1171 1172
{
	struct stripe_head *sh = stripe_head_ref;
1173 1174 1175 1176
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
S
Shaohua Li 已提交
1177
	bool fua = false, sync = false;
1178

1179
	pr_debug("%s: stripe %llu\n", __func__,
1180 1181
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1182
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1183
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1184 1185
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
	}
T
Tejun Heo 已提交
1186

1187 1188
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1189

T
Tejun Heo 已提交
1190
		if (dev->written || i == pd_idx || i == qd_idx) {
1191
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1192 1193
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1194 1195
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1196
		}
1197 1198
	}

1199 1200 1201 1202 1203 1204 1205 1206
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1207 1208 1209 1210 1211 1212

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1213 1214
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1215 1216
{
	int disks = sh->disks;
1217
	struct page **xor_srcs = percpu->scribble;
1218
	struct async_submit_ctl submit;
1219 1220
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1221
	int prexor = 0;
1222 1223
	unsigned long flags;

1224
	pr_debug("%s: stripe %llu\n", __func__,
1225 1226 1227 1228 1229
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1230 1231
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1252
	flags = ASYNC_TX_ACK |
1253 1254 1255 1256
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1257
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1258
			  to_addr_conv(sh, percpu));
1259 1260 1261 1262
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1263 1264
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1282 1283 1284 1285 1286 1287
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1288
	pr_debug("%s: stripe %llu\n", __func__,
1289 1290
		(unsigned long long)sh->sector);

1291
	sh->check_state = check_state_check_result;
1292 1293 1294 1295
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1296
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1297 1298
{
	int disks = sh->disks;
1299 1300 1301
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1302
	struct page **xor_srcs = percpu->scribble;
1303
	struct dma_async_tx_descriptor *tx;
1304
	struct async_submit_ctl submit;
1305 1306
	int count;
	int i;
1307

1308
	pr_debug("%s: stripe %llu\n", __func__,
1309 1310
		(unsigned long long)sh->sector);

1311 1312 1313
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1314
	for (i = disks; i--; ) {
1315 1316 1317
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1318 1319
	}

1320 1321
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1322
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1323
			   &sh->ops.zero_sum_result, &submit);
1324 1325

	atomic_inc(&sh->count);
1326 1327
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1342 1343

	atomic_inc(&sh->count);
1344 1345 1346 1347
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1348 1349
}

1350
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1351 1352 1353
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1354
	struct r5conf *conf = sh->raid_conf;
1355
	int level = conf->level;
1356 1357
	struct raid5_percpu *percpu;
	unsigned long cpu;
1358

1359 1360
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1361
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1362 1363 1364 1365
		ops_run_biofill(sh);
		overlap_clear++;
	}

1366
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1377 1378
			async_tx_ack(tx);
	}
1379

1380
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1381
		tx = ops_run_prexor(sh, percpu, tx);
1382

1383
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1384
		tx = ops_run_biodrain(sh, tx);
1385 1386 1387
		overlap_clear++;
	}

1388 1389 1390 1391 1392 1393
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1405 1406 1407 1408 1409 1410 1411

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1412
	put_cpu();
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1445
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1446 1447
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1448
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1449 1450
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1451

1452
	sh->raid_conf = conf;
1453 1454 1455
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1456

1457 1458
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1470
static int grow_stripes(struct r5conf *conf, int num)
1471
{
1472
	struct kmem_cache *sc;
1473
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1474

1475 1476 1477 1478 1479 1480 1481 1482
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1483 1484
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1485
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1486
			       0, 0, NULL);
L
Linus Torvalds 已提交
1487 1488 1489
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1490
	conf->pool_size = devs;
1491
	while (num--)
1492
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1493 1494 1495
			return 1;
	return 0;
}
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1519
static int resize_stripes(struct r5conf *conf, int newsize)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1547
	unsigned long cpu;
1548
	int err;
1549
	struct kmem_cache *sc;
1550 1551 1552 1553 1554
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1555 1556 1557
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1558

1559 1560 1561
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1562
			       0, 0, NULL);
1563 1564 1565 1566
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1567
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1568 1569 1570 1571
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1572 1573 1574
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1597
				    );
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1612
	 * conf->disks and the scribble region
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1642 1643 1644 1645
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1663

1664
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1665 1666 1667
{
	struct stripe_head *sh;

1668 1669 1670 1671 1672
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1673
	BUG_ON(atomic_read(&sh->count));
1674
	shrink_buffers(sh);
1675 1676 1677 1678 1679
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1680
static void shrink_stripes(struct r5conf *conf)
1681 1682 1683 1684
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1685 1686
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1687 1688 1689
	conf->slab_cache = NULL;
}

1690
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1691
{
1692
	struct stripe_head *sh = bi->bi_private;
1693
	struct r5conf *conf = sh->raid_conf;
1694
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1695
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1696
	char b[BDEVNAME_SIZE];
1697
	struct md_rdev *rdev = NULL;
1698
	sector_t s;
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1704 1705
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1706 1707 1708
		uptodate);
	if (i == disks) {
		BUG();
1709
		return;
L
Linus Torvalds 已提交
1710
	}
1711
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1712 1713 1714 1715 1716
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1717
		rdev = conf->disks[i].replacement;
1718
	if (!rdev)
1719
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1720

1721 1722 1723 1724
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1725 1726
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1727
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1728 1729 1730 1731
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1732 1733 1734 1735 1736
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1737
				(unsigned long long)s,
1738
				bdevname(rdev->bdev, b));
1739
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1740 1741 1742
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1743 1744
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1745
	} else {
1746
		const char *bdn = bdevname(rdev->bdev, b);
1747
		int retry = 0;
1748
		int set_bad = 0;
1749

L
Linus Torvalds 已提交
1750
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1751
		atomic_inc(&rdev->read_errors);
1752 1753 1754 1755 1756 1757
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1758
				(unsigned long long)s,
1759
				bdn);
1760 1761
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
1762 1763 1764 1765 1766
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1767
				(unsigned long long)s,
1768
				bdn);
1769
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1770
			/* Oh, no!!! */
1771
			set_bad = 1;
1772 1773 1774 1775 1776
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1777
				(unsigned long long)s,
1778
				bdn);
1779
		} else if (atomic_read(&rdev->read_errors)
1780
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1781
			printk(KERN_WARNING
1782
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1783
			       mdname(conf->mddev), bdn);
1784 1785 1786 1787 1788
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1789 1790
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1791 1792 1793 1794 1795
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
1796
		}
L
Linus Torvalds 已提交
1797
	}
1798
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1804
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1805
{
1806
	struct stripe_head *sh = bi->bi_private;
1807
	struct r5conf *conf = sh->raid_conf;
1808
	int disks = sh->disks, i;
1809
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1810
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1811 1812
	sector_t first_bad;
	int bad_sectors;
1813
	int replacement = 0;
L
Linus Torvalds 已提交
1814

1815 1816 1817
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1818
			break;
1819 1820 1821
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1822 1823 1824 1825 1826 1827 1828 1829
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1830 1831 1832
			break;
		}
	}
1833
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1834 1835 1836 1837
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1838
		return;
L
Linus Torvalds 已提交
1839 1840
	}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1852 1853 1854
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1855 1856 1857 1858 1859 1860
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1861

1862 1863
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1864
	set_bit(STRIPE_HANDLE, &sh->state);
1865
	release_stripe(sh);
L
Linus Torvalds 已提交
1866 1867
}

1868
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1869
	
1870
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877 1878
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1879
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1880

1881 1882 1883 1884 1885 1886 1887
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1888
	dev->flags = 0;
1889
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1890 1891
}

1892
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1893 1894
{
	char b[BDEVNAME_SIZE];
1895
	struct r5conf *conf = mddev->private;
1896
	unsigned long flags;
1897
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1898

1899 1900 1901 1902 1903 1904
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1905
	set_bit(Blocked, &rdev->flags);
1906 1907 1908 1909 1910 1911 1912 1913 1914
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1915
}
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1921
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1922 1923
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1924
{
N
NeilBrown 已提交
1925
	sector_t stripe, stripe2;
1926
	sector_t chunk_number;
L
Linus Torvalds 已提交
1927
	unsigned int chunk_offset;
1928
	int pd_idx, qd_idx;
1929
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1930
	sector_t new_sector;
1931 1932
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1933 1934
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1935 1936 1937
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1950 1951
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1952
	stripe2 = stripe;
L
Linus Torvalds 已提交
1953 1954 1955
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1956
	pd_idx = qd_idx = -1;
1957 1958
	switch(conf->level) {
	case 4:
1959
		pd_idx = data_disks;
1960 1961
		break;
	case 5:
1962
		switch (algorithm) {
L
Linus Torvalds 已提交
1963
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1964
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1965
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1966 1967 1968
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1969
			pd_idx = sector_div(stripe2, raid_disks);
1970
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1971 1972 1973
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1974
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1975
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1976 1977
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1978
			pd_idx = sector_div(stripe2, raid_disks);
1979
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1980
			break;
1981 1982 1983 1984 1985 1986 1987
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1988
		default:
1989
			BUG();
1990 1991 1992 1993
		}
		break;
	case 6:

1994
		switch (algorithm) {
1995
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1996
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1997 1998
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1999
				(*dd_idx)++;	/* Q D D D P */
2000 2001
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2002 2003 2004
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2005
			pd_idx = sector_div(stripe2, raid_disks);
2006 2007
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2008
				(*dd_idx)++;	/* Q D D D P */
2009 2010
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2011 2012 2013
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2014
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2015 2016
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2017 2018
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2019
			pd_idx = sector_div(stripe2, raid_disks);
2020 2021
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2022
			break;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2038
			pd_idx = sector_div(stripe2, raid_disks);
2039 2040 2041 2042 2043 2044
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2045
			ddf_layout = 1;
2046 2047 2048 2049 2050 2051 2052
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2053 2054
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055 2056 2057 2058 2059 2060
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2061
			ddf_layout = 1;
2062 2063 2064 2065
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2066
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2067 2068
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2069
			ddf_layout = 1;
2070 2071 2072 2073
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2074
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2075 2076 2077 2078 2079 2080
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2081
			pd_idx = sector_div(stripe2, raid_disks-1);
2082 2083 2084 2085 2086 2087
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2088
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2089 2090 2091 2092 2093
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2094
			pd_idx = sector_div(stripe2, raid_disks-1);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2105
		default:
2106
			BUG();
2107 2108
		}
		break;
L
Linus Torvalds 已提交
2109 2110
	}

2111 2112 2113
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2114
		sh->ddf_layout = ddf_layout;
2115
	}
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2124
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2125
{
2126
	struct r5conf *conf = sh->raid_conf;
2127 2128
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2129
	sector_t new_sector = sh->sector, check;
2130 2131
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2132 2133
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2134 2135
	sector_t stripe;
	int chunk_offset;
2136 2137
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2138
	sector_t r_sector;
2139
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2140

2141

L
Linus Torvalds 已提交
2142 2143 2144
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2145 2146 2147 2148 2149
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2150
		switch (algorithm) {
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2162 2163 2164 2165 2166
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2167
		default:
2168
			BUG();
2169 2170 2171
		}
		break;
	case 6:
2172
		if (i == sh->qd_idx)
2173
			return 0; /* It is the Q disk */
2174
		switch (algorithm) {
2175 2176
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2177 2178 2179 2180
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2195 2196 2197 2198 2199 2200
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2201
			/* Like left_symmetric, but P is before Q */
2202 2203
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2204 2205 2206 2207 2208 2209
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2225
		default:
2226
			BUG();
2227 2228
		}
		break;
L
Linus Torvalds 已提交
2229 2230 2231
	}

	chunk_number = stripe * data_disks + i;
2232
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2233

2234
	check = raid5_compute_sector(conf, r_sector,
2235
				     previous, &dummy1, &sh2);
2236 2237
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2238 2239
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244 2245
		return 0;
	}
	return r_sector;
}


2246
static void
2247
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2248
			 int rcw, int expand)
2249 2250
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2251
	struct r5conf *conf = sh->raid_conf;
2252
	int level = conf->level;
2253 2254 2255 2256 2257 2258 2259

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2260 2261 2262 2263
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2264

2265
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2266 2267 2268 2269 2270 2271

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2272
				set_bit(R5_Wantdrain, &dev->flags);
2273 2274
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2275
				s->locked++;
2276 2277
			}
		}
2278
		if (s->locked + conf->max_degraded == disks)
2279
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2280
				atomic_inc(&conf->pending_full_writes);
2281
	} else {
2282
		BUG_ON(level == 6);
2283 2284 2285
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2286
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2287 2288
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2289
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2290 2291 2292 2293 2294 2295 2296 2297

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2298 2299
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2300 2301
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2302
				s->locked++;
2303 2304 2305 2306
			}
		}
	}

2307
	/* keep the parity disk(s) locked while asynchronous operations
2308 2309 2310 2311
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2312
	s->locked++;
2313

2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2323
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2324
		__func__, (unsigned long long)sh->sector,
2325
		s->locked, s->ops_request);
2326
}
2327

L
Linus Torvalds 已提交
2328 2329
/*
 * Each stripe/dev can have one or more bion attached.
2330
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2331 2332 2333 2334 2335
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2336
	struct r5conf *conf = sh->raid_conf;
2337
	int firstwrite=0;
L
Linus Torvalds 已提交
2338

2339
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2345
	if (forwrite) {
L
Linus Torvalds 已提交
2346
		bip = &sh->dev[dd_idx].towrite;
2347 2348 2349
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2359
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2360 2361 2362
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2363
	bi->bi_phys_segments++;
2364

L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395 2396 2397
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2398
static void end_reshape(struct r5conf *conf);
2399

2400
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2401
			    struct stripe_head *sh)
2402
{
2403
	int sectors_per_chunk =
2404
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2405
	int dd_idx;
2406
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2407
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2408

2409 2410
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2411
			     *sectors_per_chunk + chunk_offset,
2412
			     previous,
2413
			     &dd_idx, sh);
2414 2415
}

2416
static void
2417
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2418 2419 2420 2421 2422 2423 2424 2425 2426
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2427
			struct md_rdev *rdev;
2428 2429 2430
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2431 2432 2433
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2434
			rcu_read_unlock();
2435 2436 2437 2438 2439 2440 2441 2442
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2460
			if (!raid5_dec_bi_phys_segments(bi)) {
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2475
			if (!raid5_dec_bi_phys_segments(bi)) {
2476 2477 2478 2479 2480 2481 2482
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2483 2484 2485 2486 2487 2488
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2499
				if (!raid5_dec_bi_phys_segments(bi)) {
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2510 2511 2512 2513
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2514 2515
	}

2516 2517 2518
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2519 2520
}

2521
static void
2522
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2523 2524 2525 2526 2527 2528 2529
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2530
	s->replacing = 0;
2531
	/* There is nothing more to do for sync/check/repair.
2532 2533 2534
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2535
	 * For recover/replace we need to record a bad block on all
2536 2537
	 * non-sync devices, or abort the recovery
	 */
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2561
	}
2562
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2563 2564
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2581
/* fetch_block - checks the given member device to see if its data needs
2582 2583 2584
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2585
 * 0 to tell the loop in handle_stripe_fill to continue
2586
 */
2587 2588
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2589
{
2590
	struct r5dev *dev = &sh->dev[disk_idx];
2591 2592
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2593

2594
	/* is the data in this block needed, and can we get it? */
2595 2596 2597 2598 2599
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2600
	     (s->replacing && want_replace(sh, disk_idx)) ||
2601 2602
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2603 2604 2605
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2606 2607 2608 2609 2610 2611
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2612 2613
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2614 2615
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2616
			 */
2617 2618 2619 2620 2621 2622 2623 2624
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2625 2626 2627 2628 2629 2630
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2644
			}
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2664 2665
		}
	}
2666 2667 2668 2669 2670

	return 0;
}

/**
2671
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2672
 */
2673 2674 2675
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2686
			if (fetch_block(sh, s, i, disks))
2687
				break;
2688 2689 2690 2691
	set_bit(STRIPE_HANDLE, &sh->state);
}


2692
/* handle_stripe_clean_event
2693 2694 2695 2696
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2697
static void handle_stripe_clean_event(struct r5conf *conf,
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2711
				pr_debug("Return write for disc %d\n", i);
2712 2713 2714 2715 2716 2717
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2718
					if (!raid5_dec_bi_phys_segments(wbi)) {
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2736 2737 2738 2739

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2740 2741
}

2742
static void handle_stripe_dirtying(struct r5conf *conf,
2743 2744 2745
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2746 2747
{
	int rmw = 0, rcw = 0, i;
2748 2749 2750 2751 2752 2753 2754
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2755 2756 2757 2758
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2759 2760
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2761 2762 2763 2764 2765 2766 2767 2768
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2769 2770 2771
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2772 2773 2774 2775
			else
				rcw += 2*disks;
		}
	}
2776
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2777 2778 2779 2780 2781 2782 2783 2784
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2785 2786
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2787 2788 2789
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2790
					pr_debug("Read_old block "
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2801
	if (rcw <= rmw && rcw > 0) {
2802
		/* want reconstruct write, but need to get some data */
2803
		rcw = 0;
2804 2805 2806
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2807
			    i != sh->pd_idx && i != sh->qd_idx &&
2808
			    !test_bit(R5_LOCKED, &dev->flags) &&
2809
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2810 2811 2812 2813
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2814 2815
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2816
					pr_debug("Read_old block "
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2827
	}
2828 2829 2830
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2831 2832
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2833 2834
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2835 2836 2837
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2838 2839 2840
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2841
		schedule_reconstruction(sh, s, rcw == 0, 0);
2842 2843
}

2844
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2845 2846
				struct stripe_head_state *s, int disks)
{
2847
	struct r5dev *dev = NULL;
2848

2849
	set_bit(STRIPE_HANDLE, &sh->state);
2850

2851 2852 2853
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2854 2855
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2856 2857
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2858 2859
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2860
			break;
2861
		}
2862
		dev = &sh->dev[s->failed_num[0]];
2863 2864 2865 2866 2867 2868 2869 2870 2871
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2872

2873 2874 2875 2876 2877
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2878
		s->locked++;
2879
		set_bit(R5_Wantwrite, &dev->flags);
2880

2881 2882
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2899
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2911
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2912 2913 2914 2915
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2916
				sh->ops.target2 = -1;
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2928 2929 2930 2931
	}
}


2932
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2933
				  struct stripe_head_state *s,
2934
				  int disks)
2935 2936
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2937
	int qd_idx = sh->qd_idx;
2938
	struct r5dev *dev;
2939 2940 2941 2942

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2943

2944 2945 2946 2947 2948 2949
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2950 2951 2952
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2953
		if (s->failed == s->q_failed) {
2954
			/* The only possible failed device holds Q, so it
2955 2956 2957
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2958
			sh->check_state = check_state_run;
2959
		}
2960
		if (!s->q_failed && s->failed < 2) {
2961
			/* Q is not failed, and we didn't use it to generate
2962 2963
			 * anything, so it makes sense to check it
			 */
2964 2965 2966 2967
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2968 2969
		}

2970 2971
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2972

2973 2974 2975 2976
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2977
		}
2978 2979 2980 2981 2982 2983 2984
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2985 2986
		}

2987 2988 2989 2990 2991
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2992

2993 2994 2995
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2996 2997

		/* now write out any block on a failed drive,
2998
		 * or P or Q if they were recomputed
2999
		 */
3000
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3001
		if (s->failed == 2) {
3002
			dev = &sh->dev[s->failed_num[1]];
3003 3004 3005 3006 3007
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3008
			dev = &sh->dev[s->failed_num[0]];
3009 3010 3011 3012
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3013
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3014 3015 3016 3017 3018
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3019
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3020 3021 3022 3023 3024 3025 3026 3027
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3092 3093 3094
	}
}

3095
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3096 3097 3098 3099 3100 3101
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3102
	struct dma_async_tx_descriptor *tx = NULL;
3103 3104
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3105
		if (i != sh->pd_idx && i != sh->qd_idx) {
3106
			int dd_idx, j;
3107
			struct stripe_head *sh2;
3108
			struct async_submit_ctl submit;
3109

3110
			sector_t bn = compute_blocknr(sh, i, 1);
3111 3112
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3113
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3126 3127

			/* place all the copies on one channel */
3128
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3129
			tx = async_memcpy(sh2->dev[dd_idx].page,
3130
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3131
					  &submit);
3132

3133 3134 3135 3136
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3137
				    j != sh2->qd_idx &&
3138 3139 3140 3141 3142 3143 3144
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3145

3146
		}
3147 3148 3149 3150 3151
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3152
}
L
Linus Torvalds 已提交
3153 3154 3155 3156

/*
 * handle_stripe - do things to a stripe.
 *
3157 3158
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3159
 * Possible results:
3160 3161
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3162 3163 3164 3165 3166
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3167

3168
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3169
{
3170
	struct r5conf *conf = sh->raid_conf;
3171
	int disks = sh->disks;
3172 3173
	struct r5dev *dev;
	int i;
3174
	int do_recovery = 0;
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179 3180 3181
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3182

3183
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3184
	rcu_read_lock();
3185
	spin_lock_irq(&conf->device_lock);
3186
	for (i=disks; i--; ) {
3187
		struct md_rdev *rdev;
3188 3189 3190
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3191

3192
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3193

3194
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3195 3196
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3197 3198 3199 3200 3201 3202 3203 3204
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3205

3206
		/* now count some things */
3207 3208 3209 3210
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3211
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3212 3213
			s->compute++;
			BUG_ON(s->compute > 2);
3214
		}
L
Linus Torvalds 已提交
3215

3216
		if (test_bit(R5_Wantfill, &dev->flags))
3217
			s->to_fill++;
3218
		else if (dev->toread)
3219
			s->to_read++;
3220
		if (dev->towrite) {
3221
			s->to_write++;
3222
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3223
				s->non_overwrite++;
3224
		}
3225
		if (dev->written)
3226
			s->written++;
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3237 3238
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3239 3240 3241
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3242 3243
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3256
		}
3257 3258 3259
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3260 3261
		else if (is_bad) {
			/* also not in-sync */
3262 3263
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3264 3265 3266 3267 3268 3269 3270
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3271
			set_bit(R5_Insync, &dev->flags);
3272
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3273
			/* in sync if before recovery_offset */
3274 3275 3276 3277 3278 3279 3280 3281 3282
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3283
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3284 3285 3286 3287 3288 3289 3290
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3291
				s->handle_bad_blocks = 1;
3292
				atomic_inc(&rdev2->nr_pending);
3293 3294 3295
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3296
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3297 3298 3299 3300 3301
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3302
				s->handle_bad_blocks = 1;
3303
				atomic_inc(&rdev2->nr_pending);
3304 3305 3306
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3307 3308 3309 3310 3311 3312 3313 3314 3315
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3316
		if (!test_bit(R5_Insync, &dev->flags)) {
3317 3318 3319
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3320
		}
3321 3322 3323
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3324 3325 3326
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3327 3328
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3329
		}
L
Linus Torvalds 已提交
3330
	}
3331
	spin_unlock_irq(&conf->device_lock);
3332 3333 3334 3335
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3336
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3337 3338 3339 3340 3341
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3342 3343
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3344 3345 3346 3347
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3348
	rcu_read_unlock();
3349 3350 3351 3352 3353
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3354
	struct r5conf *conf = sh->raid_conf;
3355
	int i;
3356 3357
	int prexor;
	int disks = sh->disks;
3358
	struct r5dev *pdev, *qdev;
3359 3360

	clear_bit(STRIPE_HANDLE, &sh->state);
3361
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3379

3380
	analyse_stripe(sh, &s);
3381

3382 3383 3384 3385 3386
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3387 3388
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3389
		    s.replacing || s.to_write || s.written) {
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3410 3411 3412 3413 3414
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3415
		if (s.syncing + s.replacing)
3416 3417
			handle_failed_sync(conf, sh, &s);
	}
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3446 3447 3448
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3449 3450
		handle_stripe_fill(sh, &s, disks);

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3509

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3580

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3597

3598
finish:
3599
	/* wait for this device to become unblocked */
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
3612

3613 3614
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3615
			struct md_rdev *rdev;
3616 3617 3618 3619 3620 3621 3622 3623 3624
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3625 3626 3627
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3628
						     STRIPE_SECTORS, 0);
3629 3630
				rdev_dec_pending(rdev, conf->mddev);
			}
3631 3632
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3633 3634 3635
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3636
				rdev_clear_badblocks(rdev, sh->sector,
3637
						     STRIPE_SECTORS, 0);
3638 3639
				rdev_dec_pending(rdev, conf->mddev);
			}
3640 3641
		}

3642 3643 3644
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3645
	ops_run_io(sh, &s);
3646

3647
	if (s.dec_preread_active) {
3648
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3649
		 * is waiting on a flush, it won't continue until the writes
3650 3651 3652 3653 3654 3655 3656 3657
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3658
	return_io(s.return_bi);
3659

3660
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3661 3662
}

3663
static void raid5_activate_delayed(struct r5conf *conf)
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3674
			list_add_tail(&sh->lru, &conf->hold_list);
3675
		}
N
NeilBrown 已提交
3676
	}
3677 3678
}

3679
static void activate_bit_delay(struct r5conf *conf)
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3693
int md_raid5_congested(struct mddev *mddev, int bits)
3694
{
3695
	struct r5conf *conf = mddev->private;
3696 3697 3698 3699

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3700

3701 3702 3703 3704 3705 3706 3707 3708 3709
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3710 3711 3712 3713
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3714
	struct mddev *mddev = data;
N
NeilBrown 已提交
3715 3716 3717 3718

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3719

3720 3721 3722
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3723 3724 3725
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3726
{
3727
	struct mddev *mddev = q->queuedata;
3728
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3729
	int max;
3730
	unsigned int chunk_sectors = mddev->chunk_sectors;
3731
	unsigned int bio_sectors = bvm->bi_size >> 9;
3732

3733
	if ((bvm->bi_rw & 1) == WRITE)
3734 3735
		return biovec->bv_len; /* always allow writes to be mergeable */

3736 3737
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3738 3739 3740 3741 3742 3743 3744 3745
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3746

3747
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3748 3749
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3750
	unsigned int chunk_sectors = mddev->chunk_sectors;
3751 3752
	unsigned int bio_sectors = bio->bi_size >> 9;

3753 3754
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3755 3756 3757 3758
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3759 3760 3761 3762
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3763
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3777
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3788
		conf->retry_read_aligned_list = bi->bi_next;
3789
		bi->bi_next = NULL;
3790 3791 3792 3793
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3794 3795 3796 3797 3798 3799 3800
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3801 3802 3803 3804 3805 3806
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3807
static void raid5_align_endio(struct bio *bi, int error)
3808 3809
{
	struct bio* raid_bi  = bi->bi_private;
3810
	struct mddev *mddev;
3811
	struct r5conf *conf;
3812
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3813
	struct md_rdev *rdev;
3814

3815
	bio_put(bi);
3816 3817 3818

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3819 3820
	mddev = rdev->mddev;
	conf = mddev->private;
3821 3822 3823 3824

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3825
		bio_endio(raid_bi, 0);
3826 3827
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3828
		return;
3829 3830 3831
	}


3832
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3833 3834

	add_bio_to_retry(raid_bi, conf);
3835 3836
}

3837 3838
static int bio_fits_rdev(struct bio *bi)
{
3839
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3840

3841
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3842 3843
		return 0;
	blk_recount_segments(q, bi);
3844
	if (bi->bi_phys_segments > queue_max_segments(q))
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3857
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3858
{
3859
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3860
	int dd_idx;
3861
	struct bio* align_bi;
3862
	struct md_rdev *rdev;
3863
	sector_t end_sector;
3864 3865

	if (!in_chunk_boundary(mddev, raid_bio)) {
3866
		pr_debug("chunk_aligned_read : non aligned\n");
3867 3868 3869
		return 0;
	}
	/*
3870
	 * use bio_clone_mddev to make a copy of the bio
3871
	 */
3872
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3884 3885
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3886
						    &dd_idx, NULL);
3887

3888
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3889
	rcu_read_lock();
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3901 3902 3903
		sector_t first_bad;
		int bad_sectors;

3904 3905
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3906 3907 3908 3909
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

3910 3911 3912 3913
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3914 3915 3916 3917 3918
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3919 3920 3921
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

3922 3923 3924 3925 3926 3927 3928
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3929 3930 3931 3932
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3933
		bio_put(align_bi);
3934 3935 3936 3937
		return 0;
	}
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
3948
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3990

3991
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3992
{
3993
	struct r5conf *conf = mddev->private;
3994
	int dd_idx;
L
Linus Torvalds 已提交
3995 3996 3997
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3998
	const int rw = bio_data_dir(bi);
3999
	int remaining;
L
Linus Torvalds 已提交
4000

T
Tejun Heo 已提交
4001 4002
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4003
		return;
4004 4005
	}

4006
	md_write_start(mddev, bi);
4007

4008
	if (rw == READ &&
4009
	     mddev->reshape_position == MaxSector &&
4010
	     chunk_aligned_read(mddev,bi))
4011
		return;
4012

L
Linus Torvalds 已提交
4013 4014 4015 4016
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4017

L
Linus Torvalds 已提交
4018 4019
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4020
		int previous;
4021

4022
	retry:
4023
		previous = 0;
4024
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4025
		if (unlikely(conf->reshape_progress != MaxSector)) {
4026
			/* spinlock is needed as reshape_progress may be
4027 4028
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4029
			 * Of course reshape_progress could change after
4030 4031 4032 4033
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4034
			spin_lock_irq(&conf->device_lock);
4035
			if (mddev->reshape_backwards
4036 4037
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4038 4039
				previous = 1;
			} else {
4040
				if (mddev->reshape_backwards
4041 4042
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4043 4044 4045 4046 4047
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4048 4049
			spin_unlock_irq(&conf->device_lock);
		}
4050

4051 4052
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4053
						  &dd_idx, NULL);
4054
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4055 4056 4057
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4058
		sh = get_active_stripe(conf, new_sector, previous,
4059
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4060
		if (sh) {
4061
			if (unlikely(previous)) {
4062
				/* expansion might have moved on while waiting for a
4063 4064 4065 4066 4067 4068
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4069 4070 4071
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4072
				if (mddev->reshape_backwards
4073 4074
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4075 4076 4077 4078 4079
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4080
					schedule();
4081 4082 4083
					goto retry;
				}
			}
4084

4085
			if (rw == WRITE &&
4086
			    logical_sector >= mddev->suspend_lo &&
4087 4088
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4099 4100
				goto retry;
			}
4101 4102

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4103
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4104 4105
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4106 4107
				 * and wait a while
				 */
N
NeilBrown 已提交
4108
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4114 4115
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4116
			if ((bi->bi_rw & REQ_SYNC) &&
4117 4118
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
N
NeilBrown 已提交
4119
			mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
4120 4121 4122 4123 4124 4125 4126 4127
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
	}
4128

L
Linus Torvalds 已提交
4129
	spin_lock_irq(&conf->device_lock);
4130
	remaining = raid5_dec_bi_phys_segments(bi);
4131 4132
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4133

4134
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4135
			md_write_end(mddev);
4136

4137
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4138 4139 4140
	}
}

4141
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4142

4143
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4144
{
4145 4146 4147 4148 4149 4150 4151 4152 4153
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4154
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4155
	struct stripe_head *sh;
4156
	sector_t first_sector, last_sector;
4157 4158 4159
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4160 4161
	int i;
	int dd_idx;
4162
	sector_t writepos, readpos, safepos;
4163
	sector_t stripe_addr;
4164
	int reshape_sectors;
4165
	struct list_head stripes;
4166

4167 4168
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4169
		if (mddev->reshape_backwards &&
4170 4171 4172
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4173
		} else if (!mddev->reshape_backwards &&
4174 4175
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4176
		sector_div(sector_nr, new_data_disks);
4177
		if (sector_nr) {
4178 4179
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4180 4181 4182
			*skipped = 1;
			return sector_nr;
		}
4183 4184
	}

4185 4186 4187 4188
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4189 4190
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4191
	else
4192
		reshape_sectors = mddev->chunk_sectors;
4193

4194 4195 4196 4197 4198
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4199
	 */
4200
	writepos = conf->reshape_progress;
4201
	sector_div(writepos, new_data_disks);
4202 4203
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4204
	safepos = conf->reshape_safe;
4205
	sector_div(safepos, data_disks);
4206
	if (mddev->reshape_backwards) {
4207
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4208
		readpos += reshape_sectors;
4209
		safepos += reshape_sectors;
4210
	} else {
4211
		writepos += reshape_sectors;
4212 4213
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4214
	}
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4231 4232 4233 4234
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4235 4236 4237 4238
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4251 4252 4253 4254 4255 4256
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4257
	if ((mddev->reshape_backwards
4258 4259 4260
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4261 4262 4263
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4264
		mddev->reshape_position = conf->reshape_progress;
4265
		mddev->curr_resync_completed = sector_nr;
4266
		conf->reshape_checkpoint = jiffies;
4267
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4268
		md_wakeup_thread(mddev->thread);
4269
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4270 4271
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4272
		conf->reshape_safe = mddev->reshape_position;
4273 4274
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4275
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4276 4277
	}

4278
	INIT_LIST_HEAD(&stripes);
4279
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4280
		int j;
4281
		int skipped_disk = 0;
4282
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4283 4284 4285 4286 4287 4288 4289 4290 4291
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4292
			if (conf->level == 6 &&
4293
			    j == sh->qd_idx)
4294
				continue;
4295
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4296
			if (s < raid5_size(mddev, 0, 0)) {
4297
				skipped_disk = 1;
4298 4299 4300 4301 4302 4303
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4304
		if (!skipped_disk) {
4305 4306 4307
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4308
		list_add(&sh->lru, &stripes);
4309 4310
	}
	spin_lock_irq(&conf->device_lock);
4311
	if (mddev->reshape_backwards)
4312
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4313
	else
4314
		conf->reshape_progress += reshape_sectors * new_data_disks;
4315 4316 4317 4318 4319 4320 4321
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4322
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4323
				     1, &dd_idx, NULL);
4324
	last_sector =
4325
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4326
					    * new_data_disks - 1),
4327
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4328 4329
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4330
	while (first_sector <= last_sector) {
4331
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4332 4333 4334 4335 4336
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4337 4338 4339 4340 4341 4342 4343 4344
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4345 4346 4347
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4348
	sector_nr += reshape_sectors;
4349 4350
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4351 4352 4353
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4354
		mddev->reshape_position = conf->reshape_progress;
4355
		mddev->curr_resync_completed = sector_nr;
4356
		conf->reshape_checkpoint = jiffies;
4357 4358 4359 4360 4361 4362
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4363
		conf->reshape_safe = mddev->reshape_position;
4364 4365
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4366
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4367
	}
4368
	return reshape_sectors;
4369 4370 4371
}

/* FIXME go_faster isn't used */
4372
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4373
{
4374
	struct r5conf *conf = mddev->private;
4375
	struct stripe_head *sh;
A
Andre Noll 已提交
4376
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4377
	sector_t sync_blocks;
4378 4379
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4380

4381
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4382
		/* just being told to finish up .. nothing much to do */
4383

4384 4385 4386 4387
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4388 4389 4390 4391

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4392
		else /* completed sync */
4393 4394 4395
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4396 4397
		return 0;
	}
4398

4399 4400 4401
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4402 4403
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4404

4405 4406 4407 4408 4409 4410
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4411
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4412 4413 4414
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4415
	if (mddev->degraded >= conf->max_degraded &&
4416
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4417
		sector_t rv = mddev->dev_sectors - sector_nr;
4418
		*skipped = 1;
L
Linus Torvalds 已提交
4419 4420
		return rv;
	}
4421
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4422
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4423 4424 4425 4426 4427 4428
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4429

N
NeilBrown 已提交
4430 4431
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4432
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4433
	if (sh == NULL) {
4434
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4435
		/* make sure we don't swamp the stripe cache if someone else
4436
		 * is trying to get access
L
Linus Torvalds 已提交
4437
		 */
4438
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4439
	}
4440 4441 4442 4443
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4444
	for (i = 0; i < conf->raid_disks; i++)
4445 4446 4447 4448 4449
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4450
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4451

4452
	handle_stripe(sh);
L
Linus Torvalds 已提交
4453 4454 4455 4456 4457
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4458
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4471
	int dd_idx;
4472 4473 4474 4475 4476 4477
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4478
	sector = raid5_compute_sector(conf, logical_sector,
4479
				      0, &dd_idx, NULL);
4480 4481 4482
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4483 4484 4485
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4486

4487
		if (scnt < raid5_bi_hw_segments(raid_bio))
4488 4489 4490
			/* already done this stripe */
			continue;

4491
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4492 4493 4494

		if (!sh) {
			/* failed to get a stripe - must wait */
4495
			raid5_set_bi_hw_segments(raid_bio, scnt);
4496 4497 4498 4499
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4500 4501
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4502
			raid5_set_bi_hw_segments(raid_bio, scnt);
4503 4504 4505 4506
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4507
		handle_stripe(sh);
4508 4509 4510 4511
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4512
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4513
	spin_unlock_irq(&conf->device_lock);
4514 4515
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4516 4517 4518 4519 4520 4521
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527 4528
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4529
static void raid5d(struct mddev *mddev)
L
Linus Torvalds 已提交
4530 4531
{
	struct stripe_head *sh;
4532
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4533
	int handled;
4534
	struct blk_plug plug;
L
Linus Torvalds 已提交
4535

4536
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4537 4538 4539

	md_check_recovery(mddev);

4540
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4541 4542 4543
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4544
		struct bio *bio;
L
Linus Torvalds 已提交
4545

4546
		if (
4547 4548 4549
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4550
			spin_unlock_irq(&conf->device_lock);
4551
			bitmap_unplug(mddev->bitmap);
4552
			spin_lock_irq(&conf->device_lock);
4553
			conf->seq_write = conf->seq_flush;
4554 4555
			activate_bit_delay(conf);
		}
4556
		raid5_activate_delayed(conf);
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4568 4569
		sh = __get_priority_stripe(conf);

4570
		if (!sh)
L
Linus Torvalds 已提交
4571 4572 4573 4574
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4575 4576 4577
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4578

4579 4580 4581
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4582 4583
		spin_lock_irq(&conf->device_lock);
	}
4584
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4585 4586 4587

	spin_unlock_irq(&conf->device_lock);

4588
	async_tx_issue_pending_all();
4589
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4590

4591
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4592 4593
}

4594
static ssize_t
4595
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4596
{
4597
	struct r5conf *conf = mddev->private;
4598 4599 4600 4601
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4602 4603
}

4604
int
4605
raid5_set_cache_size(struct mddev *mddev, int size)
4606
{
4607
	struct r5conf *conf = mddev->private;
4608 4609
	int err;

4610
	if (size <= 16 || size > 32768)
4611
		return -EINVAL;
4612
	while (size < conf->max_nr_stripes) {
4613 4614 4615 4616 4617
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4618 4619 4620
	err = md_allow_write(mddev);
	if (err)
		return err;
4621
	while (size > conf->max_nr_stripes) {
4622 4623 4624 4625
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4626 4627 4628 4629 4630
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4631
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4632
{
4633
	struct r5conf *conf = mddev->private;
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4647 4648
	return len;
}
4649

4650 4651 4652 4653
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4654

4655
static ssize_t
4656
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4657
{
4658
	struct r5conf *conf = mddev->private;
4659 4660 4661 4662 4663 4664 4665
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4666
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4667
{
4668
	struct r5conf *conf = mddev->private;
4669
	unsigned long new;
4670 4671 4672 4673 4674
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4675
	if (strict_strtoul(page, 10, &new))
4676
		return -EINVAL;
4677
	if (new > conf->max_nr_stripes)
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4689
static ssize_t
4690
stripe_cache_active_show(struct mddev *mddev, char *page)
4691
{
4692
	struct r5conf *conf = mddev->private;
4693 4694 4695 4696
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4697 4698
}

4699 4700
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4701

4702
static struct attribute *raid5_attrs[] =  {
4703 4704
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4705
	&raid5_preread_bypass_threshold.attr,
4706 4707
	NULL,
};
4708 4709 4710
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4711 4712
};

4713
static sector_t
4714
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4715
{
4716
	struct r5conf *conf = mddev->private;
4717 4718 4719

	if (!sectors)
		sectors = mddev->dev_sectors;
4720
	if (!raid_disks)
4721
		/* size is defined by the smallest of previous and new size */
4722
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4723

4724
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4725
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4726 4727 4728
	return sectors * (raid_disks - conf->max_degraded);
}

4729
static void raid5_free_percpu(struct r5conf *conf)
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4741
		kfree(percpu->scribble);
4742 4743 4744 4745 4746 4747 4748 4749 4750
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4751
static void free_conf(struct r5conf *conf)
4752 4753
{
	shrink_stripes(conf);
4754
	raid5_free_percpu(conf);
4755 4756 4757 4758 4759
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4760 4761 4762 4763
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4764
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4765 4766 4767 4768 4769 4770
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4771
		if (conf->level == 6 && !percpu->spare_page)
4772
			percpu->spare_page = alloc_page(GFP_KERNEL);
4773 4774 4775 4776 4777 4778 4779
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4780 4781
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4782
			return notifier_from_errno(-ENOMEM);
4783 4784 4785 4786 4787
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4788
		kfree(percpu->scribble);
4789
		percpu->spare_page = NULL;
4790
		percpu->scribble = NULL;
4791 4792 4793 4794 4795 4796 4797 4798
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

4799
static int raid5_alloc_percpu(struct r5conf *conf)
4800 4801 4802
{
	unsigned long cpu;
	struct page *spare_page;
4803
	struct raid5_percpu __percpu *allcpus;
4804
	void *scribble;
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4815 4816 4817 4818 4819 4820 4821 4822
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4823
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4824
		if (!scribble) {
4825 4826 4827
			err = -ENOMEM;
			break;
		}
4828
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

4841
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
4842
{
4843
	struct r5conf *conf;
4844
	int raid_disk, memory, max_disks;
4845
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
4846
	struct disk_info *disk;
4847
	char pers_name[6];
L
Linus Torvalds 已提交
4848

N
NeilBrown 已提交
4849 4850 4851
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4852
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4853 4854
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4855
	}
N
NeilBrown 已提交
4856 4857 4858 4859
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4860
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4861 4862
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4863
	}
N
NeilBrown 已提交
4864
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4865
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4866 4867
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4868 4869
	}

4870 4871 4872
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4873 4874
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4875
		return ERR_PTR(-EINVAL);
4876 4877
	}

4878
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
4879
	if (conf == NULL)
L
Linus Torvalds 已提交
4880
		goto abort;
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
4893
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
4894 4895 4896 4897 4898

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4899
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4900 4901
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4902

4903
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4904 4905 4906
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4907

L
Linus Torvalds 已提交
4908 4909
	conf->mddev = mddev;

4910
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4911 4912
		goto abort;

4913 4914 4915 4916
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4917
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4918

N
NeilBrown 已提交
4919
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
4920
		raid_disk = rdev->raid_disk;
4921
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4922 4923 4924 4925
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

4926 4927 4928 4929 4930 4931 4932 4933 4934
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
4935

4936
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4937
			char b[BDEVNAME_SIZE];
4938 4939 4940
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4941
		} else if (rdev->saved_raid_disk != raid_disk)
4942 4943
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4944 4945
	}

4946
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4947
	conf->level = mddev->new_level;
4948 4949 4950 4951
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4952
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4953
	conf->max_nr_stripes = NR_STRIPES;
4954
	conf->reshape_progress = mddev->reshape_position;
4955
	if (conf->reshape_progress != MaxSector) {
4956
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4957 4958
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4959

N
NeilBrown 已提交
4960
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4961
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4962 4963
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4964 4965
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4966 4967
		goto abort;
	} else
4968 4969
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4970

4971 4972
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
4973 4974
	if (!conf->thread) {
		printk(KERN_ERR
4975
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4976
		       mdname(mddev));
4977 4978
		goto abort;
	}
N
NeilBrown 已提交
4979 4980 4981 4982 4983

	return conf;

 abort:
	if (conf) {
4984
		free_conf(conf);
N
NeilBrown 已提交
4985 4986 4987 4988 4989
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

5017
static int run(struct mddev *mddev)
N
NeilBrown 已提交
5018
{
5019
	struct r5conf *conf;
5020
	int working_disks = 0;
5021
	int dirty_parity_disks = 0;
5022
	struct md_rdev *rdev;
5023
	sector_t reshape_offset = 0;
5024
	int i;
5025 5026
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5027

5028
	if (mddev->recovery_cp != MaxSector)
5029
		printk(KERN_NOTICE "md/raid:%s: not clean"
5030 5031
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5049 5050
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5061 5062 5063
		 */
		sector_t here_new, here_old;
		int old_disks;
5064
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5065

5066
		if (mddev->new_level != mddev->level) {
5067
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5078
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5079
			       (mddev->raid_disks - max_degraded))) {
5080 5081
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5082 5083
			return -EINVAL;
		}
5084
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5085 5086
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5087
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5088 5089 5090
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5091
		if (mddev->delta_disks == 0) {
5092 5093 5094 5095 5096 5097
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5098
			/* We cannot be sure it is safe to start an in-place
5099
			 * reshape.  It is only safe if user-space is monitoring
5100 5101 5102 5103 5104
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5105 5106 5107 5108 5109 5110 5111
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5112
				       mdname(mddev));
5113 5114
				return -EINVAL;
			}
5115
		} else if (mddev->reshape_backwards
5116
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5117 5118
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5119
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5120
			/* Reading from the same stripe as writing to - bad */
5121 5122 5123
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5124 5125
			return -EINVAL;
		}
5126 5127
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5128 5129 5130 5131
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5132
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5133
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5134
	}
N
NeilBrown 已提交
5135

5136 5137 5138 5139 5140
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5141 5142 5143
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5144
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5145 5146 5147 5148
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5160
			continue;
5161 5162 5163 5164 5165 5166 5167
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5168
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5169
			working_disks++;
5170 5171
			continue;
		}
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5200

5201 5202 5203
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5204
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5205

5206
	if (has_failed(conf)) {
5207
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5208
			" (%d/%d failed)\n",
5209
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5210 5211 5212
		goto abort;
	}

N
NeilBrown 已提交
5213
	/* device size must be a multiple of chunk size */
5214
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5215 5216
	mddev->resync_max_sectors = mddev->dev_sectors;

5217
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5218
	    mddev->recovery_cp != MaxSector) {
5219 5220
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5221 5222
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5223 5224 5225
			       mdname(mddev));
		else {
			printk(KERN_ERR
5226
			       "md/raid:%s: cannot start dirty degraded array.\n",
5227 5228 5229
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5230 5231 5232
	}

	if (mddev->degraded == 0)
5233 5234
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5235 5236
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5237
	else
5238 5239 5240 5241 5242
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5243 5244 5245

	print_raid5_conf(conf);

5246 5247
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5248 5249 5250 5251 5252 5253
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5254
							"reshape");
5255 5256
	}

L
Linus Torvalds 已提交
5257 5258

	/* Ok, everything is just fine now */
5259 5260
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5261 5262
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5263
		printk(KERN_WARNING
5264
		       "raid5: failed to create sysfs attributes for %s\n",
5265
		       mdname(mddev));
5266
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5267

5268
	if (mddev->queue) {
5269
		int chunk_size;
5270 5271 5272 5273 5274 5275 5276 5277 5278
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5279

5280
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5281

N
NeilBrown 已提交
5282 5283
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5284

5285 5286 5287 5288
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5289

5290
		rdev_for_each(rdev, mddev) {
5291 5292
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5293 5294 5295
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
		}
5296
	}
5297

L
Linus Torvalds 已提交
5298 5299
	return 0;
abort:
5300
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5301 5302
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5303
	mddev->private = NULL;
5304
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5305 5306 5307
	return -EIO;
}

5308
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5309
{
5310
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5311

5312
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5313 5314
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5315
	free_conf(conf);
5316 5317
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5318 5319 5320
	return 0;
}

5321
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5322
{
5323
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5324 5325
	int i;

5326 5327
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5328
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5329 5330 5331
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5332
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5333 5334 5335
	seq_printf (seq, "]");
}

5336
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5337 5338 5339 5340
{
	int i;
	struct disk_info *tmp;

5341
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5342 5343 5344 5345
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5346 5347 5348
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5349 5350 5351 5352 5353

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5354 5355 5356
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5357 5358 5359
	}
}

5360
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5361 5362
{
	int i;
5363
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5364
	struct disk_info *tmp;
5365 5366
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5367 5368 5369

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5389
		    && tmp->rdev->recovery_offset == MaxSector
5390
		    && !test_bit(Faulty, &tmp->rdev->flags)
5391
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5392
			count++;
5393
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5394 5395
		}
	}
5396
	spin_lock_irqsave(&conf->device_lock, flags);
5397
	mddev->degraded = calc_degraded(conf);
5398
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5399
	print_raid5_conf(conf);
5400
	return count;
L
Linus Torvalds 已提交
5401 5402
}

5403
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5404
{
5405
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5406
	int err = 0;
5407
	int number = rdev->raid_disk;
5408
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5409 5410 5411
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5434
	    (!p->replacement || p->replacement == rdev) &&
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463 5464
abort:

	print_raid5_conf(conf);
	return err;
}

5465
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5466
{
5467
	struct r5conf *conf = mddev->private;
5468
	int err = -EEXIST;
L
Linus Torvalds 已提交
5469 5470
	int disk;
	struct disk_info *p;
5471 5472
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5473

5474 5475 5476
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5477
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5478
		/* no point adding a device */
5479
		return -EINVAL;
L
Linus Torvalds 已提交
5480

5481 5482
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5483 5484

	/*
5485 5486
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5487
	 */
5488
	if (rdev->saved_raid_disk >= 0 &&
5489
	    rdev->saved_raid_disk >= first &&
5490
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5491 5492 5493
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5494 5495
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5496
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5497
			rdev->raid_disk = disk;
5498
			err = 0;
5499 5500
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5501
			rcu_assign_pointer(p->rdev, rdev);
5502
			goto out;
L
Linus Torvalds 已提交
5503
		}
5504 5505 5506
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5518
out:
L
Linus Torvalds 已提交
5519
	print_raid5_conf(conf);
5520
	return err;
L
Linus Torvalds 已提交
5521 5522
}

5523
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5524 5525 5526 5527 5528 5529 5530 5531
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5532
	sector_t newsize;
5533
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5534 5535 5536
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5537
		return -EINVAL;
5538 5539 5540 5541 5542 5543
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5544
	set_capacity(mddev->gendisk, mddev->array_sectors);
5545
	revalidate_disk(mddev->gendisk);
5546 5547
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5548
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5549 5550
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5551
	mddev->dev_sectors = sectors;
5552
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5553 5554 5555
	return 0;
}

5556
static int check_stripe_cache(struct mddev *mddev)
5557 5558 5559 5560 5561 5562 5563 5564 5565
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5566
	struct r5conf *conf = mddev->private;
5567 5568 5569 5570
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5571 5572
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5573 5574 5575 5576 5577 5578 5579
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5580
static int check_reshape(struct mddev *mddev)
5581
{
5582
	struct r5conf *conf = mddev->private;
5583

5584 5585
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5586
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5587
		return 0; /* nothing to do */
5588
	if (has_failed(conf))
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5602

5603
	if (!check_stripe_cache(mddev))
5604 5605
		return -ENOSPC;

5606
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5607 5608
}

5609
static int raid5_start_reshape(struct mddev *mddev)
5610
{
5611
	struct r5conf *conf = mddev->private;
5612
	struct md_rdev *rdev;
5613
	int spares = 0;
5614
	unsigned long flags;
5615

5616
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5617 5618
		return -EBUSY;

5619 5620 5621
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5622 5623 5624
	if (has_failed(conf))
		return -EINVAL;

5625
	rdev_for_each(rdev, mddev) {
5626 5627
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5628
			spares++;
5629
	}
5630

5631
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5632 5633 5634 5635 5636
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5637 5638 5639 5640 5641 5642
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5643
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5644 5645 5646 5647
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5648
	atomic_set(&conf->reshape_stripes, 0);
5649 5650
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5651
	conf->raid_disks += mddev->delta_disks;
5652 5653
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5654 5655
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5656 5657 5658 5659 5660
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5661
	if (mddev->reshape_backwards)
5662 5663 5664 5665
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5666 5667 5668 5669
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5670 5671 5672 5673
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5674
	 */
5675
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5676
		rdev_for_each(rdev, mddev)
5677 5678 5679 5680
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5681
					    >= conf->previous_raid_disks)
5682
						set_bit(In_sync, &rdev->flags);
5683
					else
5684
						rdev->recovery_offset = 0;
5685 5686

					if (sysfs_link_rdev(mddev, rdev))
5687
						/* Failure here is OK */;
5688
				}
5689 5690 5691 5692 5693
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5694

5695 5696 5697 5698
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5699
		spin_lock_irqsave(&conf->device_lock, flags);
5700
		mddev->degraded = calc_degraded(conf);
5701 5702
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5703
	mddev->raid_disks = conf->raid_disks;
5704
	mddev->reshape_position = conf->reshape_progress;
5705
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5706

5707 5708 5709 5710 5711
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5712
						"reshape");
5713 5714 5715 5716
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5717 5718 5719
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
5720
		conf->reshape_progress = MaxSector;
5721
		mddev->reshape_position = MaxSector;
5722 5723 5724
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5725
	conf->reshape_checkpoint = jiffies;
5726 5727 5728 5729 5730
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5731 5732 5733
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5734
static void end_reshape(struct r5conf *conf)
5735 5736
{

5737
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5738
		struct md_rdev *rdev;
5739 5740

		spin_lock_irq(&conf->device_lock);
5741
		conf->previous_raid_disks = conf->raid_disks;
5742 5743 5744
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
5745
		conf->reshape_progress = MaxSector;
5746
		spin_unlock_irq(&conf->device_lock);
5747
		wake_up(&conf->wait_for_overlap);
5748 5749 5750 5751

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5752
		if (conf->mddev->queue) {
5753
			int data_disks = conf->raid_disks - conf->max_degraded;
5754
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5755
						   / PAGE_SIZE);
5756 5757 5758
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5759 5760 5761
	}
}

5762 5763 5764
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5765
static void raid5_finish_reshape(struct mddev *mddev)
5766
{
5767
	struct r5conf *conf = mddev->private;
5768 5769 5770

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5771 5772 5773
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5774
			revalidate_disk(mddev->gendisk);
5775 5776
		} else {
			int d;
5777 5778 5779
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
5780 5781
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5782
			     d++) {
5783
				struct md_rdev *rdev = conf->disks[d].rdev;
5784 5785 5786 5787 5788
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
5789
			}
5790
		}
5791
		mddev->layout = conf->algorithm;
5792
		mddev->chunk_sectors = conf->chunk_sectors;
5793 5794
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5795
		mddev->reshape_backwards = 0;
5796 5797 5798
	}
}

5799
static void raid5_quiesce(struct mddev *mddev, int state)
5800
{
5801
	struct r5conf *conf = mddev->private;
5802 5803

	switch(state) {
5804 5805 5806 5807
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5808 5809
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5810 5811 5812 5813
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5814
		wait_event_lock_irq(conf->wait_for_stripe,
5815 5816
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5817
				    conf->device_lock, /* nothing */);
5818
		conf->quiesce = 1;
5819
		spin_unlock_irq(&conf->device_lock);
5820 5821
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5822 5823 5824 5825 5826 5827
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5828
		wake_up(&conf->wait_for_overlap);
5829 5830 5831 5832
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5833

5834

5835
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5836
{
5837
	struct r0conf *raid0_conf = mddev->private;
5838
	sector_t sectors;
5839

D
Dan Williams 已提交
5840
	/* for raid0 takeover only one zone is supported */
5841
	if (raid0_conf->nr_strip_zones > 1) {
5842 5843
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5844 5845 5846
		return ERR_PTR(-EINVAL);
	}

5847 5848
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5849
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5850
	mddev->new_level = level;
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5862
static void *raid5_takeover_raid1(struct mddev *mddev)
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5884
	mddev->new_chunk_sectors = chunksect;
5885 5886 5887 5888

	return setup_conf(mddev);
}

5889
static void *raid5_takeover_raid6(struct mddev *mddev)
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5922

5923
static int raid5_check_reshape(struct mddev *mddev)
5924
{
5925 5926 5927 5928
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5929
	 */
5930
	struct r5conf *conf = mddev->private;
5931
	int new_chunk = mddev->new_chunk_sectors;
5932

5933
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5934 5935
		return -EINVAL;
	if (new_chunk > 0) {
5936
		if (!is_power_of_2(new_chunk))
5937
			return -EINVAL;
5938
		if (new_chunk < (PAGE_SIZE>>9))
5939
			return -EINVAL;
5940
		if (mddev->array_sectors & (new_chunk-1))
5941 5942 5943 5944 5945 5946
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5947
	if (mddev->raid_disks == 2) {
5948 5949 5950 5951
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5952 5953
		}
		if (new_chunk > 0) {
5954 5955
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5956 5957 5958
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5959
	}
5960
	return check_reshape(mddev);
5961 5962
}

5963
static int raid6_check_reshape(struct mddev *mddev)
5964
{
5965
	int new_chunk = mddev->new_chunk_sectors;
5966

5967
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5968
		return -EINVAL;
5969
	if (new_chunk > 0) {
5970
		if (!is_power_of_2(new_chunk))
5971
			return -EINVAL;
5972
		if (new_chunk < (PAGE_SIZE >> 9))
5973
			return -EINVAL;
5974
		if (mddev->array_sectors & (new_chunk-1))
5975 5976
			/* not factor of array size */
			return -EINVAL;
5977
	}
5978 5979

	/* They look valid */
5980
	return check_reshape(mddev);
5981 5982
}

5983
static void *raid5_takeover(struct mddev *mddev)
5984 5985
{
	/* raid5 can take over:
D
Dan Williams 已提交
5986
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5987 5988 5989 5990
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5991 5992
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5993 5994
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5995 5996 5997 5998 5999
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
6000 6001
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
6002 6003 6004 6005

	return ERR_PTR(-EINVAL);
}

6006
static void *raid4_takeover(struct mddev *mddev)
6007
{
D
Dan Williams 已提交
6008 6009 6010
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
6011
	 */
D
Dan Williams 已提交
6012 6013
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
6014 6015 6016 6017 6018 6019 6020 6021
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6022

6023
static struct md_personality raid5_personality;
6024

6025
static void *raid6_takeover(struct mddev *mddev)
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6072
static struct md_personality raid6_personality =
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6087
	.size		= raid5_size,
6088
	.check_reshape	= raid6_check_reshape,
6089
	.start_reshape  = raid5_start_reshape,
6090
	.finish_reshape = raid5_finish_reshape,
6091
	.quiesce	= raid5_quiesce,
6092
	.takeover	= raid6_takeover,
6093
};
6094
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6095 6096
{
	.name		= "raid5",
6097
	.level		= 5,
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6109
	.size		= raid5_size,
6110 6111
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6112
	.finish_reshape = raid5_finish_reshape,
6113
	.quiesce	= raid5_quiesce,
6114
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6115 6116
};

6117
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6118
{
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6132
	.size		= raid5_size,
6133 6134
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6135
	.finish_reshape = raid5_finish_reshape,
6136
	.quiesce	= raid5_quiesce,
6137
	.takeover	= raid4_takeover,
6138 6139 6140 6141
};

static int __init raid5_init(void)
{
6142
	register_md_personality(&raid6_personality);
6143 6144 6145
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6146 6147
}

6148
static void raid5_exit(void)
L
Linus Torvalds 已提交
6149
{
6150
	unregister_md_personality(&raid6_personality);
6151 6152
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6153 6154 6155 6156 6157
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6158
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6159
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6160 6161
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6162 6163
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6164 6165 6166 6167 6168 6169 6170
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");